
Multithreading Extension Introduction

The Multithreading extension gives programmers a notation for expressing paral-
lelism in their applications. One or more sibling threads can be created within and
sharing the process address space; the process model is extended so that inter-
process interactions work as specified elsewhere in the SVID.

This section also includes additional of C library interfaces so that sibling threads
do not interfere with each others’ data, and synchronization interfaces for coordi-
nation of actions between threads within a process as well as threads in different
processes.

While multithreading adapts naturally to multiprocessing computer systems, mul-
tithreading does not require multiprocessing capabilities. Multithreading used as
a notation can simplify programs on uniprocessors and provide the potential for
program speedup on; either uniprocessors or multiprocessors.

Error Handling

Most new functions in section MT_LIB return an error indication instead of setting
e r r n o as a side effect of a function failure. This improves efficiency by avoiding
the use of non-shared memory and simplifies the programming model, since the
failure/success indication is returned as the function value where relevant.

While e r r n o continues to be used for pre-existing interfaces, new interfaces need
not pay the penalty of determining which thread’s error indication location should
be updated.

Some functions do not return an error indication because they always succeed (for
example, t h r _ s e l f) o r b e c a u s e t h e y c a n n o t r e t u r n (f o r e x a m p l e ,
t h r _ e x i t) .

Multithreading Extension Introduction 12-1

FINAL COPY
June 15, 1995
File: mt_int.txt

svid

Page: 1

Summary of Library Routines

The following library routines are specified by the MT_OS Multithreading OS Ser-
vices.

f o r k 1 f o r k a l l

The following utilities are provided by the MT_LIB Multithreading Library Rou-
tines.

a s c t i m e _ r g e t c _ u n l o c k e d r a n d _ r r w l o c k _ i n i t t h r _ g e t s p e c i f i c
b a r r i e r g e t c h a r _ u n l o c k e d r e a d i r _ r s e m a _ d e s t r o y t h r _ j o i n
b a r r i e r _ d e s t r o y g e t l o g i n _ r r m u t e x _ d e s t r o y s e m a _ i n i t t h r _ k e y c r e a t e
b a r r i e r _ i n i t g e t p a s s _ r r m u t e x _ i n i t s e m a _ p o s t t h r _ k e y d e l e t e
b a r r i e r _ w a i t g m t i m e _ r r m u t e x _ l o c k s e m a _ t r y w a i t t h r _ k i l l
c o n d _ b r o a d c a s t l 6 4 a _ r r m u t e x _ t r y l o c k s e m a _ w a i t t h r _ m i n s t a c k
c o n d _ d e s t r o y l o c a l t i m e _ r r m u t e x _ u n l o c k s e m a p h o r e t h r _ s e l f
c o n d _ i n i t m u t e x r w _ l o c k s t r t o k _ r t h r _ s e t c o n c u r r e n c y
c o n d _ s i g n a l m u t e x _ d e s t r o y r w _ r d l o c k t h r _ c o n t i n u e t h r _ s e t p r i o
c o n d _ t i m e d w a i t m u t e x _ i n i t r w _ t r y l o c k t h r _ c r e a t e t h r _ s e t s c h e d u l e r
c o n d _ w a i t m u t e x _ l o c k r w _ t r y r d l o c k t h r _ e x i t t h r _ s e t s p e c i f i c
c o n d i t i o n m u t e x _ t r y l o c k r w _ t r y w r l o c k t h r _ g e t _ r r _ i n t e r v a l t h r _ s i g s e t m a s k
c t i m e _ r m u t e x _ u n l o c k r w _ u n l o c k t h r _ g e t c o n c u r r e n c y t h r _ s u s p e n d
f l o c k f i l e p u t c _ u n l o c k e d r w _ w r l o c k t h r _ g e t p r i o t h r _ y i e l d
f t r y l o c k f i l e p u t c h a r _ u n l o c k e d r w l o c k _ d e s t r o y t h r _ g e t s c h e d u l e r t t y n a m e _ r
f u n l o c k f i l e

Additions to Other Extensions

The following interfaces are in section BA_OS to provide more complete support
for multithreaded and multiprocessing applications.

pread BA_OS
pwrite BA_OS
sigwait BA_OS
sysconf BA_OS

In addition, the environment variable, P A R A L L E L is included in e r r n o (B A _ E N V).

12-2 MULTITHREADING EXTENSION INTRODUCTION

FINAL COPY
June 15, 1995
File: mt_int.txt

svid

Page: 2

Changes to Existing Interfaces

The specification of the following commands and utilities have been modified to
function correctly when the M T _ extension is installed. n i c e (K E _ O S) has been
deprecated in favor of p r i o c n t l (K E _ O S).

auditrpt(AT_CMD) priocntl(RT_CMD->AU_CMD) semop(KE_OS)
exec(BA_OS) priocntl(RT_OS->KE_OS) sigaction(BA_OS)
fork(BA_OS) ps(BU_CMD) sigaltstack(BA_OS)
make(SD_CMD) sem(KE_ENV) sigsend(BA_OS)
nice(KE_OS) semctl(KE_OS) sigsendset(sigsend(BA_OS)
plock(KE_OS) semget(KE_OS)

Summary of Library Routines 12-3

FINAL COPY
June 15, 1995
File: mt_int.txt

svid

Page: 3

FINAL COPY
June 15, 1995

File:

Page: 4

Threads Overview

The threads interfaces allow a programmer to conveniently express parallel algo-
rithms. In addition, user-level synchronization routines are provided that allow
coordination of threads either within a process or across processes.

What is a Thread?

A process as defined in the SVID consists of an address space and a single thread
of execution. The MT_LIB interfaces extend that model to permit multiple threads
within a single shared address space.

A thread is a sequence of instructions and associated data that is scheduled and
executed as an independent entity. Every UNIX process that uses the threads
interfaces contains at least one, and possibly many, threads.

The existence of a thread is strictly tied to the process in which they were created.
Threads have no identity outside of that process.

Threads may be implemented in several different ways. One is to support threads
in a library by multiplexing threads onto operating system-supported objects;
another is to directly implement threads routines as operating system calls. The
interfaces defined here do not require either approach, and may be implemented
in either manner. The interfaces and discussion below presume that a flexible
multiplexing approach is used, but do not require such an approach.

In the following discussion, the operating system supported objects will be called
Lightweight Processes, or LWPs. LWPs are not defined by, or directly manipulated
by, any interface in this section.

Bound and Multiplexed Threads

If multiplexing is supported by the implementation, consider the actions of an
LWP supporting a multithreaded process. The LWP can be considered to pick up
a thread for execution, run it for a time, and then set down the thread and select
another for execution.

An LWP has additional semantics as a result of operating system support. For
example, an LWP is scheduled by the operating system, hence it competes against
all other LWPs in the system for processor access and other resources.

1

A thread can be bound to an LWP for the thread’s lifetime [see
t h r _ c r e a t e(MT_LIB)]. Bound threads have the properties of the underlying
LWP, hence a bound thread is scheduled by the operating system.

Multiplexed threads, on the other hand, temporarily take on the properties of the
underlying LWP, but so do any other multiplexed threads run by that LWP. The
LWPs are scheduled by the operating system, but act as a homogeneous pool of
processing power available in turn to any multiplexed thread. A multiplexed
threads implementation schedules multiplexed threads (see the ‘‘Thread Schedul-
ing’’ section). The initial thread is always multiplexed if multiplexing is sup-
ported at all.

The size of the pool of available LWPs reflects the actual concurrency level for
multiplexed threads: if there are twenty threads, but only three are executing at a
time, the concurrency level is three. If there are one hundred threads, but only
three are executing at a time, the concurrency level is also three. Users can change
the requested level of concurrency with the T H R _ I N C R _ C O N C flag to
t h r _ c r e a t e(MT_LIB) or with t h r _ s e t c o n c u r r e n c y(MT_LIB), and determine the
requested level with t h r _ g e t c o n c u r r e n c y.

When a program is linked with the Threads Library, an initial thread is created to
execute the m a i n function. This initial thread is a multiplexed thread.

In certain cases, such as when competing for synchronization objects bound
threads are given scheduling priority over multiplexed threads to make better use
of system resources.

Thread Creation

t h r _ c r e a t e(MT_LIB) creates new threads. The created thread may be either mul-
tiplexed or bound threads. The caller can supply a stack for the thread to run on,
or the implementation will supply one. The implementation may not check for
stack overflow for stacks supplied by the user, but a S I G S E G V signal may be gen-
erated if a thread overflows a library-allocated stack.

Every thread has an ID, which is recognized only within the current process.
t h r _ s e l f(MT_LIB) returns the ID of the calling thread.

2

Sibling Threads

Threads within a process are siblings. Unlike processes, where a parent process
creates a child process for which it must w a i t(BA_OS), threads create siblings for
which they do not have to wait. The implementation of a sibling thread may be
awaited with t h r _ j o i n(MT_LIB) (see below), but this is optional.

Detached Threads

A detached thread may be created [see t h r _ c r e a t e(MT_LIB)], but a detached
thread cannot be joined. [See t h r _ j o i n(MT_LIB)]. On completion a detached
thread’s resources may be immediately recycled by the implementation. The
t h r _ e x i t parameter for a detached thread is ignored.

Daemon Threads

An application may create daemon threads (also known as detached threads) to
provide ongoing services, for example asynchronous I/O, for other threads. Dae-
mon threads do not need to exit explicitly; when the last non-daemon thread ter-
minates, the process will exit, terminating any daemon threads.

Thread Exit and Process Exit

t h r _ e x i t(MT_LIB) causes the calling thread to terminate its execution.

A process containing threads will terminate in any of the following circumstances:

When the last non-daemon thread terminates, the process exits.

If any thread calls e x i t(BA_OS) directly, the process and all its threads and
LWPs will exit immediately.

If the initial thread terminates without calling t h r _ e x i t, e x i t will be called
implicitly, causing the entire process to exit.

If the thread receives a signal whose effect is to terminate the process, the
process will exit.

If the initial thread returns from the initial call to m a i n, the process exits as if
e x i t(BA_OS) were called directly, with the value received by m a i n as the
e x i t statement.

3

Joining or Waiting for a Thread

A thread uses t h r _ j o i n(MT_LIB) to wait for another thread to exit and to retrieve
its exit value. The term join emphasizes the sibling relationship between threads.
When one thread waits for another, in effect they join control paths. Threads are
joinable by default, but if they are created with the T H R _ D E T A C H E D flag [see
t h r _ c r e a t e(MT_LIB)], they cannot be joined.

Thread Scheduling

A thread may have one of three scheduling policies:

time-sharing (S C H E D _ T S or S C H E D _ O T H E R)

round-robin (S C H E D _ R R)

first-in-first-out (S C H E D _ F I F O)

Multiplexed threads must be able to run under the time-sharing policy. Bound
threads must be able to run under all of these policies. See
t h r _ s e t s c h e d u l e r(MT_LIB) and t h r _ s e t p r i o(MT_LIB). The above three
scheduling policies must be supported. Other, implementation-defined, schedul-
ing policies may be available.

A thread can set its scheduling policy and priority with
t h r _ s e t s c h e d u l e r(MT_LIB) and its priority only with t h r _ s e t p r i o(MT_LIB). It
can retrieve its scheduling policy and priority with t h r _ g e t s c h e d u l e r(MT_LIB)
and its priority only with t h r _ g e t p r i o(MT_LIB). t h r _ y i e l d(MT_LIB) causes a
thread to stop executing to allow another eligible thread to run.

The interfaces defined here do not protect against priority inversion. That is, it is
possible for a thread to be blocked waiting for a lower priority thread to release a
resource.

Error Handling

None of the Threads Library routines set e r r n o; most return an error number if an
error is encountered. This discourages use of e r r n o, which is non-reentrant and
inefficient in a multithreaded environment. The routines do do not guarantee to
preserve e r r n o across calls.

4

Signal Handling

UNIX System signals were designed for inter-process communication. They have
been enhanced to work with multithreaded programs, but their use here should
be restricted. We recommend that only a limited number of threads within a pro-
cess access and receive signals. These threads can convert the notification pro-
vided by signals into internal communication between threads.

Each thread in a process has its own signal mask, which is inherited from its crea-
tor thread. Threads can use t h r _ s i g s e t m a s k(MT_LIB) to modify their signal
masks.

When a multithreaded process receives a signal, the signal is delivered to one
thread interested in the signal. Threads express interest in a signal by calling
s i g w a i t(BA_OS) or by using s i g n a l(BA_OS), s i g s e t(BA_OS) or
s i g a c t i o n(BA_OS) to establish a handler for a signal.

Threads use t h r _ k i l l(MT_LIB) to send a signal to a sibling thread. Communica-
tion within a process should use MT_LIB operations wherever possible; using sig-
nals and threads can make programs more complex.

Thread-Specific Data

Thread-specific data routines provide a thread-safe alternative to static or external
data. That is, they provide a way for threads to create and access private data that
persist across function calls. The thread-specific data routines are:
t h r _ g e t s p e c i f i c(MT_LIB), t h r _ k e y c r e a t e(MT_LIB),
t h r _ k e y d e l e t e(MT_LIB), and t h r _ s e t s p e c i f i c(MT_LIB).

5

FINAL COPY
June 15, 1995

File:

Page: 10

Synchronization

The synchronization interfaces allow coordination of threads within a process as
well as coordination of threads in different processes. The following synchroniza-
tion mechanisms are specified:

mutual exclusion locks (mutex locks)

condition variables

semaphores

reader-writer locks

barriers

recursive mutual exclusion locks (rmutex locks)

Most of these mechanisms can be initialized to be of one of two types:
U S Y N C _ T H R E A D or U S Y N C _ P R O C E S S. U S Y N C _ T H R E A D mechanisms should be used
only by threads within the current process, whether or not the synchronization
objects are in shared memory. U S Y N C _ P R O C E S S mechanisms can be used by
threads in different processes.

Each of these mechanisms is described briefly below, and in more detail on indivi-
dual manual pages.

In all cases, data is protected by convention; a thread not following the protocol of
acquiring a lock/semaphore, modifying or using the resource, then releasing the
lock/semaphore is not prevented from modifying the shared data.

Error Handling

None of the user synchronization routines set e r r n o; most return an error number
if an error is encountered. This discourages use of e r r n o, which is non-reentrant.
The routines do not guarantee to preserve e r r n o across calls.

1

Mutual Exclusion Locks

Mutual exclusion locks, or mutexes, are a synchronization mechanism used to
serialize the execution of threads. They are typically used to ensure that only one
thread at a time is operating on a shared datum. When mutexes are locked before
and unlocked after every access to shared data, the integrity of that data with
respect to cooperating threads is assured. Note that mutexes protect data only
when the convention of acquiring and releasing the mutex is faithfully followed
before and after any access of the data.

See m u t e x(MT_LIB), m u t e x _ d e s t r o y(MT_LIB), m u t e x _ i n i t(MT_LIB),
m u t e x _ l o c k(MT_LIB), m u t e x _ t r y l o c k(MT_LIB), and m u t e x _ u n l o c k(MT_LIB).

Recursive mutex locks are variations of the mutex lock.

Condition Variables

A condition variable is a synchronization mechanism used to communicate infor-
mation between cooperating threads, making it possible for a thread to suspend
its execution while waiting for an event or condition. For example, the consumer
in a producer-consumer algorithm might need to wait for the producer by waiting
for the condition b u f f e r _ i s _ n o t _ e m p t y.

See c o n d i t i o n(MT_LIB), c o n d _ b r o a d c a s t(MT_LIB), c o n d _ d e s t r o y(MT_LIB),
c o n d _ i n i t(MT_LIB), c o n d _ s i g n a l(MT_LIB), c o n d _ t i m e d w a i t(MT_LIB), and
c o n d _ w a i t(MT_LIB).

Reader-Writer Locks

Reader-writer locks allow many threads to have simultaneous read-only access to
data, while allowing only one thread to have write access at any time. They are
typically used to protect data that is searched more often than it is changed.

See r w l o c k(MT_LIB), r w _ r d l o c k(MT_LIB), r w _ t r y r d l o c k(MT_LIB),
r w _ t r y w r l o c k(MT_LIB), r w _ u n l o c k(MT_LIB), r w _ w r l o c k(MT_LIB),
r w l o c k _ d e s t r o y(MT_LIB), and r w l o c k _ i n i t(MT_LIB).

2

Semaphores

Conceptually, a semaphore is a non-negative integer count. Semaphores are typi-
cally used to coordinate access to resources. The semaphore count is initialized
with s e m a _ i n i t to the number of free resources. Threads then atomically incre-
ment the count with s e m a _ p o s t when resources are released and atomically
decrement the count with s e m a _ w a i t when resources are acquired. When the
semaphore count becomes zero, indicating that no more resources are present,
threads trying to decrement the semaphore with s e m a _ w a i t will block until the
count becomes greater than zero.

See s e m a p h o r e(MT_LIB), s e m a _ d e s t r o y(MT_LIB), s e m a _ i n i t(MT_LIB),
s e m a _ p o s t(MT_LIB), s e m a _ t r y w a i t(MT_LIB), and s e m a _ w a i t(MT_LIB).

Barriers

Barriers provide a simple coordination mechanism for threads. Threads wait at a
barrier until a specified number of threads have reached the barrier, then they all
resume execution.

Threads waiting at a barrier are put to sleep, or blocked, until the specified
number of threads have reached the barrier.

When a thread calls b a r r i e r _ w a i t it is said to have reached the barrier.

See b a r r i e r(MT_LIB), b a r r i e r _ d e s t r o y(MT_LIB), b a r r i e r _ i n i t(MT_LIB), and
b a r r i e r _ w a i t(MT_LIB).

Recursive Mutex Locks

Recursive mutual exclusion locks, or rmutexes, are mutexes that can be locked
recursively. That is, a thread that has locked an rmutex may lock it again without
releasing it. The thread that has locked an rmutex is referred to as the owner of
the rmutex. Only the owner of an rmutex may lock it again while the rmutex is
locked; other threads are denied access as with ordinary mutexes. Each
r m u t e x _ l o c k or r m u t e x _ t r y l o c k call must be matched by a corresponding
r m u t e x _ u n l o c k before the rmutex is made available to threads other than the
owner.

Note that rmutexes, like mutexes, protect data only when the convention of
acquiring the rmutex is faithfully followed before any access of the data.

3

See r m u t e x(MT_LIB), r m u t e x _ d e s t r o y(MT_LIB), r m u t e x _ i n i t(MT_LIB),
r m u t e x _ l o c k(MT_LIB), r m u t e x _ t r y l o c k(MT_LIB), and
r m u t e x _ u n l o c k(MT_LIB).

4

Multithreading Extension OS Service Routines

The following section contains the manual pages for the MT_OS routines.

Multithreading Extension OS Service Routines 13-1

FINAL COPY
June 15, 1995
File: mt_os.cov

svid

Page: 15

FINAL COPY
June 15, 1995

File:

Page: 16

f o r k – create a new process
i n c l u d e < s y s / t y p e s . h >
i n c l u d e < u n i s t d . h >

p i d _ t f o r k (v o i d) ;
f o r k causes creation of a new process. The new process (child process) is an exact
copy of the calling process (parent process). This means the child process inherits
the following attributes from the parent process: real user ID, real group ID, effec-
tive user ID, effective group ID environment close-on-exec flag [see e x e c(BA_OS)]
signal handling settings (that is, S I G _ D F L, S I G _ I G N, S I G _ H O L D, function address)
supplementary group IDs set-user-ID mode bit set-group-ID mode bit profiling
on/off status nice value [see n i c e(AS_CMD)] scheduler class [see
p r i o c n t l(RT_OS)] all attached shared memory segments process group I D ses-
sion I D current working directory root directory file mode creation mask [see
u m a s k(BA_OS)] resource limits controlling terminal working and maximum
privilege sets Scheduling priority and any per-process scheduling parameters that
are specific to a given scheduling class may or may not be inherited according to
the policy of that particular class [see p r i o c n t l(RT_OS)]. The child process
differs from the parent process in the following ways: The child process has a
unique process I D which does not match any active process group I D. The child
process has a different parent process I D (that is, the process I D of the parent pro-
cess). The child process has its own copy of the parent’s file descriptors and direc-
tory streams. Each of the child’s file descriptors shares a common file pointer with
the corresponding file descriptor of the parent. All s e m a d j values are cleared Pro-
cess locks, text locks and data locks are not inherited by the child The child
process’s t m s structure is cleared: t m s _ u t i m e, s t i m e, c u t i m e, and c s t i m e are set
to 0 The time left until an alarm clock signal is reset to 0. The set of signals pend-
ing for the child process is initialized to the empty set. Record locks set by the
parent process are not inherited by the child process [see f c n t l(BA_OS)].

FINAL COPY
June 15, 1995

File:

Page: 18

Multithreading Extension Library Routines

The following section contains the manual pages for the MT_LIB routines.

Multithreading Extension Library Routines 14-1

FINAL COPY
June 15, 1995
File: mt_lib.cov

svid

Page: 19

FINAL COPY
June 15, 1995

File:

Page: 20

a 6 4 l, l 6 4 a – convert between long integer and base-64 ASCII string
i n c l u d e < s t d l i b . h >

l o n g a 6 4 l (c o n s t c h a r ∗s) ;

c h a r ∗l 6 4 a (l o n g l) ;
These functions are used to maintain numbers stored in base-64 ASCII characters.
These characters define a notation by which long integers can be represented by
up to six characters; each character represents a ‘‘digit’’ in a radix-64 notation. The
characters used to represent ‘‘digits’’ are . for 0, / for 1, 0 through 9 for 2–11, A
through Z for 12–37, and a through z for 38–63. a 6 4 l takes a pointer to a null-
terminated base-64 representation and returns a corresponding l o n g value. If the
string pointed to by s contains more than six characters, a 6 4 l will use the first six.
a 6 4 l scans the character string from left to right with the least significant digit on
the left, decoding each character as a 6-bit radix-64 number. l 6 4 a takes a l o n g ar-
gument and returns a pointer to the corresponding base-64 representation. If the
argument is 0, l 6 4 a returns a pointer to a null string. The value returned by l 6 4 a
is a pointer into a static buffer, the contents of which are overwritten by each call.
Level 1.

1

FINAL COPY
June 15, 1995

File:

Page: 22

aio_cancel (MT_LIB) aio_cancel (MT_LIB)

NAME
a i o _ c a n c e l – cancel asynchronous I/O operations

SYNOPSIS
i n c l u d e < a i o . h >

i n t a i o _ c a n c e l (i n t fildes, s t r u c t a i o c b *aiocbp) ;

DESCRIPTION
a i o _ c a n c e l allows the cancellation of outstanding asynchronous I/O requests.
fildes and aiocbp are used to identify the asynchronous I/O requests that should be
canceled.

The a i o _ c a n c e l function attempts to cancel one or all of the asynchronous I/O
requests currently outstanding against file descriptor fildes. The aiocbp argument
points to the asynchronous I/O control block for a particular request to be canceled.
If aiocbp is N U L L, all outstanding cancelable asynchronous I/O requests against fildes
are canceled.

Normal notification occurs for asynchronous I/O operations that are successfully
canceled. If there are requests which cannot be canceled, then the normal asynchro-
nous completion process shall take place for those requests when they are com-
pleted.

For requested operations that are successfully canceled, a i o _ r e t u r n returns - 1 and
its associated error status is set to E C A N C E L E D. For requested operations that are not
successfully canceled, the aiocbp is not modified by a i o _ c a n c e l.

If aiocbp is not N U L L, and fildes does not have the same value as the file descriptor
with which the asynchronous operation was initiated, unspecified results occur.

Return Values
The a i o _ c a n c e l function returns the value A I O _ C A N C E L E D to the calling process if
the requested operation(s) were canceled. The value A I O _ N O T C A N C E L E D is returned
if at least one of the requested operation(s) cannot be canceled because it is in pro-
gress. In this case, the state of the other operations, if any, referenced in the call to
a i o _ c a n c e l is not indicated by the return value of a i o _ c a n c e l. The application
may determine the state of affairs for these operations by using a i o _ e r r o r. The
value A I O _ A L L D O N E is returned if all of the operations have already completed.
Otherwise, the function returns –1, and sets e r r n o to indicate the error.

Errors
Under the following conditions, a i o _ c a n c e l fails and sets e r r n o to:

E B A D F fildes is not a valid file descriptor.

E I N V A L no asynchronous I/O has ever been requested for fildes.

E N O S Y S a i o _ c a n c e l is not supported by this implementation.

SEE ALSO
a i o c b(MT_LIB), a i o _ r e a d(MT_LIB), a i o _ s u s p e n d(MT_LIB),
a i o _ w r i t e(MT_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: mt_lib/aiocancel
svid

Page: 23

aiocb (MT_LIB) aiocb (MT_LIB)

NAME
a i o c b – Asynchronous I/O Control Block

SYNOPSIS
i n c l u d e < a i o . h >

DESCRIPTION
a i o c b specifies the asynchronous I/O control block that is used by the asynchro-
nous I/O interface routines.

The asynchronous I/O routines pass information with the request and receive com-
pletion status information after the I/O operation has completed. An asynchronous
I/O control block, structure a i o c b, is used to specify input parameters and receive
completion status information for asynchronous I/O requests. This structure is
defined in a i o . h and includes at least the following members:

i n t a i o _ f i l d e s ; / * f i l e d e s c r i p t o r * /
v o l a t i l e v o i d * a i o _ b u f ; / * b u f f e r l o c a t i o n * /
s i z e _ t a i o _ n b y t e s ; / * l e n g t h o f t r a n s f e r * /
o f f _ t a i o _ o f f s e t ; / * f i l e o f f s e t * /
s t r u c t s i g e v e n t a i o _ s i g e v e n t ; / * s i g n a l n u m b e r a n d o f f s e t * /
i n t a i o _ l i o _ o p c o d e ; / * l i s t i o o p e r a t i o n * /

The structure members a i o _ f i l d e s, a i o _ b u f, and a i o _ n b y t e s are the same as the
fildes, buf, and nbytes arguments to r e a d and w r i t e. With a i o _ r e a d, for example,
the caller wishes to read a i o _ n b y t e s from the file associated with a i o _ f i l d e s into
the buffer pointed to by a i o _ b u f. All appropriate structure members should be set
by the caller when a i o _ r e a d or a i o _ w r i t e is called.

If O _ A P P E N D is not set for the file descriptor a i o _ f i l d e s and this file descriptor
points to a device capable of seeking, the requested I/O operation occurs at the
position in the file specified by a i o _ o f f s e t.

The a i o _ s i g e v e n t member defines the notification method to be used on I/O com-
pletion. This structure,found in siginfo.h, includes the following members:

i n t s i g e v _ n o t i f y / * n o t i f i c a t i o n m o d e * /
u n i o n {

i n t n i s i g n o / * s i g n a l n u m b e r * /
v o i d (* n i f u n c) (u n i o n s i g v a l)

} s i g e v _ n o t i f y i n f o
u n i o n {

i n t s i v a l _ i n t / * i n t e g e r v a l u e * /
v o i d * s i v a l _ p t r / * p o i n t e r v a l u e * /

} s i g e v _ v a l u e / * s i g n a l v a l u e * /

a i o _ s i g e v e n t . s i g e v _ n o t i f y can be set to S I G E V _ N O N E or S I G E V _ C A L L B A C K. If it
is set to S I G E V _ N O N E, no notification is posted on I/O completion, but the error
status for the operation and the return status for the operation shall be appropri-
ately set. If it is set to S I G E V _ C A L L B A C K, n i f u n c shall be set to the address of the
function to be called. s i g e v _ v a l u e shall be set to the value to be passed to the func-
tion call. n i s i g n o specifies the signal to be generated.

Page 1

FINAL COPY
June 15, 1995

File: mt_lib/aiocb
svid

Page: 24

aiocb (MT_LIB) aiocb (MT_LIB)

a i o _ l i o _ o p c o d e is used only by the l i o _ l i s t i o function which allows multiple
asynchrounous I/O operations to be submitted at once. [See
l i o _ l i s t i o(MT_LIB)]

To insure forward compatibility, all unused fields of the a i o c b structure must be
set to zero. This can be done by using c a l l o c [see m a l l o c(BA_OS)] to allocate the
structure or by using m e m s e t(BA_LIB) before the structure is used.

SEE ALSO
a i o _ c a n c e l(MT_LIB), a i o _ e r r o r(MT_LIB), a i o _ r e a d(MT_LIB),
a i o _ s u s p e n d(MT_LIB), a i o _ w r i t e(MT_LIB), l i o _ l i s t i o(MT_LIB),
m a l l o c(BA_OS), m e m s e t(BA_LIB), r e a d(BA_OS), w r i t e(BA_OS)

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: mt_lib/aiocb
svid

Page: 25

aio_error (MT_LIB) aio_error (MT_LIB)

NAME
a i o _ e r r o r – retrieve asynchronous I/O error status

SYNOPSIS
i n c l u d e < a i o . h >

i n t a i o _ e r r o r (c o n s t s t r u c t a i o c b *aiocbp) ;

DESCRIPTION
a i o _ e r r o r returns the error status associated with the aiocb structure referenced by
the aiocbp argument. The error status for an asynchronous I/O operation is the
e r r n o value that would be set by the corresponding r e a d or w r i t e operation. If
the operation is not completed, the error status is set to E I N P R O G R E S S.

Return Values
If the asynchronous I/O operation completes successfully, 0 is returned. If it fails,
the corresponding r e a d or w r i t e error status is returned. E I N P R O G R E S S is returned
if the operation is still in progress.

SEE ALSO
a i o _ c a n c e l(MT_LIB), a i o c b(MT_LIB), a i o _ r e a d(MT_LIB),
a i o _ r e t u r n(MT_LIB), a i o _ w r i t e(MT_LIB), r e a d(BA_OS), w r i t e(BA_OS)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: mt_lib/aioerror
svid

Page: 26

aio_read (MT_LIB) aio_read (MT_LIB)

NAME
a i o _ r e a d – asynchronous read

SYNOPSIS
i n c l u d e < a i o . h >

i n t a i o _ r e a d (s t r u c t a i o c b *aiocbp) ;

DESCRIPTION
a i o _ r e a d supports an asynchronous read capability that allows the calling process
to read a i o c b p - > a i o _ n b y t e s from the file associated with the file descriptor
a i o c b p - > a i o _ f i l d e s into the buffer pointed to by a i o c b p - > a i o _ b u f.

a i o c b p points to an a i o c b structure which contains other input parameters as well
as completion status members.

If a i o c b p - > a i o _ s i g e v e n t . s i g e v _ n o t i f y is set to S I G E V _ N O N E in the asynchro-
nous I/O control block, no notification is posted on I/O completion. If it is set to
S I G E V _ C A L L B A C K, a i o c b p - > a i o _ s i g e v e n t . s i g e v _ n o t i f y i n f o . n i f u n c is set to
the address of the function to be called, a i o c b p - > a i o _ s i g e v e n t . s i g e v _ v a l u e is
set to the argument to be passed to the function, and callback notification is posted.

If the control block pointed to by aiocbp or the buffer pointed to by a i o c p b -
> a i o _ b u f becomes an invalid address prior to asynchronous I/O completion, then
the behavior is undefined.

Return Values
The call to a i o _ r e a d returns 0 when the read request has been initiated or queued
to the file or device. If an error condition is encountered during queuing, the call
returns –1 without having initiated or queued the request.

Upon successful completion, the function a i o _ r e a d returns 0 and a call to
a i o _ e r r o r returns E I N P R O G R E S S. If the read request fails, a i o _ r e a d returns –1
and the a i o _ e r r o r function will return the error number of the failure.

After the read operation has successfully completed, the a i o _ e r r o r function
returns 0. The a i o _ r e t u r n function can be used to access the return value of the
underlying r e a d call.

Errors
There are two types of errors that are associated with an asynchronous I/O request.
The first occurs during the validity checking of the I/O request submitted by the
a i o _ r e a d routine. This error is returned to the caller of a i o _ r e a d. The other
occurs during the processing of the actual read operation. The read operation may
fail for any of the reasons that a normal r e a d fails. If the call to a i o _ r e a d success-
fully queues the I/O operation but the operation is subsequently canceled or
encounters an error, the a i o _ e r r o r function returns one of the values normally
returned by the r e a d system call or one of the errors listed below. The time at
which the error occurs is implementation-dependent; for example, an invalid file
descriptor may not be determined at the time of the call to a i o _ r e a d which could
successfully complete. However, a i o _ e r r o r then returns E B A D F to indicate the
error.

Page 1

FINAL COPY
June 15, 1995

File: mt_lib/aioread
svid

Page: 27

aio_read (MT_LIB) aio_read (MT_LIB)

The notification specified for a request will only be performed if that request was
successfully queued.

Under the following conditions, a i o _ r e a d fails and the a i o _ e r r o r function
returns:

E A G A I N The requested asynchronous I/O operation was not queued because
of system resource limitations. The first request to encounter a
resource limitation and all subsequent requests will be marked so that
a i o _ e r r o r returns E A G A I N.

E C A N C E L E D The requested I/O was canceled before the I/O completed because of
a i o _ c a n c e l.

E B A D F The a i o c b p - > a i o _ f i l d e s argument is not a valid file descriptor
open for reading.

E I N V A L The value of a i o c b p - > a i o _ o f f s e t would be invalid. The notification
mode specified by a i o c b p - > a i o _ s i g e v e n t . s i g e v _ n o t i f y is not
supported by the implementation.

REFERENCES
a i o _ c a n c e l(MT_LIB), a i o c b(MT_LIB), a i o _ s u s p e n d(MT_LIB),
a i o _ w r i t e(MT_LIB), r e a d(BA_OS)

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: mt_lib/aioread
svid

Page: 28

aio_return (MT_LIB) aio_return (MT_LIB)

NAME
a i o _ r e t u r n – retrieve return status of asynchronous I/O operation

SYNOPSIS
i n c l u d e < a i o . h >

i n t a i o _ r e t u r n (s t r u c t a i o c b *aiocbp) ;

DESCRIPTION
a i o _ r e t u r n returns the return status associated with the a i o c b structure refer-
enced by the a i o c b p argument. The return status for an asynchronous I/O opera-
tion is the value that would be returned by the corresponding r e a d or w r i t e func-
tion call. If the error status [see a i o _ e r r o r(MT_LIB)] for the operation is equal to
E I N P R O G R E S S, the return status for the operation is undefined. The a i o _ r e t u r n
function may be called exactly once to retrieve the return status of a given asyn-
chronous operation; thereafter, if the same a i o c b referenced structure is used in a
call to a i o _ r e t u r n or a i o _ e r r o r, the result is undefined. When the a i o c b struc-
ture referred to by aiocbp is used to submit another asynchronous operation,
a i o _ r e t u r n may be successfully used to retrieve the return status for that opera-
tion.

Return Values
The corresponding r e a d or w r i t e status is returned. This function should be called
only when a i o _ e r r o r does not return E I N P R O G R E S S.

SEE ALSO
a i o _ c a n c e l(MT_LIB), a i o c b(MT_LIB), a i o _ e r r o r(MT_LIB), a i o _ r e a d(MT_LIB),
a i o _ w r i t e(MT_LIB), r e a d(BA_OS), w r i t e(BA_OS)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: mt_lib/aioreturn
svid

Page: 29

aio_suspend (MT_LIB) aio_suspend (MT_LIB)

NAME
a i o _ s u s p e n d – suspend until asynchronous I/O completes

SYNOPSIS
i n c l u d e < a i o . h >

i n t a i o _ s u s p e n d (c o n s t s t r u c t a i o c b *list[],
i n t nent, c o n s t s t r u c t t i m e s p e c *timeout) ;

DESCRIPTION
a i o _ s u s p e n d suspends the calling thread until at least one of the selected I/O
requests completes or a timeout occurs. a i o _ s u s p e n d suspends the calling thread
until at least one of the asynchronous I/O operations referenced by the list argu-
ment has completed, until a signal interrupts the function, or, if timeout is not N U L L,
until the time interval specified by timeout has passed. If any of the a i o c b struc-
tures in the list corresponds to completed asynchronous I/O operations (i.e., the
error status for the operation is not equal to E I N P R O G R E S S), at the time of the call,
the function returns without suspending the calling process. The list argument is an
array of pointers to asynchronous I/O control blocks. The nent argument indicates
the number of elements in the array. Each a i o c b structure pointed to is used in ini-
tiating an asynchronous I/O request via a i o _ r e a d, a i o _ w r i t e, or l i o _ l i s t i o.
This array may contain N U L L pointers which are ignored. If this array contains
pointers that refer to a i o c b structures which have not been used in submitting
asynchronous I/O, the effect is undefined.

The t i m e s p e c structure includes at least the following members:

t i m e _ t t v _ s e c / * s e c o n d s * /
l o n g t v _ n s e c / * n a n o s e c o n d s * /

If the time interval indicated in the t i m e s p e c structure pointed to by timeout passes
before any of the I/O operations referenced by list is completed, a i o _ s u s p e n d
returns with an error.

Return Values
If the a i o _ s u s p e n d function returns after one or more asynchronous I/O opera-
tions have completed, the function returns zero. Otherwise, the function returns a
value of -1 and sets e r r n o to indicate the error.

The application determines which asynchronous I/O completed by scanning the
associated error and return status, using a i o _ e r r o r and a i o _ r e t u r n , respectively.

Errors
Under the following conditions, the a i o _ s u s p e n d function returns –1 and sets
e r r n o to:

E A G A I N No asynchronous I/O indicated in the list referenced by list
completed in the time interval indicated by timeout.

E I N T R A signal interrupted the a i o _ s u s p e n d function.

E N O S Y S a i o _ s u s p e n d is not supported by this implementation.

SEE ALSO
a i o c b(MT_LIB), a i o _ c a n c e l(MT_LIB), a i o _ e r r o r(MT_LIB), a i o _ r e a d(MT_LIB),
a i o _ r e t u r n(MT_LIB), a i o _ w r i t e(MT_LIB), l i o _ l i s t i o(MT_LIB)

Page 1

FINAL COPY
June 15, 1995

File: mt_lib/aiosuspend
svid

Page: 30

aio_suspend (MT_LIB) aio_suspend (MT_LIB)

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: mt_lib/aiosuspend
svid

Page: 31

aio_write (MT_LIB) aio_write (MT_LIB)

NAME
a i o _ w r i t e – asynchronous write

SYNOPSIS
i n c l u d e < a i o . h >

i n t a i o _ w r i t e (s t r u c t a i o c b *aiocbp) ;

DESCRIPTION
a i o _ w r i t e supports an asynchronous write capability that allows the calling pro-
cess to write a i o c b p - > a i o _ n b y t e s to the file associated with file descriptor
a i o c b p - > a i o _ f i l d e s from the buffer pointed to by a i o c b p - > a i o _ b u f.

a i o c b p points to an a i o c b structure which contains other input parameters as well
as completion status members.

If a i o c b p - > a i o _ s i g e v e n t . s i g e v _ n o t i f y is set to S I G E V _ N O N E in the asynchro-
nous I/O control block, no notification is posted on I/O completion. If it is set to
S I G E V _ C A L L B A C K, a i o c b p - > a i o _ s i g e v e n t . s i g e v _ n o t i f y i n f o . n i f u n c is set to
the address of the function to be called, a i o c b p - > a i o _ s i g e v e n t . s i g e v _ v a l u e is
set to the argument to be passed to the function, and callback notification is posted.

If the control block pointed to by a i o c b p or the buffer pointed to by a i o c b p -
> a i o _ b u f becomes an invalid address prior to asynchronous I/O completion, then
the behavior is undefined.

Return Values
The call to a i o _ w r i t e returns 0 when the write request has been initiated or
queued to the file or device. If an error condition is encountered during queuing,
the call returns –1 without having initiated or queued the request.

Upon successful completion, the function a i o _ w r i t e returns 0 and a call to
a i o _ e r r o r returns E I N P R O G R E S S. If the write request fails, a i o _ w r i t e returns –1
and the a i o _ e r r o r function will return the error number of the failure

After the write operation has successfully completed, the a i o _ e r r o r function
returns 0. The a i o _ r e t u r n function can be used to access the return value of the
underlying w r i t e call.

Errors
There are two types of errors that are associated with an asynchronous I/O request.
The first occurs during the validity checking of the I/O request submitted by the
a i o _ w r i t e routine. This error is returned to the caller of a i o _ w r i t e. The other
occurs during the processing of the actual write operation. The write operation
may fail for any of the reasons that a normal w r i t e fails. If the call to a i o _ w r i t e
successfully queues the I/O operation but the operation is subsequently canceled or
encounters an error, the a i o _ e r r o r function will return one of the values normally
returned by the w r i t e system call or one of the errors listed below. The time at
which the error occurs is implementation-dependent; for example, an invalid file
descriptor may not be determined at the time of the call to a i o _ w r i t e which could
successfully complete. However, a i o _ e r r o r will return E B A D F to indicate the
error.

Page 1

FINAL COPY
June 15, 1995

File: mt_lib/aiowrite
svid

Page: 32

aio_write (MT_LIB) aio_write (MT_LIB)

The notification specified for a request will only be performed if that request was
successfully queued.

Under the following conditions, a i o _ w r i t e fails and the a i o _ e r r o r function
returns:

E A G A I N The requested asynchronous I/O operation was not queued because
of system resource limitations. The first request to encounter a
resource limitation and all subsequent requests will be marked so that
a i o _ e r r o r returns E A G A I N.

E C A N C E L E D The requested I/O was canceled before the I/O completed due to
a i o _ c a n c e l.

E B A D F The a i o c b p - > a i o _ f i l d e s argument is not a valid file descriptor
open for writing.

E I N V A L The value of a i o c b p - > a i o _ o f f s e t would be invalid. The notification
mode specified by a i o c b p - > a i o _ s i g e v e n t . s i g e v _ n o t i f y is not
supported by the implementation.

SEE ALSO
a i o _ c a n c e l(MT_LIB), a i o c b(MT_LIB), a i o _ r e a d(MT_LIB),
a i o _ s u s p e n d(MT_LIB), w r i t e(BA_OS)

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: mt_lib/aiowrite
svid

Page: 33

barrier_destroy (MT_LIB) barrier_destroy (MT_LIB)

NAME
b a r r i e r _ d e s t r o y – destroy a blocking barrier

SYNOPSIS
i n c l u d e < s y n c h . h >

i n t b a r r i e r _ d e s t r o y (b a r r i e r _ t *barrier) ;

Parameters
barrier pointer to barrier to be destroyed

DESCRIPTION
b a r r i e r _ d e s t r o y destroys the barrier pointed to by barrier. This includes invali-
dating the barrier and freeing any associated implementation-allocated dynamic
resources.

Any user-allocated dynamic storage is unaffected by b a r r i e r _ d e s t r o y and must
be explicitly released by the program.

Return Values
b a r r i e r _ d e s t r o y returns zero for success and an error number for failure, as
described below.

Errors
If one of the following conditions is detected, b a r r i e r _ d e s t r o y returns the
corresponding value:

E B U S Y A thread is still waiting at the barrier.

E I N V A L Invalid argument specified.

SEE ALSO
b a r r i e r(MT_LIB), b a r r i e r _ i n i t(MT_LIB), b a r r i e r _ w a i t(MT_LIB)

LEVEL
Level 1

Page 1

FINAL COPY
June 15, 1995

File: mt_lib/barrier_dest
svid

Page: 34

barrier_init (MT_LIB) barrier_init (MT_LIB)

NAME
b a r r i e r _ i n i t – initialize a blocking barrier

SYNOPSIS
i n c l u d e < s y n c h . h >

i n t b a r r i e r _ i n i t (b a r r i e r _ t *barrier, i n t count, i n t type, v o i d *arg) ;

Parameters
barrier pointer to barrier to be initialized

count number of threads to use the barrier for synchronization

type U S Y N C _ T H R E A D or U S Y N C _ P R O C E S S

arg N U L L (reserved for future use)

DESCRIPTION
b a r r i e r _ i n i t initializes the barrier pointed to by barrier to be of type type and to
synchronize count threads. Once initialized, the barrier can be used any number of
times to synchronize execution of count threads.

Threads waiting at a barrier will block, or sleep, until all count threads arrive at the
barrier.

barrier Parameter
barrier points to the barrier to be initialized.

count Parameter
count is the number of threads that will be synchronized by the barrier. That is,
b a r r i e r _ w a i t will block any calling threads until count threads have reached the
barrier.

type Parameter
type can be set to one of the following values:

U S Y N C _ T H R E A D Initialize the barrier for threads within the current process.

U S Y N C _ P R O C E S S Initialize the barrier for threads across processes.

arg Parameter
arg should be set to N U L L. It is not currently used, but is reserved for future use.

Return Values
b a r r i e r _ i n i t returns zero for success and an error number for failure, as
described below.

Errors
If one of the following conditions is detected, b a r r i e r _ i n i t returns the
corresponding value:

E B U S Y A thread is waiting at the barrier pointed to by barrier.

E I N V A L Invalid argument specified.

USAGE
Warnings

A barrier should not be re-initialized while threads are waiting at the barrier.

Page 1

FINAL COPY
June 15, 1995

File: mt_lib/barrier_init
svid

Page: 35

barrier_init (MT_LIB) barrier_init (MT_LIB)

SEE ALSO
b a r r i e r(MT_LIB), b a r r i e r _ d e s t r o y(MT_LIB), b a r r i e r _ w a i t(MT_LIB)

LEVEL
Level 1

Page 2

FINAL COPY
June 15, 1995

File: mt_lib/barrier_init
svid

Page: 36

barrier_wait (MT_LIB) barrier_wait (MT_LIB)

NAME
b a r r i e r _ w a i t – wait at a blocking barrier

SYNOPSIS
i n c l u d e < s y n c h . h >

i n t b a r r i e r _ w a i t (b a r r i e r _ t *barrier) ;

Parameters
barrier pointer to barrier at which to wait

DESCRIPTION
b a r r i e r _ w a i t blocks the calling thread at a barrier until count threads have called
it. count is defined during initialization with b a r r i e r _ i n i t. A thread is said to
have reached the barrier when it calls b a r r i e r _ w a i t.

When the last thread reaches the barrier, all count –1 blocked threads are released
from the barrier and are allowed to resume execution. The barrier is reset after the
waiting threads are released.

barrier must previously have been initialized (see b a r r i e r _ i n i t).

From the point of view of the caller, b a r r i e r _ w a i t is atomic: even if interrupted by
a signal or f o r k a l l(MT_OS), b a r r i e r _ w a i t will not return until count threads
have reached the barrier.

The order in which threads are released from the barrier is scheduling policy
specific for bound threads, and may depend on scheduling parameters for multi-
plexed threads.

Return Values
b a r r i e r _ w a i t returns zero for success and an error number for failure, as
described below.

Errors
If the following condition is detected, b a r r i e r _ w a i t returns the value:

E I N V A L Invalid argument specified.

SEE ALSO
b a r r i e r(MT_LIB), b a r r i e r _ d e s t r o y(MT_LIB), b a r r i e r _ i n i t(MT_LIB),

f o r k a l l(MT_OS)
LEVEL

Level 1

Page 1

FINAL COPY
June 15, 1995

File: mt_lib/barrier_wait
svid

Page: 37

cond_broadcast (MT_LIB) cond_broadcast (MT_LIB)

NAME
c o n d _ b r o a d c a s t – broadcast a wake up to all threads waiting on a condition vari-
able

SYNOPSIS
i n c l u d e < s y n c h . h >

i n t c o n d _ b r o a d c a s t (c o n d _ t *cond) ;

Parameters
cond pointer to condition variable to be broadcast

DESCRIPTION
c o n d _ b r o a d c a s t wakes up all threads waiting on the condition cond. If more than
one thread is waiting, the order of release from the blocked group is scheduling
policy-specific for/bound threads, and may depend on scheduling parameters for
multiplexed threads.

c o n d _ b r o a d c a s t has no effect if there are no threads waiting on cond.

A c o n d _ b r o a d c a s t will be more reliable if the associated mutex used by waiters is
held across the call.

cond Parameter
The condition variable denoted by cond must previously have been initialized (see
c o n d _ i n i t).

Return Values
c o n d _ b r o a d c a s t returns zero for success and an error number for failure, as
described below.

Errors
If the following condition is detected, c o n d _ b r o a d c a s t returns the value:

E I N V A L Invalid argument specified.

USAGE
See the description of how to use condition variables under USAGE on
c o n d _ i n i t(MT_LIB).

SEE ALSO
c o n d i t i o n(MT_LIB), c o n d _ d e s t r o y(MT_LIB), c o n d _ i n i t(MT_LIB),
c o n d _ s i g n a l(MT_LIB), c o n d _ t i m e d w a i t(MT_LIB), c o n d _ w a i t(MT_LIB)

LEVEL
Level 1

Page 1

FINAL COPY
June 15, 1995

File: mt_lib/cond_broadca
svid

Page: 38

cond_destroy (MT_LIB) cond_destroy (MT_LIB)

NAME
c o n d _ d e s t r o y – destroy a condition variable

SYNOPSIS
i n c l u d e < s y n c h . h >

i n t c o n d _ d e s t r o y (c o n d _ t *cond) ;

Parameters
cond pointer to the condition variable to destroy

DESCRIPTION
c o n d _ d e s t r o y destroys the condition variable cond. This includes invalidating cond
and freeing any associated implementation-allocated dynamic resources.

Return Values
c o n d _ d e s t r o y returns zero for success and an error number for failure, as
described below.

Errors
If the following condition is detected, c o n d _ d e s t r o y returns the value:

E B U S Y cond still has other threads waiting on it.

E I N V A L Invalid argument specified.

SEE ALSO
c o n d i t i o n(MT_LIB), c o n d _ b r o a d c a s t(MT_LIB), c o n d _ i n i t(MT_LIB),
c o n d _ s i g n a l(MT_LIB), c o n d _ t i m e d w a i t(MT_LIB), c o n d _ w a i t(MT_LIB)

LEVEL
Level 1

Page 1

FINAL COPY
June 15, 1995

File: mt_lib/cond_destroy
svid

Page: 39

cond_init (MT_LIB) cond_init (MT_LIB)

NAME
c o n d _ i n i t – initialize a condition variable

SYNOPSIS
i n c l u d e < s y n c h . h >

i n t c o n d _ i n i t (c o n d _ t *cond, i n t type, v o i d *arg) ;

Parameters
cond pointer to condition variable to be initialized

type U S Y N C _ T H R E A D or U S Y N C _ P R O C E S S

arg N U L L (reserved for future use)

DESCRIPTION
c o n d _ i n i t initializes the condition variable pointed to by cond to be of type type.
Once created, the condition cond can be used any number of times without being
re-initialized.

cond Parameter
cond points to the condition variable to be initialized.

type Parameter
type can be set to one of the following values:

U S Y N C _ T H R E A D Initialize the condition variable for threads within the current
process.

U S Y N C _ P R O C E S S Initialize the condition variable for threads across processes.

arg Parameter
arg should be set to N U L L. It is not currently used, but is reserved for future use.

Return Values
c o n d _ i n i t returns zero for success and an error number for failure, as described
below.

Errors
If any of the following conditions is detected, c o n d _ i n i t returns the corresponding
value:

E B U S Y cond is referenced by other threads.

E I N V A L Invalid argument specified.

USAGE
Warnings

c o n d _ i n i t does not examine the cond argument before initializing it. If c o n d _ i n i t
is called more than once for the same condition, it will overwrite its state. It is the
user’s responsibility to ensure that c o n d _ i n i t is only called once for each condition
variable. N U L L should be passed as the value of arg to ensure correct operation.

SEE ALSO
c o n d i t i o n(MT_LIB), c o n d _ b r o a d c a s t(MT_LIB), c o n d _ d e s t r o y(MT_LIB),
c o n d _ s i g n a l(MT_LIB), c o n d _ t i m e d w a i t(MT_LIB), c o n d _ w a i t(MT_LIB)

Page 1

FINAL COPY
June 15, 1995

File: mt_lib/cond_init
svid

Page: 40

cond_init (MT_LIB) cond_init (MT_LIB)

LEVEL
Level 1

Page 2

FINAL COPY
June 15, 1995

File: mt_lib/cond_init
svid

Page: 41

cond_signal (MT_LIB) cond_signal (MT_LIB)

NAME
c o n d _ s i g n a l – wake up a single thread waiting on a condition variable

SYNOPSIS
i n c l u d e < s y n c h . h >

i n t c o n d _ s i g n a l (c o n d _ t *cond) ;

Parameters
cond pointer to condition variable to be signaled

DESCRIPTION
c o n d _ s i g n a l wakes up a single thread, if one exists, waiting on the condition cond.
If more than one thread is waiting, the choice of which to release from the blocked
group is scheduling policy-specific for bound threads, and may be dependent on
scheduling parameters for multiplexed threads.

c o n d _ s i g n a l has no effect if there are no threads waiting on cond.

A c o n d _ s i g n a l will be more reliable if the associated mutex used by waiters is held
across the call.

cond Parameter
The condition variable denoted by cond must previously have been initialized (see
c o n d _ i n i t).

Return Values
c o n d _ s i g n a l returns zero for success and an error number for failure, as described
below.

Errors
If the following condition is detected, c o n d _ s i g n a l returns the corresponding
value:

E I N V A L Invalid argument specified.

USAGE
See the description of how to use condition variables under USAGE on
c o n d _ i n i t(MT_LIB).

SEE ALSO
c o n d i t i o n(MT_LIB), c o n d _ b r o a d c a s t(MT_LIB), c o n d _ d e s t r o y(MT_LIB),
c o n d _ i n i t(MT_LIB), c o n d _ t i m e d w a i t(MT_LIB), c o n d _ w a i t(MT_LIB)

LEVEL
Level 1

Page 1

FINAL COPY
June 15, 1995

File: mt_lib/cond_signal
svid

Page: 42

cond_timedwait (MT_LIB) cond_timedwait (MT_LIB)

NAME
c o n d _ t i m e d w a i t – wait on a condition variable for a limited time

SYNOPSIS
i n c l u d e < s y n c h . h >
i n c l u d e < s y s / t i m e . h >

i n t c o n d _ t i m e d w a i t (c o n d _ t *cond, m u t e x _ t *mutex, t i m e s t r u c _ t *abstime) ;

Parameters
cond pointer to the condition variable to wait for

mutex pointer to a locked mutex

abstime absolute time to at which to time out

DESCRIPTION
c o n d _ t i m e d w a i t, similar to c o n d _ w a i t, blocks the calling thread at the condition
variable pointed to by cond, to wait for the occurrence of a condition. However, if
the absolute time denoted by abstime has passed and the indicated condition is not
signaled, c o n d _ t i m e d w a i t returns E T I M E to the caller. The calling thread must
lock the mutual exclusion lock (mutex) pointed to by mutex before calling
c o n d _ t i m e d w a i t, otherwise the behavior is unpredictable.

c o n d _ t i m e d w a i t automatically releases the mutex, and waits on the condition vari-
able cond. When the condition is signaled or the time expires, c o n d _ t i m e d w a i t
reacquires the mutex and returns to the caller. The wait can also be interrupted by a
UNIX system signal, in which case mutex is reacquired, the signal handler is called,
and c o n d _ t i m e d w a i t returns E I N T R.

User-visible timers are not affected by a call to c o n d _ t i m e d w a i t.

The calling thread can resume execution when the condition is signaled or broad-
cast, a timeout occurs, or when interrupted. The logical condition should be
checked on return, as a return may not have been caused by a change in the condi-
tion.

cond Parameter
The condition variable denoted by cond must previously have been initialized (see
c o n d _ i n i t).

mutex Parameter
mutex is a mutual exclusion variable protecting a shared resource associated with
the condition represented by the condition variable, cond. The calling thread must
lock mutex before calling c o n d _ w a i t, otherwise the behavior is unpredictable.

abstime Parameter
abstime represents the time at which c o n d _ t i m e d w a i t should time out. The time is
expressed in elapsed seconds and nanoseconds since Universal Coordinated Time,
January 1, 1970. g e t t i m e o f d a y(RT_OS) returns the current time, but in seconds
and microseconds. To construct abstime, convert the current time to a
t i m e s t r u c _ t, and add to that the waiting time.

Return Values
c o n d _ t i m e d w a i t returns zero for success and an error number for failure, as
described below.

Page 1

FINAL COPY
June 15, 1995

File: mt_lib/cond_timedwa
svid

Page: 43

cond_timedwait (MT_LIB) cond_timedwait (MT_LIB)

Errors
If any of the following conditions is detected, c o n d _ t i m e d w a i t returns the
corresponding value:

E I N T R The wait was interrupted by a UNIX system signal.

E I N V A L Invalid argument specified.

E I N V A L abstime is NULL.

E T I M E Time specified by abstime has passed.

USAGE
See the description of how to use condition variables under USAGE on
c o n d _ i n i t(MT_LIB).

Because the condition can change between the time the condition is signaled and
the m u t e x is re-locked, the calling thread must always re-check the condition upon
return from c o n d _ t i m e d w a i t.

Warnings
Condition variables are not asynchronous-safe, and should not be used to commun-
icate between signal handlers and base level user code. Semaphores provide
asynchronous-safe communication for such cases; see s e m a p h o r e(MT_LIB).

The behavior is undefined if mutex is destroyed or deallocated while the thread is
waiting on cond.

SEE ALSO
c o n d i t i o n(MT_LIB), c o n d _ b r o a d c a s t(MT_LIB), c o n d _ d e s t r o y(MT_LIB),
c o n d _ i n i t(MT_LIB), c o n d _ s i g n a l(MT_LIB), c o n d _ w a i t(MT_LIB),

g e t t i m e o f d a y(RT_OS)
LEVEL

Level 1

Page 2

FINAL COPY
June 15, 1995

File: mt_lib/cond_timedwa
svid

Page: 44

cond_wait (MT_LIB) cond_wait (MT_LIB)

NAME
c o n d _ w a i t – wait on a condition variable

SYNOPSIS
i n c l u d e < s y n c h . h >

i n t c o n d _ w a i t (c o n d _ t *cond, m u t e x _ t *mutex) ;

Parameters
cond pointer to the condition variable to wait for

mutex pointer to a locked mutex

DESCRIPTION
c o n d _ w a i t blocks the calling thread at the condition variable pointed to by cond to
wait for the occurrence of a condition. The calling thread must lock the mutual
exclusion lock (mutex) pointed to by mutex before calling c o n d _ w a i t, otherwise the
behavior is unpredictable.

c o n d _ w a i t automatically releases the mutex, and waits on the condition variable
cond. When the condition is signaled c o n d _ w a i t reacquires the mutex and returns
to the caller. The wait can also be interrupted by a UNIX system signal, in which
case mutex is reacquired, the signal handler is called, and c o n d _ w a i t returns E I N T R.

The calling thread can resume execution when the condition is signaled or broad-
cast, or when interrupted. The logical condition should be checked on return, as a
return may not have been caused by a change in the condition.

cond Parameter
The condition variable denoted by cond must previously have been initialized (see
c o n d _ i n i t).

mutex Parameter
mutex is a mutual exclusion variable protecting a shared resource associated with
the condition represented by the condition variable, cond. The calling thread must
lock mutex before calling c o n d _ w a i t, otherwise the behavior is unpredictable.

Return Values
c o n d _ w a i t returns zero for success and an error number for failure, as described
below.

Errors
If any of the following conditions is detected, c o n d _ w a i t fails and returns the
corresponding value:

E I N T R The wait was interrupted by a UNIX system signal.

E I N V A L Invalid argument specified.

USAGE
See the description of how to use condition variables under USAGE on
c o n d _ i n i t(MT_LIB).

Because the condition can change between the time the condition is signaled and
the mutex is re-locked, the calling thread must always re-check the condition upon
return from c o n d _ w a i t.

Page 1

FINAL COPY
June 15, 1995

File: mt_lib/cond_wait
svid

Page: 45

cond_wait (MT_LIB) cond_wait (MT_LIB)

Warnings
Condition variables are not asynchronous-safe, and should not be used to commun-
icate between signal handlers and base level user code. Semaphores provide
asynchronous-safe communication for such cases; see s e m a p h o r e(MT_LIB).

The behavior is undefined if mutex is destroyed or deallocated while the thread is
waiting on cond.

SEE ALSO
c o n d i t i o n(MT_LIB), c o n d _ b r o a d c a s t(MT_LIB), c o n d _ d e s t r o y(MT_LIB),
c o n d _ i n i t(MT_LIB), c o n d _ s i g n a l(MT_LIB), c o n d _ t i m e d w a i t(MT_LIB),
s e m a _ i n i t(MT_LIB), s e m a _ p o s t(MT_LIB), s e m a _ t r y w a i t(MT_LIB),

s e m a _ w a i t(MT_LIB)
LEVEL

Level 1

Page 2

FINAL COPY
June 15, 1995

File: mt_lib/cond_wait
svid

Page: 46

c t i m e, l o c a l t i m e, g m t i m e, a s c t i m e, t z s e t – convert date and time to string
i n c l u d e < t i m e . h >

c h a r * c t i m e (c o n s t t i m e _ t *clock) ;

s t r u c t t m * l o c a l t i m e (c o n s t t i m e _ t *clock) ;

s t r u c t t m * g m t i m e (c o n s t t i m e _ t *clock) ;

c h a r * a s c t i m e (c o n s t s t r u c t t m *tm) ;

e x t e r n i n t d a y l i g h t ;

e x t e r n c h a r * t z n a m e [2] ;

v o i d t z s e t (v o i d) ;
c t i m e, l o c a l t i m e, and g m t i m e accept arguments of type t i m e _ t, pointed to by
clock, representing the time in seconds since 00:00:00 UTC, January 1, 1970. c t i m e
returns a pointer to a 26-character string as shown below. Time zone and daylight
savings corrections are made before the string is generated. The fields are con-
stant in width:
F r i A u g 1 3 0 0 : 0 0 : 0 0 1 9 9 3 \ n \ 0
l o c a l t i m e and g m t i m e return pointers to t m structures, described below. l o c a l -
t i m e corrects for the main time zone and possible alternate (‘‘daylight savings’’)
time zone; g m t i m e converts directly to Coordinated Universal Time (UTC), which
is the time the UNIX system uses internally. a s c t i m e converts a t m structure to a
26-character string, as shown in the above example, and returns a pointer to the
string. Declarations of all the functions and externals, and the t m structure, are in
the t i m e . h header file. The value of t m _ i s d s t is positive if daylight savings time
is in effect, zero if daylight savings time is not in effect, and negative if the infor-
mation is not available. (Previously, the value of t m _ i s d s t was defined as non-
zero if daylight savings time was in effect.) The external variable t i m e z o n e con-
tains the difference, in seconds, between UTC and local standard time. The exter-
nal variable d a y l i g h t indicates whether time should reflect daylight savings time.
t i m e z o n e defaults to 0 (UTC). The external variable d a y l i g h t is non-zero if an al-
ternate time zone exists. The time zone names are contained in the external vari-
able t z n a m e, which by default is set to:
c h a r * t z n a m e [2] = { " G M T " , " " } ;
These functions know about the peculiarities of this conversion for various time
periods for the U.S.A. (specifically, the years 1974, 1975, and 1987). They will han-
dle the new daylight savings time starting with the first Sunday in April, 1987.
t z s e t uses the contents of the environment variable T Z to override the value of
the different external variables. It also sets the external variable d a y l i g h t to zero
if Daylight Savings Time conversions should never be applied for the time zone in
use; otherwise, non-zero. t z s e t is called by a s c t i m e and may also be called by
the user. See e n v i r o n() for a description of the T Z environment variable.
g e t e n v(BA_LIB), m k t i m e(BA_LIB), p r i n t f(BA_LIB), p u t e n v(BA_LIB),
s e t l o c a l e(BA_OS), s t r f t i m e(BA_LIB), t i m e(BA_OS), Level 1. The functions
c t i m e, l o c a l t i m e, f g m t i m e, t z s e t and a s c t i m e are BA_LIB functions, and

1

identical to the c t i m e BA_LIB page. c t i m e _ r, l o c a l t i m e _ r and g m t i m e _ r are
MT_LIB functions. The return values for c t i m e, l o c a l t i m e, and g m t i m e point to
static data whose content is overwritten by each call. Setting the time during the
interval of change from t i m e z o n e to a l t z o n e or vice versa can produce
unpredictable results. The system administrator must change the Julian start and
end days annually. Use the reentrant functions for multithreaded applications.

2

d i r e c t o r y: o p e n d i r, r e a d d i r, r e a d d i r _ r, r e w i n d d i r, c l o s e d i r – directory
operations
i n c l u d e < d i r e n t . h >

i n c l u d e < s y s / t y p e s . h >

D I R ∗o p e n d i r (c o n s t c h a r ∗filename) ;

s t r u c t d i r e n t ∗r e a d d i r (D I R ∗dirp) ;

v o i d r e w i n d d i r (D I R ∗dirp) ;

i n t c l o s e d i r (D I R ∗dirp) ;
o p e n d i r opens the directory named by filename and associates a directory stream
with it. o p e n d i r returns a pointer to be used to identify the directory stream in
subsequent operations. The directory stream is positioned at the first entry. A
null pointer is returned if filename cannot be accessed or is not a directory, or if it
cannot m a l l o c enough memory to hold a D I R structure or a buffer for the directo-
ry entries. r e a d d i r returns a pointer to the next active directory entry and posi-
tions the directory stream at the next entry. No inactive entries are returned. It
returns N U L L upon reaching the end of the directory or upon detecting an invalid
location in the directory. r e a d d i r buffers several directory entries per actual read
operation; r e a d d i r marks for update the s t _ a t i m e field of the directory each
time the directory is actually read. The structure d i r e n t defined by the
< d i r e n t . h > header file describes a directory entry. It includes the filename
(d _ n a m e), which is a null-terminated string of at most { N A M E _ M A X } characters:

c h a r d _ n a m e [{ N A M E _ M A X }] ; / * n a m e o f f i l e * /

r e w i n d d i r resets the position of the named directory stream to the beginning of
the directory. It also causes the directory stream to refer to the current state of the
corresponding directory, as a call to o p e n d i r would. c l o s e d i r closes the named
directory stream and frees the D I R structure.

d i r e n t(BA_ENV), m k d i r(BA_OS), r m d i r(BA_OS) Level 1.

1

FINAL COPY
June 15, 1995

File:

Page: 50

flockfile (MT_LIB) flockfile (MT_LIB)

NAME
f l o c k f i l e – grant thread ownership of a file

SYNOPSIS
i n c l u d e < s t d i o . h >

v o i d f l o c k f i l e (F I L E ∗file) ;

DESCRIPTION
This function provide for explicit application-level locking of standard I/O objects.
It can be used by a thread to begin a sequence of I/O statements that are to be exe-
cuted as a unit.

f l o c k f i l e gives the calling thread ownership of file if file is not currently owned by
another thread. A thread keeps ownership of the file until it calls f u n l o c k f i l e.

A thread that tries to get ownership of a file that is currently owned by another
thread is suspended until the current owner relinquishes the file.

A thread can do multiple calls to f l o c k f i l e and f t r y l o c k f i l e and not get
suspended if it currently owns the file, but an equal number of f u n l o c k f i l e calls
are necessary to relinquish the object completely.

USAGE
The f l o c k f i l e lock may not be enforced by the implementation. All accesses to a
shared stream should be protected explicitly.

SEE ALSO
f t r y l o c k f i l e(MT_LIB), f u n l o c k f i l e(MT_LIB), s t d i o(BA_LIB)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: mt_lib/flockfile
svid

Page: 51

ftrylockfile (MT_LIB) ftrylockfile (MT_LIB)

NAME
f t r y l o c k f i l e – grant thread ownership of a file

SYNOPSIS
i n c l u d e < s t d i o . h >

i n t f t r y l o c k f i l e (F I L E ∗file) ;

DESCRIPTION
This function provide for explicit application-level locking of standard I/O objects.
It can be used by a thread to begin a sequence of I/O statements that are to be exe-
cuted as a unit.

f t r y l o c k f i l e gives the calling thread ownership of file if file is not currently
owned by another thread. This function is similar to f l o c k f i l e, except that it
returns nonzero if the file is already locked. It returns zero on success.

A thread can do multiple calls to f t r y l o c k f i l e and f l o c k f i l e successfully if it
currently owns the file, but an equal number of f u n l o c k f i l e calls are necessary to
relinquish the object completely.

Return Values
On success, f t r y l o c k f i l e returns zero and locks the stream file. If the stream is
already locked by a different thread, it returns nonzero.

USAGE
The f t r y l o c k f i l e lock may not be enforced by the implementation. All accesses
to a shared stream should be protected explicitly.

SEE ALSO
f l o c k f i l e(MT_LIB), f u n l o c k f i l e(MT_LIB), s t d i o(BA_LIB)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: mt_lib/ftrylockfile
svid

Page: 52

funlockfile (MT_LIB) funlockfile (MT_LIB)

NAME
f u n l o c k f i l e – relinquish thread ownership of a file

SYNOPSIS
i n c l u d e < s t d i o . h >

v o i d f u n l o c k f i l e (F I L E ∗file) ;

DESCRIPTION
This function provide for explicit application-level locking of standard I/O objects.
It can be used by a thread to end a sequence of I/O statements that are to be exe-
cuted as a unit.

f u n l o c k f i l e relinquishes ownership granted to the thread via a previous success-
ful call to f l o c k f i l e or f t r y l o c k f i l e.

A thread can nest calls to f l o c k f i l e or f t r y l o c k f i l e as long as each successful
call has a corresponding f u n l o c k f i l e call to relinquish ownership completely.

The behavior is undefined if f u n l o c k f i l e is called without a matching successful
call to f l o c k f i l e or f t r y l o c k f i l e.

USAGE
The f u n l o c k f i l e lock may not be enforced by the implementation. All accesses to
a shared stream should be protected explicitly.

SEE ALSO
f l o c k f i l e(MT_LIB), f t r y l o c k f i l e(MT_LIB), s t d i o(BA_LIB)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: mt_lib/funlockfile
svid

Page: 53

FINAL COPY
June 15, 1995

File:

Page: 54

g e t c, g e t c h a r, f g e t c, g e t w – get character or word from a stream
i n c l u d e < s t d i o . h >

i n t g e t c (F I L E *stream) ;

i n t g e t c h a r (v o i d) ;

i n t f g e t c (F I L E *stream) ;

i n t g e t w (F I L E *stream) ;
g e t c returns the next character (that is, byte) from the named input stream as an
u n s i g n e d c h a r converted to an i n t. It also moves the file pointer, if defined,
ahead one character in stream . g e t c h a r is defined as g e t c (s t d i n). g e t c and
g e t c h a r are macros. f g e t c behaves like g e t c, but is a function rather than a mac-
ro. f g e t c runs more slowly than g e t c, but it takes less space per invocation and
its name can be passed as an argument to a function. g e t w returns the next word
(that is, integer) from the named input stream. g e t w increments the associated file
pointer, if defined, to point to the next word. The size of a word is the size of an
integer and varies from machine to machine. g e t w assumes no special alignment
in the file.

s c a n f(BA_LIB), s t d i o(BA_LIB), u n g e t c(BA_LIB) Level 1.

1

FINAL COPY
June 15, 1995

File:

Page: 56

g e t l o g i n – get login name
i n c l u d e < s t d l i b . h >

c h a r ∗g e t l o g i n (v o i d) ;
g e t l o g i n returns a pointer to the login name It may be used in conjunction with
g e t p w n a m to locate the correct password file entry when the same user id is shared
by several login names. If g e t l o g i n is called within a process that is not attached
to a terminal, it returns a null pointer. The correct procedure for determining the
login name is to call c u s e r i d, or to call g e t l o g i n and if it fails to call g e t p w u i d.
c u s e r i d(BA_LIB), g e t g r e n t(BA_LIB), g e t p w e n t(BA_LIB) Level 1. The return
values point to static data whose content is overwritten by each call.

1

FINAL COPY
June 15, 1995

File:

Page: 58

g e t p a s s – read a password
i n c l u d e < u n i s t d . h >

c h a r ∗g e t p a s s (c o n s t c h a r ∗prompt) ;
g e t p a s s reads up to a newline or E O F from the file / d e v / t t y, after prompting on
the standard error output with the null-terminated string prompt and disabling
echoing. A pointer is returned to a null-terminated string of at most 8 characters.
If / d e v / t t y cannot be opened, a null pointer is returned. An interrupt will ter-
minate input and send an interrupt signal to the calling program before returning.

1

FINAL COPY
June 15, 1995

File:

Page: 60

lio_listio (MT_LIB) lio_listio (MT_LIB)

If the mode argument has the value L I O _ W A I T, the l i o _ l i s t i o function returns
zero when all the indicated I/O has completed successfully. Otherwise,
l i o _ l i s t i o returns a value of –1 and sets e r r n o to indicate the error.

Both of these return values only indicate the success or failure of the l i o _ l i s t i o
call itself, not the status of the individual I/O requests. In some cases one or more
of the I/O requests contained in the list may fail. Failure of an individual request
does not prevent completion of any other individual request. To determine the out-
come of each I/O request, the application examines the error status associated with
each a i o c b structure. The error statuses returned are identical to those returned as
the result of an a i o _ r e a d or a i o _ w r i t e function.

Errors
If any of the following conditions occurs, the l i o _ l i s t i o function returns –1 and
sets e r r n o to:

E A G A I N The resources necessary to queue all the I/O requests were not available.
The application may check the error status for each a i o c b to determine
the individual request(s) that failed.

E A G A I N The number of entries indicated by nent would cause the system-wide
limit { A I O _ M A X } to be exceeded. All entries return E A G A I N when queried
with a i o _ e r r o r.

E I N V A L The mode argument is not a proper value.

E I N V A L The value of nent was greater than { A I O _ L I S T I O _ M A X }, or n e n t is zero.

E I N V A L All requests are N U L L or have their l i o _ l i s t i o set to L I O _ N O P.

E I N T R A signal was delivered while waiting for all I/O requests to complete
during a L I O _ W A I T operation.

E I O One or more of the individual I/O operations failed. The application
may check the error status for each a i o c b structure to determine the
individual request(s) that failed.

SEE ALSO
a i o c b(MT_LIB), a i o _ r e a d(MT_LIB), a i o _ s u s p e n d(MT_LIB), a i o _ w r i t e(MT_LIB)

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: mt_lib/liolistio
svid

Page: 62

mutex_destroy (MT_LIB) mutex_destroy (MT_LIB)

NAME
m u t e x _ d e s t r o y – destroy a mutex

SYNOPSIS
i n c l u d e < s y n c h . h >

i n t m u t e x _ d e s t r o y (m u t e x _ t *mutex) ;

Parameters
mutex pointer to mutex to be destroyed

DESCRIPTION
m u t e x _ d e s t r o y destroys the mutex pointed to by mutex. This includes invalidating
the mutex and freeing any associated implementation-allocated dynamic resources.

Any user-allocated dynamic storage is unaffected by m u t e x _ d e s t r o y and must be
explicitly released by the program.

Return Values
m u t e x _ d e s t r o y returns zero for success and an error number for failure, as
described below.

Errors
If any of the following conditions is detected, m u t e x _ d e s t r o y returns the
corresponding value:

E B U S Y mutex is locked or another thread is waiting to acquire mutex.

E I N V A L Invalid argument specified.

USAGE
Warnings

m u t e x _ d e s t r o y should not be called on a mutex while a thread is c o n d _ w a i t i n g
with a pointer to that mutex as a parameter.

SEE ALSO
m u t e x(MT_LIB), m u t e x _ i n i t(MT_LIB), m u t e x _ l o c k(MT_LIB),
m u t e x _ t r y l o c k(MT_LIB), m u t e x _ u n l o c k(MT_LIB)

LEVEL
Level 1

Page 1

FINAL COPY
June 15, 1995

File: mt_lib/mutex_dest
svid

Page: 63

mutex_init (MT_LIB) mutex_init (MT_LIB)

NAME
m u t e x _ i n i t – initialize a mutex

SYNOPSIS
i n c l u d e < s y n c h . h >

i n t m u t e x _ i n i t (m u t e x _ t *mutex, i n t type, v o i d *arg) ;

Parameters
mutex pointer to mutex to be initialized

type U S Y N C _ T H R E A D or U S Y N C _ P R O C E S S

arg N U L L (reserved for future use)

DESCRIPTION
m u t e x _ i n i t initializes the mutual exclusion lock (mutex) pointed to by mutex to be
of type type and in the unlocked state. Once initialized, the mutex can be used any
number of times without being re-initialized.

mutex Parameter
mutex points to the mutex to be initialized.

type Parameter
type can be set to one of the following values:

U S Y N C _ T H R E A D Initialize the mutex for threads within the current process.

U S Y N C _ P R O C E S S Initialize the mutex for threads across processes.

arg Parameter
arg should be set to N U L L. It is not currently used, but is reserved for future use.

Static Mutex Initialization
A mutex can be initialized statically if its storage is zero-filled. In this case, the
mutex is of type U S Y N C _ T H R E A D, and m u t e x _ i n i t need not be called.

Return Values
m u t e x _ i n i t returns zero for success and an error number for failure, as described
below.

Errors
If the following condition is detected, the contents of mutex are unchanged and
m u t e x _ i n i t returns the value:

E I N V A L Invalid type argument specified.

USAGE
Warnings

m u t e x _ i n i t does not examine the mutex argument before initializing it. If
m u t e x _ i n i t is called more than once for the same mutex, it will overwrite its state.
It is the user’s responsibility to ensure that m u t e x _ i n i t is only called once for each
mutex. m u t e x _ i n i t should not be called on a mutex while a thread is
c o n d _ w a i t i n g with a pointer to that mutex as a parameter.

Operations on locks initialized with m u t e x _ i n i t are not recursive—a thread can
deadlock if it attempts to relock a mutex that it already has locked.

Page 1

FINAL COPY
June 15, 1995

File: mt_lib/mutex_init
svid

Page: 64

mutex_init (MT_LIB) mutex_init (MT_LIB)

SEE ALSO
m u t e x(MT_LIB), m u t e x _ d e s t r o y(MT_LIB), m u t e x _ l o c k(MT_LIB),
m u t e x _ t r y l o c k(MT_LIB), m u t e x _ u n l o c k(MT_LIB)

LEVEL
Level 1

Page 2

FINAL COPY
June 15, 1995

File: mt_lib/mutex_init
svid

Page: 65

mutex_lock (MT_LIB) mutex_lock (MT_LIB)

NAME
m u t e x _ l o c k – lock a mutex

SYNOPSIS
i n c l u d e < s y n c h . h >

i n t m u t e x _ l o c k (m u t e x _ t *mutex) ;

Parameters
mutex pointer to mutex to be locked

DESCRIPTION
m u t e x _ l o c k locks the mutual exclusion lock (mutex) pointed to by mutex. If mutex
is locked, the calling thread is blocked until mutex becomes available. When
m u t e x _ l o c k returns successfully, the caller has locked mutex.

mutex must previously have been initialized, either by m u t e x _ i n i t, or statically
(see m u t e x _ i n i t).

From the point of view of the caller, m u t e x _ l o c k is atomic: even if interrupted by a
signal or f o r k a l l(MT_OS), m u t e x _ l o c k will not return until it holds the locked
mutex. As a consequence, if m u t e x _ l o c k is interrupted, an error indication such as
E I N T R is never returned to the caller.

Return Values
m u t e x _ l o c k returns zero for success and an error number for failure, as described
below.

Errors
If the following condition is detected, m u t e x _ l o c k returns the value:

E I N V A L Invalid argument specified.

USAGE
Mutexes acquired with m u t e x _ l o c k should be released with m u t e x _ u n l o c k.

Warnings
If a thread exits while holding a mutex, the mutex will not be unlocked, and other
threads waiting for the mutex will wait forever. Similarly, if a process exits while
holding a U S Y N C _ P R O C E S S mutex, the mutex will not be unlocked, and other
processes or threads waiting for the mutex may wait forever.

SEE ALSO
f o r k a l l(MT_OS), m u t e x(MT_LIB), m u t e x _ d e s t r o y(MT_LIB),
m u t e x _ i n i t(MT_LIB), m u t e x _ t r y l o c k(MT_LIB), m u t e x _ u n l o c k(MT_LIB)

LEVEL
Level 1

Page 1

FINAL COPY
June 15, 1995

File: mt_lib/mutex_lock
svid

Page: 66

mutex_trylock (MT_LIB) mutex_trylock (MT_LIB)

NAME
m u t e x _ t r y l o c k – conditionally lock a mutex

SYNOPSIS
i n c l u d e < s y n c h . h >

i n t m u t e x _ t r y l o c k (m u t e x _ t *mutex) ;

Parameters
mutex pointer to mutex to be locked

DESCRIPTION
m u t e x _ t r y l o c k attempts once to lock the mutual exclusion lock (mutex) pointed to
by mutex.

If mutex is available, m u t e x _ t r y l o c k will return successfully with mutex locked. If
mutex is already locked by another thread, m u t e x _ t r y l o c k immediately returns
E B U S Y to the caller without acquiring mutex or blocking.

mutex must previously have been initialized, either by m u t e x _ i n i t, or statically
[see m u t e x _ i n i t(MT_LIB)].

Return Values
m u t e x _ t r y l o c k returns zero for success and an error number for failure, as
described below.

Errors
If the following condition occurs, m u t e x _ t r y l o c k returns the value:

E B U S Y mutex is locked by another thread.

If any of the following conditions is detected, m u t e x _ t r y l o c k fails and returns the
corresponding value:

E I N V A L Invalid argument specified.

USAGE
m u t e x _ t r y l o c k is used when the caller does not want to block.

Mutexes acquired with m u t e x _ t r y l o c k should be released with m u t e x _ u n l o c k.

SEE ALSO
m u t e x(MT_LIB), m u t e x _ d e s t r o y(MT_LIB), m u t e x _ i n i t(MT_LIB),
m u t e x _ l o c k(MT_LIB), m u t e x _ u n l o c k(MT_LIB)

LEVEL
Level 1

Page 1

FINAL COPY
June 15, 1995

File: mt_lib/mutex_trylk
svid

Page: 67

mutex_unlock (MT_LIB) mutex_unlock (MT_LIB)

NAME
m u t e x _ u n l o c k – unlock a mutex

SYNOPSIS
i n c l u d e < s y n c h . h >

i n t m u t e x _ u n l o c k (m u t e x _ t *mutex) ;

Parameters
mutex pointer to mutex to be unlocked

DESCRIPTION
m u t e x _ u n l o c k unlocks the mutex pointed to by mutex.

If there are one or more threads waiting for the mutex when m u t e x _ u n l o c k is
called, at least one waiting thread is allowed to try again to acquire the mutex.

Return Values
m u t e x _ u n l o c k returns zero for success and an error number for failure, as
described below.

Errors
If the following condition is detected, m u t e x _ u n l o c k returns the value:

E I N V A L Invalid argument specified.

USAGE
Mutexes acquired with m u t e x _ l o c k and m u t e x _ t r y l o c k should be released with
m u t e x _ u n l o c k.

SEE ALSO
m u t e x(MT_LIB), m u t e x _ d e s t r o y(MT_LIB), m u t e x _ i n i t(MT_LIB),
m u t e x _ l o c k(MT_LIB), m u t e x _ t r y l o c k(MT_LIB)

LEVEL
Level 1

Page 1

FINAL COPY
June 15, 1995

File: mt_lib/mutex_unlock
svid

Page: 68

p u t c, p u t c h a r, f p u t c, p u t w – put character or word on a stream
i n c l u d e < s t d i o . h >

i n t p u t c (i n t c, F I L E ∗stream) ;

i n t p u t c h a r (i n t c) ;

i n t f p u t c (i n t c, F I L E ∗stream) ;

i n t p u t w (i n t w, F I L E ∗stream) ;
p u t c writes c (converted to an u n s i g n e d c h a r) onto the output stream at the posi-
tion where the file pointer (if defined) is pointing, and advances the file pointer
appropriately. If the file cannot support positioning requests, or stream was
opened with append mode, the character is appended to the output stream.
p u t c h a r (c) is defined as p u t c (c , s t d o u t). p u t c and p u t c h a r are macros.
f p u t c behaves like p u t c, but is a function rather than a macro. f p u t c runs more
slowly than p u t c, but it takes less space per invocation and its name can be passed
as an argument to a function. p u t w writes the word (that is, integer) w to the out-
put stream (where the file pointer, if defined, is pointing). The size of a word is the
size of an integer and varies from machine to machine. p u t w neither assumes nor
causes special alignment in the file.

FINAL COPY
June 15, 1995

File:

Page: 70

r a n d, s r a n d – simple random-number generator
i n c l u d e < s t d l i b . h >

i n t r a n d (v o i d) ;

v o i d s r a n d (u n s i g n e d i n t seed) ;
r a n d uses a multiplicative congruent random-number generator with period 232

that returns successive pseudo-random numbers in the range from 0 to R A N D _ M A X
(defined in s t d l i b . h). The function s r a n d uses the argument seed as a seed for a
new sequence of pseudo-random numbers to be returned by subsequent calls to
the function r a n d. If the function s r a n d is then called with the same seed value,
the sequence of pseudo-random numbers will be repeated. If the function r a n d is
called before any calls to s r a n d have been made, the same sequence will be gen-
erated as when s r a n d is first called with a seed value of 1. d r a n d 4 8(BA_LIB)
Level 2: September 30, 1989.
*Level 2: June 1993.
The spectral properties of r a n d are limited. d r a n d 4 8(BA_LIB) provides a much
better, though more elaborate, random-number generator. Each thread that
accesses one of the functions d r a n d 4 8 , l r a n d 4 8 , m r a n d 4 8 , s r a n d 4 8 , s e e d 4 8,
or l c o n g 4 8 should be coded as per the following example:

m u t e x _ l o c k (I _ a m _ u s i n g _ d r a n d 4 8) ;
v a l u e = F U N C T I O N () ;
m u t e x _ u n l o c k (I _ a m _ u s i n g _ d r a n d 4 8) ;

where F U N C T I O N is one of those listed. The same mutex must be used for all six
functions.

1

FINAL COPY
June 15, 1995

File:

Page: 72

rmutex_destroy (MT_LIB) rmutex_destroy (MT_LIB)

NAME
r m u t e x _ d e s t r o y – destroy a recursive mutex

SYNOPSIS
i n c l u d e < s y n c h . h >

i n t r m u t e x _ d e s t r o y (r m u t e x _ t *rmutex) ;

Parameters
rmutex pointer to recursive mutex to be destroyed

DESCRIPTION
r m u t e x _ d e s t r o y destroys the recursive mutual exclusion lock (rmutex) pointed to
by rmutex. This includes invalidating the rmutex and freeing any associated
implementation-allocated dynamic resources.

Any user-allocated dynamic storage is unaffected by r m u t e x _ d e s t r o y and must be
explicitly released by the program.

Return Values
r m u t e x _ d e s t r o y returns zero for success and an error number for failure, as
described below.

Errors
If any of the following conditions is detected, r m u t e x _ d e s t r o y returns the
corresponding value:

E B U S Y rmutex is locked by another thread or another thread is waiting to acquire
rmutex.

E I N V A L Invalid argument specified.

SEE ALSO
m u t e x(MT_LIB), r m u t e x(MT_LIB), r m u t e x _ i n i t(MT_LIB),
r m u t e x _ l o c k(MT_LIB), r m u t e x _ t r y l o c k(MT_LIB), r m u t e x _ u n l o c k(MT_LIB)

LEVEL
Level 1

Page 1

FINAL COPY
June 15, 1995

File: mt_lib/rmutex_dest
svid

Page: 73

rmutex_init (MT_LIB) rmutex_init (MT_LIB)

NAME
r m u t e x _ i n i t – initialize a recursive mutex

SYNOPSIS
i n c l u d e < s y n c h . h >

i n t r m u t e x _ i n i t (r m u t e x _ t *rmutex, i n t type, v o i d *arg) ;

Parameters
rmutex pointer to recursive mutex to be initialized

type U S Y N C _ T H R E A D or U S Y N C _ P R O C E S S

arg N U L L (reserved for future use)

DESCRIPTION
r m u t e x _ i n i t initializes the recursive mutual exclusion lock (rmutex) pointed to by
rmutex to be of type type and in the unlocked state. Once initialized, the rmutex can
be used any number of times without being re-initialized.

All operations on locks initialized with r m u t e x _ i n i t are recursive.

rmutex Parameter
rmutex points to the rmutex to be initialized.

type Parameter
type can be set to one of the following values:

U S Y N C _ T H R E A D Initialize the rmutex for threads within the current process.

U S Y N C _ P R O C E S S Initialize the rmutex for threads across processes.

arg Parameter
arg should be set to N U L L. It is not currently used, but is reserved for future use.

Return Values
r m u t e x _ i n i t returns zero for success and an error number for failure, as described
below.

Errors
If the following condition is detected, r m u t e x _ i n i t returns the value:

E I N V A L Invalid argument specified.

SEE ALSO
m u t e x(MT_LIB), r m u t e x(MT_LIB), r m u t e x _ d e s t r o y(MT_LIB),
r m u t e x _ l o c k(MT_LIB), r m u t e x _ t r y l o c k(MT_LIB), r m u t e x _ u n l o c k(MT_LIB)

LEVEL
Level 1

Page 1

FINAL COPY
June 15, 1995

File: mt_lib/rmutex_init
svid

Page: 74

rmutex_lock (MT_LIB) rmutex_lock (MT_LIB)

NAME
r m u t e x _ l o c k – lock a recursive mutex

SYNOPSIS
i n c l u d e < s y n c h . h >

i n t r m u t e x _ l o c k (r m u t e x _ t *rmutex) ;

Parameters
rmutex pointer to recursive mutex to be locked

DESCRIPTION
r m u t e x _ l o c k locks the recursive mutual exclusion lock (rmutex) pointed to by rmu-
tex. If rmutex is locked by another thread, the calling thread is blocked until rmutex
becomes available. When r m u t e x _ l o c k returns successfully, the caller has locked
rmutex.

If rmutex is already locked by the calling thread, the recursive depth is incremented
and control is returned to the caller, as if the lock had just been acquired.

rmutex must previously have been initialized (see r m u t e x _ i n i t).

From the point of view of the caller, r m u t e x _ l o c k is atomic: even if interrupted by
a signal or f o r k a l l(MT_OS), r m u t e x _ l o c k will not return until the lock is held.

Return Values
r m u t e x _ l o c k returns zero for success and an error number for failure, as described
below.

Errors
If the following condition is detected, r m u t e x _ l o c k fails and returns the value:

E I N V A L Invalid argument specified.

USAGE
The locks acquired with r m u t e x _ l o c k should be released with r m u t e x _ u n l o c k.

Warnings
If a thread exits while holding an rmutex, the rmutex will not be unlocked, and
other threads waiting for the rmutex will wait forever. Similarly, if a process exits
while holding a U S Y N C _ P R O C E S S rmutex, the rmutex will not be unlocked, and
other processes or threads waiting for the rmutex will wait forever.

SEE ALSO
f o r k a l l(MT_OS), m u t e x(MT_LIB), r m u t e x(MT_LIB), r m u t e x _ d e s t r o y(MT_LIB),
r m u t e x _ i n i t(MT_LIB), r m u t e x _ t r y l o c k(MT_LIB), r m u t e x _ u n l o c k(MT_LIB)

LEVEL
Level 1

Page 1

FINAL COPY
June 15, 1995

File: mt_lib/rmutex_lock
svid

Page: 75

rmutex_trylock (MT_LIB) rmutex_trylock (MT_LIB)

NAME
r m u t e x _ t r y l o c k – conditionally lock a recursive mutex

SYNOPSIS
i n c l u d e < s y n c h . h >

i n t r m u t e x _ t r y l o c k (r m u t e x _ t *rmutex) ;

Parameters
rmutex pointer to recursive mutex to be locked

DESCRIPTION
r m u t e x _ t r y l o c k attempts once to lock the recursive mutual exclusion lock (rmu-
tex) pointed to by rmutex.

If rmutex is available, r m u t e x _ t r y l o c k will return successfully with rmutex locked.
If rmutex is already locked by another thread, r m u t e x _ t r y l o c k immediately
returns E B U S Y to the caller without locking rmutex or blocking. If rmutex is already
held by the calling thread, the recursive depth is incremented and control is
returned to the caller, as if the lock had just been acquired.

rmutex must previously have been initialized (see r m u t e x _ i n i t).

Return Values
r m u t e x _ t r y l o c k returns zero for success and an error number for failure, as
described below.

Errors
If any of the following conditions is detected, r m u t e x _ t r y l o c k returns the
corresponding value:

E B U S Y rmutex is locked by another thread.

E I N V A L Invalid argument specified.

USAGE
r m u t e x _ t r y l o c k is used when the caller does not want to block.

The locks acquired with r m u t e x _ t r y l o c k should be released with r m u t e x _ u n l o c k.

SEE ALSO
m u t e x(MT_LIB), r m u t e x(MT_LIB), r m u t e x _ d e s t r o y(MT_LIB),
r m u t e x _ i n i t(MT_LIB), r m u t e x _ l o c k(MT_LIB), r m u t e x _ u n l o c k(MT_LIB)

LEVEL
Level 1

Page 1

FINAL COPY
June 15, 1995

File: mt_lib/rmutex_trylk
svid

Page: 76

rmutex_unlock (MT_LIB) rmutex_unlock (MT_LIB)

NAME
r m u t e x _ u n l o c k – unlock a recursive mutex

SYNOPSIS
i n c l u d e < s y n c h . h >

i n t r m u t e x _ u n l o c k (r m u t e x _ t *rmutex) ;

Parameters
rmutex pointer to recursive mutex to be unlocked

DESCRIPTION
r m u t e x _ u n l o c k unlocks the recursive mutual exclusion lock (rmutex) pointed to by
rmutex.

r m u t e x _ u n l o c k checks the identity of the caller and if the caller is the current
owner of rmutex it checks the depth count.

If the depth count is greater than 0, it decrements the count and returns to
the caller without unlocking the rmutex.

If the depth count is 0, the rmutex is unlocked.

If the caller is not the current owner of rmutex, that is, the caller does not hold the
lock, r m u t e x _ u n l o c k will fail and return E A C C E S.

If there are one or more threads waiting for rmutex when it is unlocked, at least one
waiting thread is allowed to try again to lock rmutex.

Return Values
r m u t e x _ u n l o c k returns zero for success and an error number for failure, as
described below.

Errors
If any of the following conditions is detected, r m u t e x _ u n l o c k returns the
corresponding value:

E A C C E S The caller did not previously lock the rmutex.

E I N V A L Invalid argument specified.

SEE ALSO
m u t e x(MT_LIB), r m u t e x(MT_LIB), r m u t e x _ d e s t r o y(MT_LIB),
r m u t e x _ i n i t(MT_LIB), r m u t e x _ l o c k(MT_LIB), r m u t e x _ t r y l o c k(MT_LIB)

LEVEL
Level 1

Page 1

FINAL COPY
June 15, 1995

File: mt_lib/rmutex_unlk
svid

Page: 77

rw_rdlock (MT_LIB) rw_rdlock (MT_LIB)

SEE ALSO
f o r k a l l(BA_OS), r w l o c k(MT_LIB), r w l o c k _ d e s t r o y(MT_LIB),
r w l o c k _ i n i t(MT_LIB), r w _ t r y r d l o c k(MT_LIB), r w _ t r y w r l o c k(MT_LIB),
r w _ u n l o c k(MT_LIB), r w _ w r l o c k(MT_LIB)

LEVEL
Level 1

Page 2

FINAL COPY
June 15, 1995

File: mt_lib/rw_rdlock
svid

Page: 79

rw_tryrdlock (MT_LIB) rw_tryrdlock (MT_LIB)

NAME
r w _ t r y r d l o c k – conditionally acquire a reader-writer lock in read mode

SYNOPSIS
i n c l u d e < s y n c h . h >

i n t r w _ t r y r d l o c k (r w l o c k _ t *lock) ;

Parameters
lock pointer to the lock to be acquired

DESCRIPTION
r w _ t r y r d l o c k attempts once to acquire the reader-writer lock pointed to by lock in
read mode; it does not block the caller if the lock is unavailable.

A reader-writer lock can be held by any number of readers at one time, but only
one writer at a time can hold the lock.

If the lock is free, r w _ t r y w r l o c k increments the reader count and the caller
proceeds.

If the lock is not free, r w _ t r y r d l o c k immediately returns E B U S Y to the caller,
without acquiring the lock.

lock must previously have been initialized (see r w l o c k _ i n i t).

Return Values
r w _ t r y r d l o c k returns zero for success and an error number for failure, as
described below.

Errors
If any of the following conditions is detected, r w _ t r y r d l o c k fails and returns the
corresponding value:

E B U S Y The reader-writer lock pointed to by lock cannot be acquired.

E I N V A L Invalid argument specified.

USAGE
r w _ t r y r d l o c k is used when the caller does not want to block if the lock is unavail-
able.

For consistency, locks acquired with r w _ t r y r d l o c k should be released with
r w _ u n l o c k.

SEE ALSO
r w l o c k(MT_LIB), r w l o c k _ d e s t r o y(MT_LIB), r w l o c k _ i n i t(MT_LIB),
r w _ r d l o c k(MT_LIB), r w _ t r y w r l o c k(MT_LIB), r w _ u n l o c k(MT_LIB),

r w _ w r l o c k(MT_LIB)
LEVEL

Level 1

Page 1

FINAL COPY
June 15, 1995

File: mt_lib/rw_tryrdlock
svid

Page: 80

rw_trywrlock (MT_LIB) rw_trywrlock (MT_LIB)

NAME
r w _ t r y w r l o c k – conditionally acquire a reader-writer lock in write mode

SYNOPSIS
i n c l u d e < s y n c h . h >

i n t r w _ t r y w r l o c k (r w l o c k _ t *lock) ;

Parameters
lock pointer to the reader-writer lock to be acquired

DESCRIPTION
r w _ t r y w r l o c k makes a single attempt to acquire the reader-writer lock pointed to
by lock in write mode; it does not block the caller if the lock is unavailable.

A reader-writer lock can be held by any number of readers at one time, but only
one writer at a time can hold the lock.

If the lock is free, r w _ t r y w r l o c k acquires the lock in write mode and the caller
proceeds.

If the lock is not free, r w _ t r y w r l o c k immediately returns E B U S Y to the caller,
without acquiring the lock.

lock must previously have been initialized (see r w l o c k _ i n i t).

Return Values
r w _ t r y w r l o c k returns zero for success and an error number for failure, as
described below.

Errors
If any of the following conditions is detected, r w _ t r y w r l o c k fails and returns the
corresponding value:

E B U S Y The reader-writer lock pointed to by lock cannot be acquired.

E I N V A L Invalid argument specified.

USAGE
r w _ t r y w r l o c k is used when the caller does not want to block if the lock is unavail-
able.

For consistency, locks acquired with r w _ t r y w r l o c k should be released with
r w _ u n l o c k.

SEE ALSO
r w l o c k(MT_LIB), r w l o c k _ d e s t r o y(MT_LIB), r w l o c k _ i n i t(MT_LIB),
r w _ r d l o c k(MT_LIB), r w _ t r y r d l o c k(MT_LIB), r w _ u n l o c k(MT_LIB),

r w _ w r l o c k(MT_LIB)
LEVEL

Level 1

Page 1

FINAL COPY
June 15, 1995

File: mt_lib/rw_trywrlock
svid

Page: 81

rw_unlock (MT_LIB) rw_unlock (MT_LIB)

NAME
r w _ u n l o c k – release a reader-writer lock

SYNOPSIS
i n c l u d e < s y n c h . h >

i n t r w _ u n l o c k (r w l o c k _ t *lock) ;

Parameters
lock pointer to the lock to be released

DESCRIPTION
r w _ u n l o c k releases a reader-writer lock previously acquired by r w _ r d l o c k,
r w _ w r l o c k, r w _ t r y r d l o c k, or r w _ t r y w r l o c k. The behavior differs according to
whether the caller is a reader or a writer, and is implementation defined (see
r w _ w r l o c k).

lock must previously have been initialized (see r w l o c k _ i n i t).

Return Values
r w _ u n l o c k returns zero for success and an error number for failure, as described
below.

Errors
If any of the following conditions is detected, r w _ u n l o c k fails and returns the
corresponding value:

E I N V A L Invalid argument specified.

E N O L C K lock is not locked.

Comment
In a typical implementation, when a writer calls r w _ u n l o c k, the lock is
unlocked.

When a reader calls r w _ u n l o c k, the reader count is decremented. If the
reader count is zero, r w _ u n l o c k unlocks the lock, otherwise, the lock is not
unlocked.

When r w _ u n l o c k unlocks the lock, the first waiter (reader or writer) is activated.

If the thread activated is a reader, all subsequent readers are activated (up to
the next writer or end of queue) and the count of readers holding the lock is
changed to reflect this.

If the thread activated is a writer, no other threads are activated and the lock
is marked as being held by a writer.

SEE ALSO
r w l o c k(MT_LIB), r w l o c k _ d e s t r o y(MT_LIB), r w l o c k _ i n i t(MT_LIB),
r w _ r d l o c k(MT_LIB), r w _ t r y r d l o c k(MT_LIB), r w _ t r y w r l o c k(MT_LIB),

r w _ w r l o c k(MT_LIB)
LEVEL

Level 1

Page 1

FINAL COPY
June 15, 1995

File: mt_lib/rw_unlock
svid

Page: 82

rw_wrlock (MT_LIB) rw_wrlock (MT_LIB)

NAME
r w _ w r l o c k – acquire a reader-writer lock in write mode

SYNOPSIS
i n c l u d e < s y n c h . h >

i n t r w _ w r l o c k (r w l o c k _ t *lock) ;

Parameters
lock pointer to the reader-writer lock to be acquired

DESCRIPTION
r w _ w r l o c k acquires the reader-writer lock pointed to by lock in write mode.

Only one writer at a time can hold a reader-writer lock, although any number of
readers can hold the lock at any time.

lock must previously have been initialized (see r w l o c k _ i n i t).

From the point of view of the application, this function is atomic: even if inter-
rupted by a signal or f o r k a l l, r w _ w r l o c k will not return until it holds the lock. As
a consequence, if r w _ w r l o c k is interrupted, an error indication such as E I N T R is
never returned to the user.

Return Values
r w _ w r l o c k returns zero for success and an error number for failure, as described
below.

Errors
If any of the following conditions is detected, r w _ w r l o c k returns the corresponding
value:

E I N V A L Invalid argument specified.

E N O M E M Insufficient memory

USAGE
For consistency, locks acquired with r w _ r d l o c k should be released with
r w _ u n l o c k.

Warnings
If a thread exits while holding a reader-writer lock, the lock will not be unlocked,
and other threads waiting for the lock will wait forever. Similarly, if a process exits
while holding a U S Y N C _ P R O C E S S reader-writer lock, the lock will not be unlocked,
and other processes waiting for the reader-writer lock will wait forever.

Comment
In a typical implementation, once a writer has requested the lock with r w _ w r l o c k,
all subsequent requests for the lock in either read or write mode are blocked.

The queries and blocking detailed or a reader/writer lock are unspecified, and will
likely depend on the scheduling policy or policies.

When no other readers or writers hold the lock, r w _ w r l o c k will acquire the lock,
and the caller will proceed. Any subsequent write or read requests for the lock will
block until the caller unlocks the lock with r w _ u n l o c k(MT_LIB).

Page 1

FINAL COPY
June 15, 1995

File: mt_lib/rw_wrlock
svid

Page: 83

rw_wrlock (MT_LIB) rw_wrlock (MT_LIB)

If the lock is held by any readers when r w _ w r l o c k is called, and no writer is wait-
ing for the lock, the caller blocks until all the current readers have released the lock.
If the lock is held by another writer, or if there are any other writers already waiting
for the lock, the caller blocks to wait for the lock.

SEE ALSO
r w l o c k(MT_LIB), r w l o c k _ d e s t r o y(MT_LIB), r w l o c k _ i n i t(MT_LIB),
r w _ r d l o c k(MT_LIB), r w _ t r y r d l o c k(MT_LIB), r w _ t r y w r l o c k(MT_LIB),

r w _ u n l o c k(MT_LIB)
LEVEL

Level 1

Page 2

FINAL COPY
June 15, 1995

File: mt_lib/rw_wrlock
svid

Page: 84

rwlock (MT_LIB) rwlock (MT_LIB)

rw_tryrdlock
r w _ t r y r d l o c k attempts once to acquire the reader-writer lock pointed to by lock in
read mode; it does not block the caller if the lock is unavailable.

A reader-writer lock can be held by any number of readers at one time, but only
one writer at a time can hold the lock.

If the lock is free, r w _ t r y w r l o c k increments the reader count and the caller
proceeds.

If the lock is not free, r w _ t r y r d l o c k immediately returns E B U S Y to the caller,
without acquiring the lock.

rw_trywrlock
r w _ t r y w r l o c k makes a single attempt to acquire the reader-writer lock pointed to
by lock in write mode; it does not block the caller if the lock is unavailable.

A reader-writer lock can be held by any number of readers at one time, but only
one writer at a time can hold the lock.

If the lock is free, r w _ t r y w r l o c k acquires the lock in write mode and the caller
proceeds.

If the lock is not free, r w _ t r y w r l o c k immediately returns E B U S Y to the caller,
without acquiring the lock.

rw_unlock
r w _ u n l o c k releases a reader-writer lock previously acquired by r w _ r d l o c k,
r w _ w r l o c k, r w _ t r y r d l o c k, or r w _ t r y w r l o c k. The behavior differs according to
whether the caller is a reader or a writer, and is implementation specific.

When a writer calls r w _ u n l o c k, the lock is unlocked.

If the thread activated is a writer, no other threads are activated and the lock
is marked as being held by a writer.

rwlock_destroy
r w l o c k _ d e s t r o y destroys the reader-writer lock pointed to by lock. This includes
invalidating the lock and freeing any associated dynamically allocated resources.

USYNC_THREAD and USYNC_PROCESS Reader-Writer Locks
Reader-writer locks are initialized to be one of two types: U S Y N C _ T H R E A D or
U S Y N C _ P R O C E S S. U S Y N C _ T H R E A D locks are available only to threads within the
current process. U S Y N C _ P R O C E S S locks can be used by threads in different
processes.

USAGE
Warnings

Operations on locks initialized with r w l o c k _ i n i t are not recursive—a thread can
deadlock if it attempts to reacquire a reader-writer lock that it already has acquired.

SEE ALSO
r w l o c k _ d e s t r o y(MT_LIB), r w l o c k _ i n i t(MT_LIB), r w _ r d l o c k(MT_LIB),
r w _ t r y r d l o c k(MT_LIB), r w _ t r y w r l o c k(MT_LIB), r w _ u n l o c k(MT_LIB),

Page 2

FINAL COPY
June 15, 1995

File: mt_lib/rwlock
svid

Page: 86

rwlock (MT_LIB) rwlock (MT_LIB)

r w _ w r l o c k(MT_LIB)
LEVEL

Level 1

Page 3

FINAL COPY
June 15, 1995

File: mt_lib/rwlock
svid

Page: 87

rwlock_destroy (MT_LIB) rwlock_destroy (MT_LIB)

NAME
r w l o c k _ d e s t r o y – destroy a reader-writer lock

SYNOPSIS
i n c l u d e < s y n c h . h >

i n t r w l o c k _ d e s t r o y (r w l o c k _ t *lock) ;

Parameters
lock pointer to the lock to be destroyed

DESCRIPTION
r w l o c k _ d e s t r o y destroys the reader-writer lock pointed to by lock. This includes
invalidating the lock and freeing any associated dynamically allocated resources.

lock must previously have been initialized (see r w l o c k _ i n i t).

Return Values
r w l o c k _ d e s t r o y returns zero for success and an error number for failure, as
described below.

Errors
If any of the following conditions is detected, r w l o c k _ d e s t r o y returns the
corresponding value:

E B U S Y lock is locked or another thread is waiting to acquire lock.

E I N V A L Invalid argument specified.

SEE ALSO
r w l o c k(MT_LIB), r w l o c k _ i n i t(MT_LIB), r w _ r d l o c k(MT_LIB),
r w _ t r y r d l o c k(MT_LIB), r w _ t r y w r l o c k(MT_LIB), r w _ u n l o c k(MT_LIB),

r w _ w r l o c k(MT_LIB)
LEVEL

Level 1

Page 1

FINAL COPY
June 15, 1995

File: mt_lib/rwlock_dest
svid

Page: 88

rwlock_init (MT_LIB) rwlock_init (MT_LIB)

NAME
r w l o c k _ i n i t – initialize a reader-writer lock

SYNOPSIS
i n c l u d e < s y n c h . h >

i n t r w l o c k _ i n i t (r w l o c k _ t *rwlock, i n t type, v o i d *arg) ;

Parameters
rwlock pointer to reader-writer lock to be initialized

type U S Y N C _ T H R E A D or U S Y N C _ P R O C E S S

arg N U L L (reserved for future use)

DESCRIPTION
r w l o c k _ i n i t initializes the reader-writer lock pointed to by rwlock to be of type
type and in the unlocked state. Once initialized, the lock can be used any number of
times without being re-initialized.

rwlock Parameter
rwlock points to the reader-writer lock to be initialized.

type Parameter
type can be set to one of the following values:

U S Y N C _ T H R E A D Initialize the reader-writer lock for threads within the current
process.

U S Y N C _ P R O C E S S Initialize the reader-writer lock for threads across processes.

arg Parameter
arg should be set to N U L L. It is not currently used, but is reserved for future use.

Return Values
r w l o c k _ i n i t returns zero for success and an error number for failure, as described
below.

Errors
If any of the following conditions is detected, the contents of rwlock are not
changed, and r w l o c k _ i n i t returns the corresponding value:

E B U S Y rwlock is locked.

E I N V A L Invalid type argument specified.

USAGE
Warnings

r w l o c k _ i n i t does not examine the rwlock argument before initializing it. If
r w l o c k _ i n i t is called more than once for the same reader-writer lock, it will
overwrite its state. It is the user’s responsibility to ensure that r w l o c k _ i n i t is only
called once for each reader-writer lock.

Operations on locks initialized with r w l o c k _ i n i t are not recursive—a thread can
deadlock if it attempts to reacquire a reader-writer lock that it already has acquired.

SEE ALSO
r w l o c k(MT_LIB), r w l o c k _ d e s t r o y(MT_LIB), r w _ r d l o c k(MT_LIB),
r w _ t r y r d l o c k(MT_LIB), r w _ t r y w r l o c k(MT_LIB), r w _ u n l o c k(MT_LIB),

Page 1

FINAL COPY
June 15, 1995

File: mt_lib/rwlock_init
svid

Page: 89

rwlock_init (MT_LIB) rwlock_init (MT_LIB)

r w _ w r l o c k(MT_LIB)
LEVEL

Level 1

Page 2

FINAL COPY
June 15, 1995

File: mt_lib/rwlock_init
svid

Page: 90

sema_destroy (MT_LIB) sema_destroy (MT_LIB)

NAME
s e m a _ d e s t r o y – destroy a semaphore

SYNOPSIS
i n c l u d e < s y n c h . h >

i n t s e m a _ d e s t r o y (s e m a _ t *sema) ;

Parameters
sema pointer to the semaphore to destroy

DESCRIPTION
s e m a _ d e s t r o y destroys the semaphore pointed to by sema. This includes invalidat-
ing sema and freeing any associated dynamically allocated resources.

sema Parameter
sema must have been previously initialized, either by s e m a _ i n i t or statically (see
s e m a _ i n i t).

Return Values
s e m a _ d e s t r o y returns zero for success and an error number for failure, as
described below.

Errors
If any of the following conditions is detected, s e m a _ d e s t r o y returns the
corresponding value:

E B U S Y sema still has threads waiting.

E I N V A L Invalid argument specified.

SEE ALSO
s e m a p h o r e(MT_LIB), s e m a _ i n i t(MT_LIB), s e m a _ p o s t(MT_LIB),
s e m a _ t r y w a i t(MT_LIB), s e m a _ w a i t(MT_LIB)

LEVEL
Level 1

Page 1

FINAL COPY
June 15, 1995

File: mt_lib/sema_destroy
svid

Page: 91

sema_init (MT_LIB) sema_init (MT_LIB)

NAME
s e m a _ i n i t – initialize a semaphore

SYNOPSIS
i n c l u d e < s y n c h . h >

i n t s e m a _ i n i t (s e m a _ t *sema, i n t sema_count, i n t type, v o i d *arg) ;

Parameters
sema pointer to semaphore to initialize

sema_count number of resources to be protected by the semaphore

type U S Y N C _ T H R E A D or U S Y N C _ P R O C E S S

arg N U L L (reserved for future use)

DESCRIPTION
s e m a _ i n i t initializes the semaphore sema of type type to protect sema_count
resources. Once initialized, the semaphore can be used any number of times
without being re-initialized.

sema_count Parameter
sema_count, which must be greater than or equal to zero, defines the initial count of
resources protected by the semaphore.

sema Parameter
sema points to the semaphore to be initialized.

type Parameter
type can be set to one of the following values:

U S Y N C _ T H R E A D Initialize the semaphore for threads within the current process.

U S Y N C _ P R O C E S S Initialize the semaphore for threads across processes.

arg Parameter
arg should be set to N U L L. It is not currently used, but is reserved for future use.

Static Semaphore Initialization
A semaphore can be initialized statically if its storage is zero-filled. In this case, the
semaphore is of type U S Y N C _ T H R E A D, its sema_count is 0 (that is, it is ‘‘locked’’; no
resources are available), and s e m a _ i n i t need not be called. s e m a _ p o s t must be
called to unlock the semaphore.

Return Values
s e m a _ i n i t returns zero for success and an error number for failure, as described
below.

Errors
If the following condition is detected, s e m a _ i n i t returns the value:

E I N V A L Invalid argument specified.

USAGE
Warnings

s e m a _ i n i t does not examine the sema argument before initializing it. If s e m a _ i n i t
is called more than once for the same semaphore, it will overwrite its state. It is the
user’s responsibility to ensure that s e m a _ i n i t is only called once for each sema-
phore.

Page 1

FINAL COPY
June 15, 1995

File: mt_lib/sema_init
svid

Page: 92

sema_init (MT_LIB) sema_init (MT_LIB)

Operations on semaphores initialized with s e m a _ i n i t are not recursive; a thread
can block itself if it attempts to reacquire a semaphore that it has already acquired.

SEE ALSO
s e m a p h o r e(MT_LIB), s e m a _ d e s t r o y(MT_LIB), s e m a _ p o s t(MT_LIB),
s e m a _ t r y w a i t(MT_LIB), s e m a _ w a i t(MT_LIB)

LEVEL
Level 1

Page 2

FINAL COPY
June 15, 1995

File: mt_lib/sema_init
svid

Page: 93

sema_post (MT_LIB) sema_post (MT_LIB)

NAME
s e m a _ p o s t – release a lock by incrementing the count value of the semaphore

SYNOPSIS
i n c l u d e < s y n c h . h >

i n t s e m a _ p o s t (s e m a _ t *sema) ;

Parameters
sema pointer to the semaphore to increment

DESCRIPTION
s e m a _ p o s t increments the count of the semaphore pointed to by sema, and if the
new count value is less than or equal to zero, makes the next thread waiting at the
semaphore runnable.

If more than one thread is waiting, release from the blocked group is scheduling
policy-specific for bound threads, and may be dependent on scheduling parameters
for multiplexed threads.

sema Parameter
sema must previously have been initialized, either by s e m a _ i n i t or statically (see
s e m a _ i n i t).

Return Values
s e m a _ p o s t returns zero for success and an error number for failure, as described
below.

Errors
If the following condition is detected, s e m a _ p o s t returns the value:

E I N V A L Invalid argument specified.

SEE ALSO
s e m a p h o r e(MT_LIB), s e m a _ d e s t r o y(MT_LIB), s e m a _ i n i t(MT_LIB),
s e m a _ t r y w a i t(MT_LIB), s e m a _ w a i t(MT_LIB)

LEVEL
Level 1

Page 1

FINAL COPY
June 15, 1995

File: mt_lib/sema_post
svid

Page: 94

sema_trywait (MT_LIB) sema_trywait (MT_LIB)

NAME
s e m a _ t r y w a i t – conditionally claim resources under the semaphore’s control

SYNOPSIS
i n c l u d e < s y n c h . h >

i n t s e m a _ t r y w a i t (s e m a _ t *sema) ;

Parameters
sema pointer to the semaphore to acquire

DESCRIPTION
s e m a _ t r y w a i t makes a single attempt to acquire the semaphore pointed to by sema.
If the semaphore is available, s e m a _ t r y w a i t decrements the semaphore value and
returns to the caller.

If s e m a _ t r y w a i t cannot immediately acquire the semaphore, it returns E B U S Y to
the caller, it does not block the caller to wait for the semaphore or decrement the
semaphore value.

sema Parameter
sema must have been previously initialized, either by s e m a _ i n i t or statically (see
s e m a _ i n i t).

Return Values
s e m a _ t r y w a i t returns zero for success and an error number for failure, as
described below.

Errors
If the following condition occurs, s e m a _ t r y w a i t fails and returns the value:

E B U S Y The semaphore cannot be acquired immediately

If the following condition is detected, s e m a _ t r y w a i t returns the value:

E I N V A L Invalid argument specified.

USAGE
s e m a _ t r y w a i t is used when the caller does not want to block if the semaphore is
unavailable.

SEE ALSO
s e m a p h o r e(MT_LIB), s e m a _ d e s t r o y(MT_LIB), s e m a _ i n i t(MT_LIB),
s e m a _ p o s t(MT_LIB), s e m a _ w a i t(MT_LIB)

LEVEL
Level 1

Page 1

FINAL COPY
June 15, 1995

File: mt_lib/sema_trywait
svid

Page: 95

sema_wait (MT_LIB) sema_wait (MT_LIB)

NAME
s e m a _ w a i t – acquire a semaphore

SYNOPSIS
i n c l u d e < s y n c h . h >

i n t s e m a _ w a i t (s e m a _ t *sema) ;

Parameters
sema pointer to the semaphore to acquire

DESCRIPTION
s e m a _ w a i t acquires the semaphore pointed to by sema.

If the semaphore is available (that is, if the semaphore value is greater than zero),
s e m a _ w a i t decrements the semaphore value and returns to the caller.

If the semaphore is unavailable (that is, the semaphore value is zero or less),
s e m a _ w a i t decrements the semaphore value and suspends execution of the calling
thread until the semaphore becomes available to the caller.

If a thread waiting on a semaphore is interrupted by a signal, the signal handler will
run, but then the thread will resume waiting for the semaphore. Thus, when
s e m a _ w a i t returns without an error, it will always have acquired the semaphore.

sema Parameter
sema must previously have been initialized, either by s e m a _ i n i t or statically (see
s e m a _ i n i t).

Return Values
s e m a _ w a i t returns zero for success and an error number for failure, as described
below.

Errors
If the following condition is detected, s e m a _ w a i t returns the value:

E I N V A L Invalid argument specified.

USAGE
See the description of semaphores under USAGE on s e m a _ i n i t(MT_LIB).

In general, s e m a _ w a i t is used to block wait for an event, or when a critical section
is long. Semaphores are asynchronous-safe, and may be used to communicate
between signal handlers and base level code.

SEE ALSO
s e m a p h o r e(MT_LIB), s e m a _ d e s t r o y(MT_LIB), s e m a _ i n i t(MT_LIB),
s e m a _ p o s t(MT_LIB), s e m a _ t r y w a i t(MT_LIB)

LEVEL
Level 1

Page 1

FINAL COPY
June 15, 1995

File: mt_lib/sema_wait
svid

Page: 96

s t r i n g: s t r c a t, s t r n c a t, s t r c m p, s t r n c m p, s t r c p y, s t r n c p y, s t r d u p, s t r l e n,
s t r c h r, s t r r c h r, s t r p b r k, s t r s p n, s t r c s p n, s t r t o k, s t r s t r – string operations
i n c l u d e < s t r i n g . h >

c h a r ∗s t r c a t (c h a r ∗s1, c o n s t c h a r ∗s2) ;

c h a r ∗s t r n c a t (c h a r ∗s1, c o n s t c h a r ∗s2, s i z e _ t n) ;

i n t s t r c m p (c o n s t c h a r ∗s1, c o n s t c h a r ∗s2) ;

i n t s t r n c m p (c o n s t c h a r ∗s1, c o n s t c h a r ∗s2, s i z e _ t n) ;

c h a r ∗s t r c p y (c h a r ∗s1, c o n s t c h a r ∗s2) ;

c h a r ∗s t r n c p y (c h a r ∗s1, c o n s t c h a r ∗s2, s i z e _ t n) ;

c h a r ∗s t r d u p (c o n s t c h a r ∗s1) ;

s i z e _ t s t r l e n (c o n s t c h a r ∗s) ;

c h a r ∗s t r c h r (c o n s t c h a r ∗s, i n t c) ;

c h a r ∗s t r r c h r (c o n s t c h a r ∗s, i n t c) ;

c h a r ∗s t r p b r k (c o n s t c h a r ∗s1, c o n s t c h a r ∗s2) ;

s i z e _ t s t r s p n (c o n s t c h a r ∗s1, c o n s t c h a r ∗s2) ;

s i z e _ t s t r c s p n (c o n s t c h a r ∗s1, c o n s t c h a r ∗s2) ;

c h a r ∗s t r t o k (c h a r ∗s1, c o n s t c h a r ∗s2) ;

c h a r ∗s t r s t r (c o n s t c h a r ∗s1, c o n s t c h a r ∗s2) ;
The arguments s, s1, and s2 point to strings (arrays of characters terminated by a
null character). The functions s t r c a t, s t r n c a t, s t r c p y, s t r n c p y, and s t r t o k
alter s1. These functions do not check for overflow of the array pointed to by s1.
s t r c a t appends a copy of string s2, including the terminating null character, to
the end of string s1. s t r n c a t appends at most n characters. Each returns a
pointer to the null-terminated result. The initial character of s2 overrides the null
character at the end of s1. s t r c m p compares its arguments and returns an integer
less than, equal to, or greater than 0, based upon whether s1 is lexicographically
less than, equal to, or greater than s2. s t r n c m p makes the same comparison but
looks at most n characters. Characters following a null character are not com-
pared. s t r c p y copies string s2 to s1 including the terminating null character, stop-
ping after the null character has been copied. s t r n c p y copies exactly n characters,
truncating s2 or adding null characters to s1 if necessary. The result will not be
null-terminated if the length of s2 is n or more. Each function returns s1. s t r d u p
returns a pointer to a new string which is a duplicate of the string pointed to by s1.
The space for the new string is obtained using m a l l o c(BA_OS). If the new string
can not be created, a N U L L pointer is returned. s t r l e n returns the number of char-
acters in s, not including the terminating null character. s t r c h r (or s t r r c h r) re-
turns a pointer to the first (last) occurrence of c (converted to a c h a r) in string s, or
a N U L L pointer if c does not occur in the string. The null character terminating a
string is considered to be part of the string. s t r p b r k returns a pointer to the first

1

occurrence in string s1 of any character from string s2, or a N U L L pointer if no char-
acter from s2 exists in s1. s t r s p n (or s t r c s p n) returns the length of the initial seg-
ment of string s1 which consists entirely of characters from (not from) string s2.
s t r t o k considers the string s1 to consist of a sequence of zero or more text tokens
separated by spans of one or more characters from the separator string s2. The
first call (with pointer s1 specified) returns a pointer to the first character of the
first token, and will have written a null character into s1 immediately following
the returned token. The function keeps track of its position in the string between
separate calls, so that subsequent calls (which must be made with the first argu-
ment a N U L L pointer) will work through the string s1 immediately following that
token. In this way subsequent calls will work through the string s1 until no tokens
remain. The separator string s2 may be different from call to call. When no token
remains in s1, a N U L L pointer is returned. s t r s t r locates the first occurrence in
string s1 of the sequence of characters (excluding the terminating null character) in
string s2. s t r s t r returns a pointer to the located string, or a null pointer if the
string is not found. If s2 points to a string with zero length (that is, the string " "),
the function returns s1. m a l l o c(BA_OS), s e t l o c a l e(BA_OS), s t r x f r m(BA_LIB),
Level 1. All of these functions assume the default locale ‘‘C.’’ For some locales,
s t r x f r m should be applied to the strings before they are passed to the functions.

2

thr_continue (MT_LIB) thr_continue (MT_LIB)

NAME
t h r _ c o n t i n u e – continue the execution of a suspended thread

SYNOPSIS
i n c l u d e < t h r e a d . h >

i n t t h r _ c o n t i n u e (t h r e a d _ t target_thread) ;

Parameters
target_thread thread ID of the thread to be continued

DESCRIPTION
t h r _ c o n t i n u e makes target_thread runnable. target_thread is the ID of a thread pre-
viously suspended with t h r _ s u s p e n d(MT_LIB) or created suspended with
t h r _ c r e a t e(MT_LIB). If target_thread is not suspended, t h r _ c o n t i n u e will have
no effect.

Return Values
t h r _ c o n t i n u e returns zero for success and an error number for failure, as
described below.

Errors
If any of the following conditions occurs, t h r _ c o n t i n u e returns the corresponding
value:

E S R C H target_thread cannot be found in the current process

SEE ALSO
t h r _ c r e a t e(MT_LIB), t h r _ s u s p e n d(MT_LIB)

LEVEL
Level 1

Page 1

FINAL COPY
June 15, 1995

File: mt_lib/thr_continue
svid

Page: 99

thr_create (MT_LIB) thr_create (MT_LIB)

arg Parameter
arg is a pointer to the argument to start_routine.

flags Parameter
flags specifies attributes for the new thread. It is constructed from the bitwise
inclusive OR of any of the following:

T H R _ S U S P E N D E D create the new thread in the suspended state. This permits
modification of scheduling parameters and other attributes before
the new thread executes start_routine. The creating thread or
another thread must call t h r _ c o n t i n u e for the new thread to
begin executing.

T H R _ B O U N D bind the new thread to a new lightweight process (LWP) created
for the purpose, regardless of other flags. The thread will not be
scheduled on other LWPs even if the implementation supports
multiplexing of threads across LWPs. If the implementation does
not support multiplexing, this flag is irrelevant.

T H R _ D E T A C H E D create the new thread in the detached state. The new thread can-
not be awaited with t h r _ j o i n(MT_LIB). This gives a hint to the
implementation that immediate reuse of the new thread’s
resources on t h r _ e x i t is acceptable to the user. The exit status
of a detached thread cannot be retrieved.

T H R _ I N C R _ C O N C increase the concurrency level as returned by
t h r _ g e t c o n c u r r e n c y If the implementation does not support
multiplexing, this flag is ignored.

T H R _ D A E M O N create the new thread as a daemon thread. The new thread will
not be counted when determining when the last thread has ter-
minated. The process will terminate when the last non-daemon
thread terminates. Such ‘‘helper threads’’ may be created for
asynchronous I/O or other activities, but do not prolong the life
of the process when there are no real application threads remain-
ing.

If both T H R _ B O U N D and T H R _ I N C R _ C O N C are set, the concurrency level is increased
by one and a new bound thread is created.

new_thread Parameter
If new_thread is not N U L L, t h r _ c r e a t e sets the location pointed to by new_thread to
the identifier for the created thread. The thread ID is only valid within the calling
process.

Signal Mask and Scheduling Characteristics
The newly created thread inherits the creating thread’s signal mask, as established
by t h r _ s i g s e t m a s k(MT_LIB), but without any pending signals.

Scheduling attributes are also inherited as appropriate and permitted.

Security Restrictions
t h r _ c r e a t e requires no special permissions or privilege.

Page 2

FINAL COPY
June 15, 1995

File: mt_lib/thr_create
svid

Page: 101

thr_create (MT_LIB) thr_create (MT_LIB)

Return Values
t h r _ c r e a t e returns zero for success and an error number for failure, as described
below.

Errors
If any of the following conditions occurs, t h r _ c r e a t e returns the corresponding
value:

E N O M E M Insufficient memory to complete t h r _ c r e a t e.

E I N V A L stack_size is zero and stack_address is not N U L L.

E I N V A L stack_size, after shrinking to aligned offsets, is smaller than an
implementation-defined lower bound as returned by t h r _ m i n s t a c k.

E I N V A L start_routine is N U L L.

If any of the following conditions is detected, t h r _ c r e a t e returns the correspond-
ing value:

E A G A I N A resource limit would be exceeded if the call succeeded.

E F A U L T One or more parameters point to an illegal address. (The likely result is a
subsequent S I G S E G V rather than detecting an E F A U L T condition.)

USAGE
Examples

The following example creates a multiplexed thread that will use a library-allocated
stack. Note that using 0 as the flags argument will create a thread that is multi-
plexed (not bound) and can be awaited with t h r _ j o i n. The library will allocate a
default size stack because stack_address is N U L L and stack_size is 0.

v o i d *
t _ m a i n (v o i d * a r g)
{

. . .
}
i n t e r r o r ;
v o i d * t _ a r g = N U L L ;
t h r e a d _ t t 1 _ i d ;

e r r o r = t h r _ c r e a t e ((v o i d *) N U L L , 0 , t _ m a i n , t _ a r g , 0 , & t 1 _ i d) ;

The following example creates a multiplexed thread that will use a user-allocated
stack.

v o i d *
t _ m a i n (v o i d * a r g)
{

. . .
}
i n t e r r o r ;
v o i d * t 1 _ s t a c k ;
v o i d * t _ a r g = N U L L ;
s i z e _ t t _ s i z e = 8 1 9 2 ;
t h r e a d _ t t 1 _ i d ;

Page 3

FINAL COPY
June 15, 1995

File: mt_lib/thr_create
svid

Page: 102

thr_create (MT_LIB) thr_create (MT_LIB)

t 1 _ s t a c k = m a l l o c (t _ s i z e) ;
e r r o r = t h r _ c r e a t e (t 1 _ s t a c k , t _ s i z e , t _ m a i n , t _ a r g , 0 , & t 1 _ i d) ;

The following example creates a daemon thread that will use a minimally-sized
stack allocated by the library:

v o i d *
t _ m a i n (v o i d * a r g)
{

. . .
}
i n t e r r o r ;
v o i d * t 1 _ s t a c k ;
v o i d * t _ a r g = N U L L ;
t h r e a d _ t t 1 _ i d ;

e r r o r = t h r _ c r e a t e ((v o i d *) N U L L , (s i z e _ t) t h r _ m i n s t a c k () , t _ m a i n ,
t _ a r g , T H R _ D A E M O N , & t 1 _ i d) ;

The following example creates a suspended, bound thread, then modifies its
scheduling parameters before continuing. See t h r _ s e t s c h e d u l e r(MT_LIB) for
more details about modifying thread scheduling parameters. The library will allo-
cate a default size stack because stack_address is N U L L and stack_size is 0.

v o i d *
t _ m a i n (v o i d * a r g)
{

. . .
}
i n t e r r o r ;
v o i d * t 1 _ s t a c k ;
v o i d * t _ a r g = N U L L ;
t h r e a d _ t t 1 _ i d ;
s c h e d _ p a r a m _ t s c h e d _ p a r a m ;

e r r o r = t h r _ c r e a t e ((v o i d *) N U L L , 0 , t _ m a i n , t _ a r g ,
T H R _ S U S P E N D E D | T H R _ B O U N D , & t 1 _ i d) ;

/ * i n i t i a l i z e s c h e d _ p a r a m t o t h e S C H E D _ F I F O p o l i c y w i t h p r i o r i t y 6 2 * /
s c h e d _ p a r a m . p o l i c y = S C H E D _ F I F O ;
((s t r u c t f i f o _ p a r a m *) s c h e d _ p a r a m . p o l i c y _ p a r a m s) - > p r i o = 6 2 ;

e r r o r = t h r _ s e t s c h e d u l e r (t 1 _ i d , & s c h e d _ p a r a m) ;
e r r o r = t h r _ c o n t i n u e (t 1 _ i d) ;

SEE ALSO
f o r k 1(MT_OS), f o r k a l l(MT_OS), t h r _ c o n t i n u e(MT_LIB), t h r _ e x i t(MT_LIB),
t h r _ g e t c o n c u r r e n c y(MT_LIB), t h r _ j o i n(MT_LIB), t h r _ m i n s t a c k(MT_LIB),
t h r _ s e l f(MT_LIB), t h r _ s e t c o n c u r r e n c y(MT_LIB),
t h r _ s e t s c h e d u l e r(MT_LIB), t h r _ s u s p e n d(MT_LIB)

Page 4

FINAL COPY
June 15, 1995

File: mt_lib/thr_create
svid

Page: 103

thr_create (MT_LIB) thr_create (MT_LIB)

LEVEL
Level 1

Page 5

FINAL COPY
June 15, 1995

File: mt_lib/thr_create
svid

Page: 104

thr_exit (MT_LIB) thr_exit (MT_LIB)

NAME
t h r _ e x i t – terminate execution of the calling thread

SYNOPSIS
i n c l u d e < t h r e a d . h >

v o i d t h r _ e x i t (v o i d *status) ;

Parameters
status the exit value of the thread

DESCRIPTION
t h r _ e x i t terminates execution of the calling thread. status is the exit value of the
terminating thread. The status will be returned to one of any sibling threads that
call t h r _ j o i n(MT_LIB).

If the start function of the thread [see t h r _ c r e a t e(MT_LIB)] returns without cal-
ling t h r _ e x i t, t h r _ e x i t is called implicitly with status set to the return value of
the function.

No error checking of status is done, as other values may be cast to (v o i d *). See
Warnings in the USAGE section below.

After t h r _ e x i t has been called, all thread-specific data bindings are discarded [see
t h r _ k e y c r e a t e(MT_LIB)], and the thread data structures may be recycled.

t h r _ e x i t will terminate the process when it is called by the last thread not created
with the T H R _ D A E M O N flag. If a specific exit status is required for the process,
e x i t(BA_OS) should be called explicitly. An implicit e x i t leaves the exit status of
the process undefined.

A call to t h r _ e x i t by the initial thread does not terminate the process, unless it is
the last non-daemon thread.

Return Values
t h r _ e x i t does not return a value.

Errors
None

USAGE
Warnings

For portability, use status only as a pointer; do not cast an i n t to v o i d * to be used
as the status argument, and then cast it back to i n t when it is retrieved by
t h r _ j o i n. The ANSI C standard does not require that implementations cast an i n t
value to (v o i d *) and then back to the initial type without losing information.

SEE ALSO
e x i t(BA_OS), t h r _ c r e a t e(MT_LIB), t h r _ g e t s p e c i f i c(MT_LIB),
t h r _ j o i n(MT_LIB), t h r _ k e y c r e a t e(MT_LIB), t h r _ s e t s p e c i f i c(MT_LIB)

LEVEL
Level 1

Page 1

FINAL COPY
June 15, 1995

File: mt_lib/thr_exit
svid

Page: 105

thr_get_rr_interval (MT_LIB) thr_get_rr_interval (MT_LIB)

NAME
t h r _ g e t _ r r _ i n t e r v a l – get the round-robin scheduling interval

SYNOPSIS
i n c l u d e < t h r e a d . h >

v o i d t h r _ g e t _ r r _ i n t e r v a l (t i m e s t r u c _ t *rr_time) ;

Parameters
rr_time pointer to the t i m e s t r u c _ t containing the value of the round-robin

scheduling interval (set by t h r _ g e t _ r r _ i n t e r v a l)

DESCRIPTION
t h r _ g e t _ r r _ i n t e r v a l stores the round-robin scheduling time quantum used by
the Threads Library implementation for threads using the S C H E D _ R R scheduling
policy in the t i m e s t r u c _ t pointed to by rr_time.

rr_time Parameter
rr_time is set by t h r _ g e t _ r r _ i n t e r v a l. The user supplies a pointer to a
t i m e s t r u c _ t object. t i m e s t r u c _ t is defined in s y s / t i m e . h to include the follow-
ing members:

t i m e _ t t v _ s e c ;
l o n g t v _ n s e c ;

Security Restrictions
t h r _ g e t _ r r _ i n t e r v a l requires no special permissions or privilege.

Return Values
t h r _ g e t _ r r _ i n t e r v a l does not return a value.

Errors
None

SEE ALSO
t h r _ g e t s c h e d u l e r(MT_LIB), t h r _ s e t s c h e d u l e r(MT_LIB)

LEVEL
Level 1

Page 1

FINAL COPY
June 15, 1995

File: mt_lib/thr_get_rr
svid

Page: 106

thr_getconcurrency (MT_LIB) thr_getconcurrency (MT_LIB)

NAME
t h r _ g e t c o n c u r r e n c y – retrieve the level of concurrency

SYNOPSIS
i n c l u d e < t h r e a d . h >

i n t t h r _ g e t c o n c u r r e n c y (v o i d) ;

DESCRIPTION
t h r _ g e t c o n c u r r e n c y returns the level, or degree, of concurrency, which is the
number of lightweight processes (LWPs)(see i n t r o) the user has requested to be
available for running multiplexed threads. This is the number from the most recent
t h r _ s e t c o n c u r r e n c y call (or zero if there has been no call) plus the number of
threads created with the T H R _ I N C R _ C O N C flag set since the last call to
t h r _ s e t c o n c u r r e n c y. The return value does not reflect the number of LWPs actu-
ally available.

Return Values
t h r _ g e t c o n c u r r e n c y returns the degree of concurrency as described above.

Errors
t h r _ g e t c o n c u r r e n c y cannot fail.

SEE ALSO
t h r _ c r e a t e(MT_LIB), t h r _ s e t c o n c u r r e n c y(MT_LIB)

LEVEL
Level 1

Page 1

FINAL COPY
June 15, 1995

File: mt_lib/thr_getconc
svid

Page: 107

thr_getprio (MT_LIB) thr_getprio (MT_LIB)

NAME
t h r _ g e t p r i o – retrieve a thread’s scheduling priority

SYNOPSIS
i n c l u d e < t h r e a d . h >

i n t t h r _ g e t p r i o (t h r e a d _ t tid, i n t *prio) ;

Parameters
tid target thread ID

prio pointer to priority value (set by t h r _ g e t p r i o)

DESCRIPTION
t h r _ g e t p r i o stores tid’s scheduling priority in the location pointed to by prio.
t h r _ g e t s c h e d u l e r can also be used to retrieve the priority of a thread, but
t h r _ g e t p r i o is a shorthand for use when only the priority, not the scheduling
class, is needed.

Security Restrictions
No privileges or special permissions are required to use t h r _ g e t p r i o.

Return Values
t h r _ g e t p r i o returns zero for success and an error number for failure, as described
below.

Errors
If any of the following error conditions is detected, t h r _ g e t p r i o returns the
corresponding value:

E S R C H No thread with identifier tid can be found in the process.

SEE ALSO
p r i o c n t l(KE_OS), t h r _ g e t s c h e d u l e r(MT_LIB), t h r _ s e t p r i o(MT_LIB),
t h r _ s e t s c h e d u l e r(MT_LIB), t h r _ y i e l d(MT_LIB)

LEVEL
Level 1

Page 1

FINAL COPY
June 15, 1995

File: mt_lib/thr_getprio
svid

Page: 108

thr_getspecific (MT_LIB) thr_getspecific (MT_LIB)

NAME
t h r _ g e t s p e c i f i c – get thread-specific data

SYNOPSIS
i n c l u d e < t h r e a d . h >

i n t t h r _ g e t s p e c i f i c (t h r e a d _ k e y _ t key, v o i d * *valuep) ;

Parameters
key key whose value is to be returned

DESCRIPTION
t h r _ g e t s p e c i f i c returns the value currently bound to the specified key on behalf
of the calling thread.

key Parameter
key is a key obtained with a previous call to t h r _ k e y c r e a t e(MT_LIB).

The effect of calling t h r _ g e t s p e c i f i c with a key value not obtained with
t h r _ k e y c r e a t e or after key has been deleted with t h r _ k e y d e l e t e is undefined.

valuep Parameters
t h r _ g e t s p e c i f i c sets the location pointed to by valuep to the value set by a previ-
ous call of t h r _ s p e c i f i c in the calling thread. If no value is bound to the specified
key for the calling thread, the location pointed to by value is set to N U L L.

Return Values
t h r _ g e t s p e c i f i c returns zero for success and an error number for failure as
described below.

Errors
If the following condition is detected, t h r _ g e t s p e c i f i c returns the value:

E I N V A L The key is invalid.

SEE ALSO
t h r _ k e y c r e a t e(MT_LIB), t h r _ k e y d e l e t e(MT_LIB), t h r _ s e t s p e c i f i c(MT_LIB)

LEVEL
Level 1

Page 1

FINAL COPY
June 15, 1995

File: mt_lib/thr_getspec
svid

Page: 110

thr_join (MT_LIB) thr_join (MT_LIB)

Errors
If any of the following conditions occurs, t h r _ j o i n returns the corresponding
value:

E S R C H there is no joinable (undetached) thread in the current process with
thread ID wait_for.

E D E A D L K wait_for is the calling thread’s thread ID.

If the following condition is detected, t h r _ j o i n returns the value:

E I N V A L There are no remaining threads that can be thr_joined with, for example,
all other threads are detached and waitfor is (t h r e a d _ t) 0.

SEE ALSO
c o n d i t i o n(MT_LIB), t h r _ c r e a t e(MT_LIB), t h r _ e x i t(MT_LIB), w a i t(BA_OS)

LEVEL
Level 1

Page 2

FINAL COPY
June 15, 1995

File: mt_lib/thr_join
svid

Page: 112

thr_keycreate (MT_LIB) thr_keycreate (MT_LIB)

NAME
t h r _ k e y c r e a t e – create thread-specific data key

SYNOPSIS
i n c l u d e < t h r e a d . h >

i n t t h r _ k e y c r e a t e (t h r e a d _ k e y _ t *key, v o i d (*destructor) (v o i d *value)) ;

Parameters
key pointer to the new thread-specific data key (set by t h r _ s e t s p e c i f i c)

destructor pointer to function to be called at thread exit, or N U L L

DESCRIPTION
t h r _ k e y c r e a t e creates a key visible to all threads in the process. The key plays the
role of identifier for per-thread data. A thread can then bind a value to key with
t h r _ s e t s p e c i f i c(3thread). Although the same key identifier may be used by dif-
ferent threads, the values bound to the key are maintained on a per-thread basis
and persist for the life of the calling thread, or until explicitly replaced.

t h r _ k e y c r e a t e sets the initial value of the key in all active and subsequently
created threads to N U L L. When t h r _ k e y c r e a t e returns successfully the new key is
stored in the location pointed to by key. The caller must ensure that creation and
use of this key are synchronized [see s y n c h(MT_LIB)].

Normally, the value bound to a key by a thread will be a pointer to dynamically-
allocated storage. When a thread terminates, per-thread context is automatically
destroyed and, if a binding exists, the reference to the key is released. If the key has
a destructor (see below), the destructor is called with the bound value.

There is no fixed limit on the number of keys per process.

key Parameter
key points to the t h r e a d _ k e y _ t in which t h r _ k e y c r e a t e will store the newly
created key.

destructor Parameter
destructor points to an optional destructor function to be associated with key. des-
tructor can also be N U L L. When a thread terminates, if it has a non-N U L L destructor
function and a non-N U L L value associated with key, the destructor function will be
called with the bound value as an argument. If the value associated with key is
N U L L, the destructor is not called. Destructors are intended to free any
dynamically-allocated storage associated with the bound value.

If destructor functions call t h r _ s e t s p e c i f i c or t h r _ g e t s p e c i f i c, it may not be
possible to destroy all bindings for a terminating thread. The order in which the
destructor functions are called is unspecified.

Return Values
t h r _ k e y c r e a t e returns zero for success and an error number for failure, as
described below.

Errors
If any of the following conditions is detected, t h r _ k e y c r e a t e returns the
corresponding value:

Page 1

FINAL COPY
June 15, 1995

File: mt_lib/thr_keycreat
svid

Page: 113

thr_keycreate (MT_LIB) thr_keycreate (MT_LIB)

E A G A I N The key name space is exhausted.

E N O M E M Insufficient memory exists to create the key.

USAGE
Examples

This example shows the use of thread-specific data in a function that can be called
from more than one thread without special initialization. For the sake of simplicity,
no error checking is done.

s t a t i c m u t e x _ t k e y l o c k ;
s t a t i c t h r e a d _ k e y _ t k e y ;
s t a t i c i n t o n c e = 0 ;

v o i d
f u n c ()
{

v o i d * p t r ;

(v o i d) m u t e x _ l o c k (& k e y l o c k) ;
i f (! o n c e) {

(v o i d) t h r _ k e y c r e a t e (& k e y , f r e e) ;
o n c e + + ;

}
(v o i d) m u t e x _ u n l o c k (& k e y l o c k) ;
(v o i d) t h r _ g e t s p e c i f i c (k e y , (v o i d *) & p t r) ;
i f (p t r = = N U L L) {

p t r = m a l l o c (S I Z E) ;
(v o i d) t h r _ s e t s p e c i f i c (k e y , p t r) ;

}
}

SEE ALSO
m u t e x(MT_LIB), t h r _ e x i t(MT_LIB), t h r _ g e t s p e c i f i c(MT_LIB),
t h r _ k e y d e l e t e(MT_LIB), t h r _ s e t s p e c i f i c(MT_LIB)

LEVEL
Level 1

Page 2

FINAL COPY
June 15, 1995

File: mt_lib/thr_keycreat
svid

Page: 114

thr_keydelete (MT_LIB) thr_keydelete (MT_LIB)

NAME
t h r _ k e y d e l e t e – thread-specific data key

SYNOPSIS
i n c l u d e < t h r e a d . h >

i n t t h r _ k e y d e l e t e (t h r e a d _ k e y _ t key)

Parameters
key the key to be deleted

DESCRIPTION
t h r _ k e y d e l e t e deletes the specified key, which was obtained from a previous call
to t h r _ k e y c r e a t e.

key Parameter
key is the key to be deleted. key must no longer be in use, that is, no thread may
have a non-N U L L value bound to key, otherwise t h r _ k e y d e l e t e will return E B U S Y.

Return Values
t h r _ k e y d e l e t e returns zero for success and an error number for failure, as
described below.

Errors
If any of the following conditions occur, t h r _ k e y d e l e t e returns the corresponding
value:

E B U S Y key has thread-specific data associated with it.

E I N V A L key is invalid.

USAGE
A typical use would be for a dynamically linked library to create its private key
with t h r _ k e y c r e a t e as part of its initialization, use t h r _ g e t s p e c i f i c and
t h r _ s e t s p e c i f i c while in use, and then call t h r _ k e y d e l e t e before unlinking.

The application should ensure that other thread-specific data functions for key are
not called concurrently with t h r _ k e y d e l e t e.

SEE ALSO
t h r _ g e t s p e c i f i c(MT_LIB), t h r _ k e y c r e a t e(MT_LIB),

t h r _ s e t s p e c i f i c(MT_LIB)
LEVEL

Level 1

Page 1

FINAL COPY
June 15, 1995

File: mt_lib/thr_keydel
svid

Page: 115

thr_kill (MT_LIB) thr_kill (MT_LIB)

NAME
t h r _ k i l l – send a signal to a sibling thread

SYNOPSIS
i n c l u d e < t h r e a d . h >

i n t t h r _ k i l l (t h r e a d _ t tid, i n t sig)

Parameters
tid thread ID of the thread to receive the signal

sig signal number of the signal to be sent

DESCRIPTION
t h r _ k i l l sends the signal sig to the sibling thread tid.

If tid is blocking signal sig, the signal will become pending for tid.

t h r _ k i l l is the thread analog of k i l l(BA_OS).

tid Parameter
tid is the thread ID of the sibling thread which is to receive the signal. A thread can-
not send a signal to a thread in another process (a non-sibling thread).

sig Parameter
sig is the signal number of the signal to be sent and is either 0 or a value from the
list given in s i g n a l(BA_ENV).

If sig is 0 (the null signal), error checking is performed but no signal is actually sent;
this can be used to check the validity of tid.

Return Values
t h r _ k i l l returns zero for success and an error number for failure, as described
below.

Errors
If any of the following conditions occurs, t h r _ k i l l returns the corresponding
value:

E I N V A L sig is not a valid signal number

E S R C H tid cannot be found in the current process

SEE ALSO
k i l l(BA_OS), s i g n a l(BA_ENV), s i g w a i t(BA_OS), t h r _ s i g s e t m a s k(MT_LIB)

LEVEL
Level 1

Page 1

FINAL COPY
June 15, 1995

File: mt_lib/thr_kill
svid

Page: 116

thr_minstack (MT_LIB) thr_minstack (MT_LIB)

NAME
t h r _ m i n s t a c k – return the minimum stack size for a thread

SYNOPSIS
i n c l u d e < t h r e a d . h >

s i z e _ t t h r _ m i n s t a c k (v o i d) ;

DESCRIPTION
t h r _ m i n s t a c k returns the implementation-defined value for the minimum stack
size for a thread required by t h r _ c r e a t e(MT_LIB).

Return Values
t h r _ m i n s t a c k returns the minimum stack size for a thread.

Errors
None

USAGE
The value returned by t h r _ m i n s t a c k can be used as the stack_size argument to
t h r _ c r e a t e when the new thread needs only a minimal stack. Threads that will
call any functions, or that need much space for local variables, must use a larger
stack.

SEE ALSO
t h r _ c r e a t e(MT_LIB)

LEVEL
Level 1

Page 1

FINAL COPY
June 15, 1995

File: mt_lib/thr_minstack
svid

Page: 117

thr_self (MT_LIB) thr_self (MT_LIB)

NAME
t h r _ s e l f – get thread identifier of the calling thread

SYNOPSIS
i n c l u d e < t h r e a d . h >

t h r e a d _ t t h r _ s e l f (v o i d) ;

DESCRIPTION
t h r _ s e l f returns the identifier of the calling thread.

Return Values
t h r _ s e l f returns the identifier of the calling thread.

Errors
None. This function always succeeds.

SEE ALSO
g e t u i d(BA_OS), t h r _ c r e a t e(MT_LIB)

LEVEL
Level 1

Page 1

FINAL COPY
June 15, 1995

File: mt_lib/thr_self
svid

Page: 118

thr_setconcurrency (MT_LIB) thr_setconcurrency (MT_LIB)

NAME
t h r _ s e t c o n c u r r e n c y – request a level of concurrency

SYNOPSIS
i n c l u d e < t h r e a d . h >

i n t t h r _ s e t c o n c u r r e n c y (i n t new_level) ;

Parameters
new_level the requested level of concurrency

DESCRIPTION
t h r _ s e t c o n c u r r e n c y tells the implementation the number of implementation sup-
ported (see i n t r o) lightweight processes (LWPs) that the user would like available
for running multiplexed threads.

t h r _ s e t c o n c u r r e n c y sets to new_level the requested level, or degree, of con-
currency, which is the number of LWPs that the user would like available to execute
multiplexed threads in the process. The requested concurrency is a hint to the
implementation as to the level of concurrency expected by the user; the implemen-
tation may use this value to affect the number of LWPs available for running multi-
plexed threads.

new_level Parameter
new_level must be a non-negative integer. t h r _ s e t c o n c u r r e n c y interprets it as fol-
lows:

If new_level is zero, t h r _ s e t c o n c u r r e n c y sets the level of concurrency to
the default level.

If new_level is greater than the current number of LWPs,
t h r _ s e t c o n c u r r e n c y may create LWPs until the number of LWPs in the
pool equals new_level.

If new_level is less than the current number of LWPs, t h r _ s e t c o n c u r r e n c y
may release LWPs until the number of LWPs in the pool equals new_level.

When the number of LWPs becomes greater than the number of threads in the pro-
cess, the concurrency level may automatically decay over time to be equal to or less
than the number of threads in the process.

Return Values
t h r _ s e t c o n c u r r e n c y returns zero for success and an error number for failure, as
described below.

Errors
If any of the following conditions is detected, t h r _ s e t c o n c u r r e n c y returns the
corresponding value:

E I N V A L new_level is negative

E A G A I N A system resource limit would have been exceeded by using the
requested value in the implementation’s concurrency algorithm. LWPs
created up to the failed _ l w p _ c r e a t e will not be killed but will continue
to exist. Because the change of concurrency level is not necessarily syn-
chronous with the call to t h r _ s e t c o n c u r r e n c y, this condition is not
always detected.

Page 1

FINAL COPY
June 15, 1995

File: mt_lib/thr_setconc
svid

Page: 119

thr_setconcurrency (MT_LIB) thr_setconcurrency (MT_LIB)

NOTICES
The creation or termination of LWPs is not necessarily synchronous with the call to
t h r _ s e t c o n c u r r e n c y, therefore an error may not be returned. For example, if
new_level exceeds a system limit, E A G A I N may not be returned, and any LWPs
created asynchronously as a result of the call will not be terminated.

The Threads Library will always ensure that an LWP is available to run multiplexed
threads.

USAGE
The Threads Library ensures that a sufficient number of threads are active so that
the process can continue to make progress. While this conserves system resources,
it may not produce the most effective level of concurrency. t h r _ s e t c o n c u r r e n c y
permits the application to give the Threads Library a hint about the desired level of
concurrency.

SEE ALSO
t h r _ c r e a t e(MT_LIB), t h r _ g e t c o n c u r r e n c y(MT_LIB)

LEVEL
Level 1

Page 2

FINAL COPY
June 15, 1995

File: mt_lib/thr_setconc
svid

Page: 120

thr_setprio (MT_LIB) thr_setprio (MT_LIB)

NAME
t h r _ s e t p r i o – set a thread’s scheduling priority

SYNOPSIS
i n c l u d e < t h r e a d . h >

i n t t h r _ s e t p r i o (t h r e a d _ t tid, i n t prio) ;

Parameters
tid target thread ID

prio priority value for tid

DESCRIPTION
t h r _ s e t p r i o sets tid’s scheduling priority to be prio. t h r _ s e t s c h e d u l e r can also
be used to set the priority of a thread, but t h r _ s e t p r i o is a shorthand for use
when only the priority, not the scheduling class, needs to be changed.

Priority Range for Multiplexed Threads
The priority range for the S C H E D _ T S policy for multiplexed threads is
implementation-specific.

Priority Range for Bound Threads
Bound threads running under any scheduling policy are subject to the priority
ranges set by the system. Use p r i o c n t l() or p r i o c n t l(KE_OS) to find what
scheduling priorities are available on your system.

Security Restrictions
No privileges or special permissions are required to use t h r _ s e t p r i o to set the
priority of a multiplexed thread. The following rules apply to changing the priority
of bound threads:

You can always lower the priority of any bound thread.

You can always raise the priority of bound threads in the S C H E D _ F I F O and
S C H E D _ R R classes.

You must have privilege to raise the priority of a bound thread in the
S C H E D _ T S class. The required privileges may vary across installations.

Return Values
t h r _ s e t p r i o returns zero for success and an error number for failure, as described
below.

Errors
If any of the following error conditions is detected, t h r _ s e t p r i o fails and returns
the corresponding value:

E I N V A L The value of p r i o is invalid for tid’s current scheduling policy.

E P E R M The caller does not have appropriate privilege to set the priority of tid.

E S R C H No thread with identifier tid can be found in the process.

SEE ALSO
p r i o c n t l(KE_OS), t h r _ g e t p r i o(MT_LIB), t h r _ g e t s c h e d u l e r(MT_LIB),
t h r _ s e t s c h e d u l e r(MT_LIB), t h r _ y i e l d(MT_LIB)

Page 1

FINAL COPY
June 15, 1995

File: mt_lib/thr_setprio
svid

Page: 121

thr_setprio (MT_LIB) thr_setprio (MT_LIB)

LEVEL
Level 1

Page 2

FINAL COPY
June 15, 1995

File: mt_lib/thr_setprio
svid

Page: 122

thr_setscheduler (MT_LIB) thr_setscheduler (MT_LIB)

NAME
t h r _ s e t s c h e d u l e r – set the scheduling policy for a thread

SYNOPSIS
i n c l u d e < t h r e a d . h >

i n t t h r _ s e t s c h e d u l e r (t h r e a d _ t tid, c o n s t s c h e d _ p a r a m _ t *param) ;

Parameters
tid target thread ID

param pointer to a structure containing scheduling policy parameters to be used

DESCRIPTION
t h r _ s e t s c h e d u l e r sets the scheduling policy and corresponding policy-specific
parameters of tid to those specified by the s c h e d _ p a r a m _ t structure pointed to by
param.

tid Parameter
tid is the ID of the thread whose scheduling policy t h r _ s e t s c h e d u l e r will set.

param Parameter
param is a pointer to a s c h e d _ p a r a m _ t structure that has been initialized to contain
the scheduling policy and corresponding parameters to which tid will be set. The
priority of the thread is the only corresponding parameter that can be set.

s c h e d _ p a r a m _ t includes:

i d _ t p o l i c y ;
l o n g p o l i c y _ p a r a m s [P O L I C Y _ P A R A M _ S Z] ;

The p o l i c y member of s c h e d _ p a r a m _ t can be set to any of the following schedul-
ing policies:

S C H E D _ T S time-sharing scheduling policy. Both bound and multiplexed
threads can use S C H E D _ T S.

S C H E D _ F I F O a fixed-priority scheduling policy. Only bound threads can use
S C H E D _ F I F O. Threads scheduled under this policy will run on an
LWP in the kernel fixed-priority scheduling class with an infinite
time quantum.

S C H E D _ R R a fixed-priority scheduling policy. Only bound threads can use
S C H E D _ R R. Threads scheduled under this policy will run on an
LWP in the kernel fixed-priority scheduling class with the time
quantum returned by t h r _ g e t _ r r _ i n t e r v a l(MT_LIB).

S C H E D _ O T H E R an alias for S C H E D _ T S.

p o l i c y _ p a r a m s contains the priority to which the thread should be assigned.
p o l i c y _ p a r a m s can be cast to a pointer to the parameter structure corresponding
to the scheduling policy. Each of the parameter structures contains the integer
p r i o. The parameter structures are:

t s _ p a r a m for time-sharing scheduling parameters

Page 1

FINAL COPY
June 15, 1995

File: mt_lib/thr_setsched
svid

Page: 123

thr_setscheduler (MT_LIB) thr_setscheduler (MT_LIB)

f i f o _ p a r a m for FIFO scheduling parameters

r r _ p a r a m for round-robin scheduling parameters

Priority Range for Multiplexed Threads
The priority range for the S C H E D _ T S policy for multiplexed threads is
implementation-specific.

Priority Range for Bound Threads
Bound threads running under any scheduling policy are subject to the priority
ranges set by the system. Use p r i o c n t l(AU_CMD) or p r i o c n t l(KE_OS) to find
what scheduling priorities are available on your system.

Security Restrictions
No privileges or special permissions are required to use t h r _ s e t s c h e d u l e r to set
the policy or priority of a multiplexed thread. Appropriate privilege is required to
set the policy of any thread or process to S C H E D _ F I F O or S C H E D _ R R. The following
rules apply to changing the priority of bound threads:

You can always lower the priority of any bound thread.

You can always raise the priority of bound threads in the S C H E D _ F I F O and
S C H E D _ R R classes.

You must have privilege to raise the priority of a bound thread in the
S C H E D _ T S class. The required privileges may vary across installations.

Notes to the User
Note that each multiplexed thread run by a lightweight process (LWP) will affect
the priority of that LWP in the system scheduler. Over time, there will be approxi-
mate balance across the multiplexed threads in a process.

Return Values
t h r _ s e t s c h e d u l e r returns zero for success and an error number for failure, as
described below.

Errors
If any of the following conditions is detected, t h r _ s e t s c h e d u l e r returns the
corresponding value:

E I N V A L param points to a structure containing parameters that are invalid for the
requested policy.

E N O S Y S tid is multiplexed (not bound to an LWP), and the scheduling policy
being set is not supported for multiplexed threads. (In general, only
S C H E D _ T S can be counted on to work with multiplexed threads.)

E P E R M The caller does not have appropriate privilege for the operation.

E S R C H No thread can be found in the current process with ID tid.

USAGE
t h r _ s e t s c h e d u l e r is used by multithreaded applications that need to control their
scheduling.

Example of Setting sched_param_t
s c h e d _ p a r a m _ t s ;
s . p o l i c y = S C H E D _ T S ;
(s t r u c t t s _ p a r a m *) (s . p o l i c y _ p a r a m s) - > p r i o = 6 3 ;

Page 2

FINAL COPY
June 15, 1995

File: mt_lib/thr_setsched
svid

Page: 124

thr_setscheduler (MT_LIB) thr_setscheduler (MT_LIB)

SEE ALSO
p r i o c n t l(AU_CMD), p r i o c n t l(KE_OS), t h r _ c r e a t e(MT_LIB),
t h r _ g e t p r i o(MT_LIB), t h r _ g e t s c h e d u l e r(MT_LIB), t h r _ s e t p r i o(MT_LIB),

t h r _ y i e l d(MT_LIB)
LEVEL

Level 1

Page 3

FINAL COPY
June 15, 1995

File: mt_lib/thr_setsched
svid

Page: 125

thr_setspecific (MT_LIB) thr_setspecific (MT_LIB)

NAME
t h r _ s e t s p e c i f i c – set thread-specific data

SYNOPSIS
i n c l u d e < t h r e a d . h >

i n t t h r _ s e t s p e c i f i c (t h r e a d _ k e y _ t key, v o i d *value) ;

Parameters
key key to which value is to be bound

value pointer to thread-specific data, or N U L L

DESCRIPTION
t h r _ s e t s p e c i f i c associates a thread-specific value with key. Different threads
may bind different values to the same key.

If the value bound to key must be updated during the lifetime of the thread, the
caller must release the storage associated with the old value before a new value is
bound, or the storage is lost.

key Parameter
key is a key obtained with a previous call to t h r _ k e y c r e a t e(MT_LIB).

The effect of calling t h r _ s e t s p e c i f i c with a key value not obtained with
t h r _ k e y c r e a t e or after key has been deleted with t h r _ k e y d e l e t e is undefined.

value Parameter
value is typically a pointer to blocks of dynamically-allocated memory that have
been reserved for use by the calling thread. If value is N U L L, the calling thread will
give up a non-N U L L reference to key.

Return Values
t h r _ s e t s p e c i f i c returns zero for success and an error number for failure, as
described below.

Errors
If any of the following conditions is detected, t h r _ s e t s p e c i f i c returns the
corresponding value:

E I N V A L The key value is invalid.

E N O M E M There is not sufficient memory available to establish the binding.

SEE ALSO
t h r _ g e t s p e c i f i c(MT_LIB), t h r _ k e y c r e a t e(MT_LIB), t h r _ k e y d e l e t e(MT_LIB)

LEVEL
Level 1

Page 1

FINAL COPY
June 15, 1995

File: mt_lib/thr_setspec
svid

Page: 126

thr_sigsetmask (MT_LIB) thr_sigsetmask (MT_LIB)

NAME
t h r _ s i g s e t m a s k – change or examine the signal mask of a thread

SYNOPSIS
i n c l u d e < t h r e a d . h >

i n t t h r _ s i g s e t m a s k (i n t how, c o n s t s i g s e t _ t *set, s i g s e t _ t *oset) ;

Parameters
how S I G _ B L O C K, S I G _ U N B L O C K, or S I G _ S E T M A S K

set pointer to a set of signals to be blocked or unblocked

oset pointer to the value of the previous signal mask (set by t h r _ s i g s e t m a s k)

DESCRIPTION
t h r _ s i g s e t m a s k changes or examines the calling thread’s signal mask according to
the way how and set are set.

If there are any pending unblocked signals after the call to t h r _ s i g s e t m a s k, at
least one of those signals will be delivered before the call to t h r _ s i g s e t m a s k
returns.

The Threads Library implementation may affect the signal mask of the lightweight
process (LWP) running the calling thread.

how Parameter
how determines how set is interpreted. Set how to one of the following values:

S I G _ B L O C K Add the set of signals denoted by set to the current signal mask.

S I G _ U N B L O C K Remove the set of signals denoted by set from the current signal
mask.

S I G _ S E T M A S K Replace the current signal mask with the set of signals denoted by
set.

Note that 0 is not a valid value for how.

set Parameter
set points to a set of signals to be blocked or unblocked (according to the value of
how) in the current thread. If set is N U L L, the value of how is not significant, and the
thread’s signal mask will not be changed.

It is not possible to block those signals that cannot be ignored [see
s i g a c t i o n(BA_OS)]; this restriction is silently imposed by the system.

oset Parameter
If oset is not N U L L, t h r _ s i g s e t m a s k stores the value of the previous mask in that
location. If set is N U L L and oset is not N U L L, oset will point to the value of the
thread’s current signal mask.

Return Values
t h r _ s i g s e t m a s k returns zero for success and an error number for failure, as
described below.

If t h r _ s i g s e t m a s k fails, the thread’s signal mask is not changed.

Page 1

FINAL COPY
June 15, 1995

File: mt_lib/thr_sigsetm
svid

Page: 127

thr_sigsetmask (MT_LIB) thr_sigsetmask (MT_LIB)

Errors
If the following condition occurs, t h r _ s i g s e t m a s k returns the value:

E I N V A L The value of how is not equal to one of the defined values.

USAGE
Portability Considerations

Threads should use t h r _ s i g s e t m a s k rather than s i g p r o c m a s k(BA_OS). In some
implementations, s i g p r o c m a s k may be trapped and behaves identically to
t h r _ s i g s e t m a s k, but for portability, t h r _ s i g s e t m a s k should be used.

Style Considerations
The preferred coding style is to mask all signals and use s i g w a i t synchronously.

SEE ALSO
k i l l(BA_OS), s i g a c t i o n(BA_OS), s i g n a l(BA_ENV), s i g p r o c m a s k(BA_OS),
s i g s e n d(BA_OS), s i g w a i t(BA_OS), t h r _ k i l l(MT_LIB)

LEVEL
Level 1

Page 2

FINAL COPY
June 15, 1995

File: mt_lib/thr_sigsetm
svid

Page: 128

thr_suspend (MT_LIB) thr_suspend (MT_LIB)

NAME
t h r _ s u s p e n d – suspend the execution of a thread

SYNOPSIS
i n c l u d e < t h r e a d . h >

i n t t h r _ s u s p e n d (t h r e a d _ t target_thread) ;

Parameters
target_thread thread ID of the thread to be suspended

DESCRIPTION
t h r _ s u s p e n d suspends execution of target_thread. t h r _ s u s p e n d will return no
sooner than the time at which the implementation has started suspending
target_thread. The critical point at which t h r _ s u s p e n d can return is determined
purely by the implementation. A concurrent t h r _ c o n t i n u e of the same thread
may be lost or may take effect depending on the timing.

If target_thread is already suspended, t h r _ s u s p e n d has no effect.

A thread may suspend itself.

t h r _ c o n t i n u e will resume the execution of target_thread.

Return Values
t h r _ s u s p e n d returns zero for success and an error number for failure, as described
below.

Errors
If any of the following conditions occurs, t h r _ s u s p e n d returns the corresponding
value:

E S R C H target_thread cannot be found in the current process

USAGE
We don’t recommend using t h r _ s u s p e n d and t h r _ c o n t i n u e to synchronize
threads. Use synchronization routines instead.

SEE ALSO
t h r _ c o n t i n u e(MT_LIB), t h r _ c r e a t e(MT_LIB)

LEVEL
Level 1

Page 1

FINAL COPY
June 15, 1995

File: mt_lib/thr_suspend
svid

Page: 129

thr_yield (MT_LIB) thr_yield (MT_LIB)

NAME
t h r _ y i e l d – yield the processor

SYNOPSIS
i n c l u d e < t h r e a d . h >

v o i d t h r _ y i e l d (v o i d) ;

DESCRIPTION
t h r _ y i e l d () causes the calling thread to stop executing to allow another eligible
thread (if any) to run. The calling thread will remain in a runnable state.

The criteria for choosing a thread to run after the calling thread has yielded are not
specified. It is possible for the calling thread to be rescheduled immediately, even if
other runnable threads exist.

This function should be viewed as a hint from the caller to the system, indicating
that the caller has reached a point at which it is convenient to yield the processor to
other threads.

Security Restrictions
t h r _ y i e l d requires no special permissions or privilege.

Return Values
None

Errors
None.

USAGE
t h r _ y i e l d () is used by multithreaded applications which need to control their
scheduling.

SEE ALSO
p r i o c n t l(KE_OS), t h r _ g e t s c h e d u l e r(MT_LIB), t h r _ g e t p r i o(MT_LIB),
t h r _ s e t p r i o(MT_LIB), t h r _ s e t s c h e d u l e r(MT_LIB)

LEVEL
Level 1

Page 1

FINAL COPY
June 15, 1995

File: mt_lib/thr_yield
svid

Page: 130

t t y n a m e, i s a t t y – find name of a terminal
i n c l u d e < s t d l i b . h >

c h a r ∗t t y n a m e (i n t fildes) ;

i n t i s a t t y (i n t fildes) ;
t t y n a m e returns a pointer to a string containing the null-terminated path name of
the terminal device associated with file descriptor fildes . i s a t t y returns 1 if fildes
is associated with a terminal device, 0 otherwise.

1

