
System V Interface Definition,
Fourth Edition
Volume 1

FINAL COPY
June 15, 1995

File:

Page: 2

Copyright 1983, 1984, 1985, 1986,1987, 1988, 1995 Novell, Inc.
All Rights Reserved. No part of this publication may be reproduced, photocopied, stored
on a retrieval system, or transmitted without the express written consent of the publisher.

Novell, Inc.
122 East 1700 South
Provo, UT 84606
U.S.A.

IMPORTANT NOTE TO USERS

While every effort has been made to ensure the accuracy of all information in this document,
Novell assumes no liability to any party for any loss of damage caused by errors or omissions or
by statements of any kind in the System V Interface Definition, its updates, supplements, or
special editions, whether such errors are omissions or statements resulting from negligence,
accident, or any other cause. Novell further assumes no liability arising out of the application or
use of any product or system described herein; nor any liability for incidental or consequential
damages arising from the use of this document. Novell disclaims all warranties regarding the
information contained herein, whether expressed, implied or statutory, including implied
warranties of merchantability or fitness for a particular purpose.

Novell makes no representation that the interconnection of products in the manner described
herein will not infringe on existing or future patent rights, nor do the descriptions contained
herein imply the granting or license to make, use or sell equipment constructed in accordance
with this description.

Novell reserves the right to make changes without further notice to any products herein to
improve reliability, function, or design.

TRADEMARKS

Ann Arbor is a trademark of Ann Arbor Terminals, Inc.
Beehive is a trademark of Beehive International.
Concept is a trademark of Human Designed Systems, Inc.
HP is a trademark of Hewlett–Packard Co.
LSI is a trademark of Lear Siegler, Inc.
Micro–Term, ACT and MIME are trademarks of Micro–Term, Inc.
OSF/Motif is a trademark of the Open Software Foundation
PostScript is a trademark of Adobe Systems.
Tektronix and Tektronix 4010 are registered trademarks of Tektronix, Inc.
TeleVideo is a registered trademark of TeleVideo Systems, Inc.
Teleray is a trademark of Research, Inc.
Teletype is a registered trademark of AT&T.
The X Window System is a trademark of MIT.
UNIX is a registered trademark in the USA and other countries, licensed
exclusively through X/Open Company, Ltd.
VT100 is a trademark of Digital Equipment Corporation.
X/Open is a trademark of X/Open Company Limited.

1

FINAL COPY
June 15, 1995

File:

Page: 4

Volume 1 Table of Contents

Preface

1 GENERAL INTRODUCTION

2 BASE SYSTEM INTRODUCTION

3 BASE SYSTEM DEFINITIONS

4 BASE SYSTEM ENVIRONMENT ROUTINES

5 BASE OS SERVICE ROUTINES

6 BASE OS LIBRARY ROUTINES

7 BASE SYSTEM DEVICES INTRODUCTION

Table of Contents i

FINAL COPY
June 15, 1995

File: MasterToc
svid

Page: 5

8 BASE SYSTEM DEVICES

9 KERNEL EXTENSION INTRODUCTION

10 KERNEL EXTENSION ENVIRONMENT
ROUTINES

11 KERNEL EXTENSION OS SERVICE
ROUTINES

12 MULTITHREADING EXTENSION
INTRODUCTION

13 MULTITHREADING EXTENSION OS
SERVICE ROUTINES

14 MULTITHREADING EXTENSION LIBRARY
ROUTINES

ii Volume 1 Table of Contents

FINAL COPY
June 15, 1995

File: MasterToc
svid

Page: 6

PREFACE

The System V Interface Definition (SVID) specifies an operating system environment
that allows users to create applications software that is independent of any partic-
ular computer hardware. The System V Interface Definition applies to computers
that range from personal computers to mainframes. Applications that conform to
this specification will allow users to take advantage of changes in technology and
to choose the computer that best meets their needs from among many manufactur-
ers while retaining a common computing environment.

The System V Interface Definition specifies the operating system components avail-
able to both end-users and application programs. It defines the functionality of
components, but not the implementation. The System V Interface Definition
specifies the source code interfaces of each operating system component, as well
as the run-time behavior seen by an application program or an end-user. The
emphasis is on defining a common computing environment for application pro-
grams and end-users, not on the internals of the operating system, such as the
scheduler or memory manager.

An application program using only components defined in the System V Interface
Definition will be compatible with, and portable to, any computer that supports the
System V Interface. While the source code may have to be re-compiled to move an
application program to a new computer system that supports the System V Inter-
face, the presence and behavior of the operating system components as defined by
the System V Interface Definition would be assured.

The System V Interface Definition is organized into a Base System Definition plus a
series of Extension Definitions. The Base System Definition specifies the com-
ponents that all System V operating systems must provide. The Extensions to the
Base System are not required to be present in a System V operating system, but
when a component is present, it must conform to the specified functionality. The
System V Interface Definition allows end-users and application developers to iden-
tify the features and functions available to them on any System V operating sys-
tem.

The System V Interface Definition is compliant with POSIX 1003.1-1990 Full Use
Standard, X3.159-1992 (ANSI C), ISO/IEC 9899-1992 (ISO C), X/Open Portability
Guide Isse 4 (XPG4) System Interfaces and Headers (XSH4), and will continue to
evolve towards compliance with other industry standards as they are approved.

PREFACE 1

FINAL COPY
June 15, 1995
File: preface

svid

Page: 7

FINAL COPY
June 15, 1995

File:

Page: 8

General Introduction

Audience and Purpose

The System V Interface Definition (SVID) is intended for use by anyone who must
understand the operating system components that are consistent across all System
V environments. As such, its primary audience is the application developer who
is building C language application programs having source code that must be
portable from one System V environment to another. A system builder should
also view these volumes as necessary tools for supporting a System V environ-
ment that will host such applications.

This publication is intended to fulfill the following major purposes:

To serve as a single reference source for the definition of the external inter-
faces to services that are provided by all System V environments. These ser-
vices are designated as the Base System. This includes source-code inter-
faces and run-time behavior as seen by an application program. It does not
include the details of how the operating system implements these functions.

To define all additional services (such as graphics, networking and data
management) at an equivalent external interface level and to group these
services into Extensions to the Base System.

To serve as a complete definition of System V external interfaces, so that
application source code that conforms to these interfaces and is compiled in
an environment that conforms to these interfaces, will execute as defined in
a System V environment. It is assumed that source code is recompiled for
the proper target hardware. The basic objective of this document is to facili-
tate the writing of application program source code that is directly portable
across all System V implementations. Facilities outside the Base System
would require installation of the appropriate Extension on the target
environment.

General Introduction 1-1

FINAL COPY
June 15, 1995
File: intro.svid

svid

Page: 9

Structure and Content

Partitioning into Base System and Extensions

The System V Interface Definition partitions System V components into a Base Sys-
tem and the Extensions to that Base System. This does not change the definition of
System V. Instead, the approach recognizes that the entire functionality of System
V may be unnecessary in certain environments, especially on small hardware
configurations. It also recognizes that different computing environments require
some functions that others do not.

The Base System functionality has been structured to provide a minimal, stand-
alone run-time environment for application programs originally written in a
high-level language, such as C. In this environment, the end-user is not expected
to interact directly with the traditional System V shell and commands. An exam-
ple of such a system would be a dedicated-use system, that is, one devoted to a
single application, such as a vertically integrated application package for manag-
ing a legal office. To execute, many applications programs require only the com-
ponents in the Base System; other applications require one or more Extensions.

The Extensions to this Base System have been structured to provide a growth
path, in natural functional increments, that leads to a full System V configuration,
and to provide a mechanism for the introduction of new technology. The division
between the Base System and the Extensions allows system builders to create
machines, tailored for different purposes and markets, in an orderly fashion.
Thus, a small business/professional computer system designed for novice single-
users might include only the Base System and the Basic Utilities Extension. A sys-
tem for advanced business/professional users might add the Advanced Utilities
Extension to this. A system designed for high-level language software develop-
ment would include the Base System, the Kernel Extension, and the Basic Utilities,
Advanced Utilities, and Software Development Extensions. Although the Exten-
sions are not meant to specify the physical packaging of System V for a particular
product, it is expected that the Extensions will lead to a fairly consistent packaging
scheme.

This partitioning allows an application to be built using a basic set of components
that are consistent across all System V implementations. This basic set is the Base
System. Where necessary, an application developer can choose to use components
from an Extension and require the run-time environment to support that Exten-
sion in addition to the Base System.

Facilities or side effects that are not explicitly stated in the SVID are not
guaranteed, and should not be used by applications that require portability.

1-2 GENERAL INTRODUCTION

FINAL COPY
June 15, 1995
File: intro.svid

svid

Page: 10

Conforming Systems

All conforming systems must support the source-code interfaces and runtime
behavior of all the components of the Base System. A system may conform to
none or some Extensions. All the components of an Extension must be present for
a system to meet the requirements of the Extension. This does not preclude a sys-
tem from including only a few components from some Extension, but the system
would not then be said to have the Extension. Some Extensions require that other
Extensions be present on a system. For example, the Advanced Utilities Extension
requires the Basic Utilities Extension. In rare instances particular routines are
explicitly marked in the SVID as optional and may not be present on all conform-
ing systems.

An implementation of System V may conform to earlier issues of the SVID.

Organization of Technical Information

SVID, Fourth Edition (SVID 4) is composed of Volumes 1 through 4. The volumes
are organized as follows:

Volume 1 Base System
Kernel Extension
Multithreading Extension

Volume 2 Basic Utilities Extension
Advanced Utilities Extension
Administered Systems Extension

Volume 3 Programming Language Specification
Software Development Extension
Terminal Interface Extension
Real Time and Memory Management Extension
Remote Services Extension
Window System Extension
Enhanced Security Extension
Auditing Extension
Remote Administration Extension

The SVID defines the source-code interface and the run-time behavior of the com-
ponents that constitute the Base System and each Extension. Components include,
for example, operating system service routines, general library routines, system
data files, special device files, and end-user utilities (commands).

When referred to individually, components are identified by a suffix of the form
(XX_YYY) where XX identifies the Base System or the Extension containing the
component and YYY identifies the type of the component. For example, com-
ponents defined in the Operating System Service Routines section of the Base Sys-
tem are identified by (BA_OS), components defined in General Library Routines

General Introduction 1-3

FINAL COPY
June 15, 1995
File: intro.svid

svid

Page: 11

of the Base System are identified by (BA_LIB), and components defined in the
Operating System Service Routines section of the Kernel Extension are identified
by (KE_OS).

The definition of the Base System includes an introduction, followed by chapters
that provide detailed definitions of each component in the Base System. Similarly,
the definition of each Extension includes an introduction, followed by chapters
that provide detailed definitions of each component in the Extension.

Pages containing the detailed component definitions are labeled with the name of
the component being defined. Some utilities and routines are described with
other related utilities or routines and, therefore, do not have detailed definition
pages of their own.

Each component definition follows the same structure. The sections are listed
below; not all the following sections may be present in each description. Sections
entitled EXAMPLE and USAGE are not considered part of the formal definition of
a component.

NAME — name of component

SYNOPSIS — summary of source code or user-level interface

DESCRIPTION — interface and run-time behavior

RETURN VALUE — value returned by the function

ERRORS — possible error conditions

FILES — names of files used

USAGE — guidance on use

EXAMPLE — example

SEE ALSO — list of related components

Future Directions — planned enhancements

LEVEL — see Mechanism For Evolution below

In general, components that are utilities do not have a RETURN VALUE section.
Except as noted in the detailed definition for a particular utility, utilities return a
zero exit code for success, and non-zero for failure.

The component definitions are similar in format to AT&T System V manual pages,
but have been extended or modified as follows:

Function prototype format has been used as the presentation format in the
SYNOPSIS for SVID 4. The consistent use of function prototypes is
intended to provide an easy to use interface to users of the SVID and is not
required for conformance.

1-4 GENERAL INTRODUCTION

FINAL COPY
June 15, 1995
File: intro.svid

svid

Page: 12

All machine-specific information has been removed. All implementation-
specific constants have been replaced by symbolic names, which are defined
in a separate section. The symbolic names correspond to those defined by
the the IEEE 1003.1-1990 Standard to be in a < l i m i t s . h > header file; how-
ever, in this document, they are not meant to be read as symbolic constants
defined in header files. For maximum portability, applications should not
depend upon any particular behavior that is implementation-defined.

A section entitled USAGE has been added to guide application developers
in the expected or recommended usage of certain components. Operating
system services and library routines are used only by programs, but utilities
may be used by programs, end-users or administrators. The USAGE para-
graph indicates which of these three is appropriate for a particular utility
(this is not meant to be prescriptive, but rather to give guidance). The fol-
lowing terms are used in the USAGE paragraph: application program, end-
user, administrator, or general. The term general indicates that the utility may
be used by all three: application programs, end-users and administrators.

A section entitled Future Directions has been added to selected component
definitions. This section indicates the way in which a component will
evolve. The information ranges from specific changes in functionality to
more general indications of proposed development.

A section entitled LEVEL defines the commitment level of each component.

Level 1 components will remain in the SVID and can be modified only in
upwardly compatible ways. Any change in the definition of the component
will preserve the previous source-code interface and run-time behavior to
ensure that the component remains upwardly compatible. A Level 1 com-
ponent may however contain some features that are defined as Level 2. This
occurs in cases in which a portion of a component is evolving in a non-
upwardly compatible way, but the basic functionality of the component
remains unchanged.

Level 2 components will remain unchanged for at least three years follow-
ing entry into Level 2, after which time the component may be modified in a
non-upwardly compatible way or may be dropped from the SVID. This
mechanism also applies to Level 2 portions of a Level 1 component. Level 2
components are labeled with the starting date of this three-year period.

General Introduction 1-5

FINAL COPY
June 15, 1995
File: intro.svid

svid

Page: 13

Mechanism For Evolution

The SVID will be reissued as necessary to reflect developments in the System V
Interface. In conjunction with these updates, the following changes may be made
to the definitions:

Level 1 components may be moved to Level 2. The date of their entry into
Level 2 will be the date of the reissue of the SVID in which the change is
made.

In cases in which a published Industry Standard has specified behavior that
is not upwardly compatible with the behavior documented in the SVID for a
Level 1 component, the component will change to reflect the behavior
specified by the standard. Wherever possible both the behavior defined by
the Industry Standard and the behavior documented in the SVID will be
supported. The behavior documented in the SVID will be preserved for the
Level 2 migration period.

Components may move from existing Extensions into the Base System.
Components will not move from the Base System into an Extension.

New Extensions may be introduced with completely new functionality.

Notification of changes to SVID components may be done as required to
facilitate conformance to industry standards. This will allow customers a
more orderly migration to the standard.

Evolution Toward Industry Standards

Novell is committed to compliance with standards published by IEEE, ANSI, ISO,
X/Open and other major standards bodies. Where conformance to an industry
standard causes an incompatibility with SVID, the incompatible component, or the
incompatible feature of the component will move to Level 2 (see Mechanism For
Evolution). The Future Directions section for the affected component will
describe how the component will change in the future. In this case, compliance to
the current SVID behavior or the new industry standard behavior will satisfy
SVID compliance. The incompatible component, or component feature will be
indicated by a (‡).

C Language Definition

Source code interfaces described in the SVID are for the C language.

1-6 GENERAL INTRODUCTION

FINAL COPY
June 15, 1995
File: intro.svid

svid

Page: 14

Major Features

The content changes in the SVID, 4th Edition, reflect the major feature changes in
UNIX System V, namely:

Multiprocessing

Dynamically Loadable Modules (DLM)

Internationalization Enhancements and Standards conformance

– conformance to the ISO C Multibyte Support Extensions,

– conformance to XPG4 Systems Interfaces, Headers, and Compila-
tion System components,

– conformance to portions of the NCEG extension to the m a t h and
systems libraries,

– more extensive POSIX .2 functionality,

– support for the XPG4 Transport Interface Specification.

Graphics

Future Directions

The following describes some areas in the SVID where changes or evolution are
expected. Refer also to the Future Directions sections that appear in the SVID
manual page descriptions.

Internationalization

The SVID, 4th Edition, reflects the support provided in UNIX System V, in sup-
port of the ISO C Multibyte Support Extension (I S O C M S E) for wide-character
and multibyte-character handling; as well provision of the XPG4 Worldwide Por-
tability Interfaces, required for XPG4 conformance. As in earlier releases, more
System V commands have been modified to use internationalized messaging and
localization facilities.

In the future, support for the POSIX 1003.2 enhanced regular expression handling
will be provided,as well as further internationalization of commands and utilities.

General Introduction 1-7

FINAL COPY
June 15, 1995
File: intro.svid

svid

Page: 15

Pthreads

POSIX 1003.1c Threads ("P t h r e a d s) are not yet finalized. In the SVID, 4th Edition,
UNIX System V threads are represented. UNIX System V threads interfaces offer
greater functionality than P t h r e a d s provides, and will thus fill application needs
for a considerable period of time after the initial standardization of P t h r e a d s.

The UNIX System V threads will be given the fullest support for compatibility and
migration standard that is granted to other Level 1 interfaces in the SVID. The
future evolution of these interfaces, where known, will be noted in the appropriate
sections of the SVID 4th Edition.

Real Time

Novell is committed to support the standardization of a Real Time interface as
defined by POSIX. Full conformance to this standard will be considered in the
future.

Security

Novell is working in conjunction with the POSIX P1003.6 security working group
in developing an IEEE security standard. Full conformance to the IEEE standard
will be strongly considered after its formal approval.

Asynchronous I/O

This version of the SVID includes the asynchronous I/O interfaces that are in full
conformance to the POSIX 1003.1c interfaces.

DCE

DCE and Systems Management functionality may be included in the SVID in the
future.

1-8 GENERAL INTRODUCTION

FINAL COPY
June 15, 1995
File: intro.svid

svid

Page: 16

Base System Introduction

The Base System supports a minimal run-time environment for executable appli-
cations. The Base System defines a basic set of System V components needed by
applications programs. This basic set would be supported by any conforming sys-
tem. It defines each component’s source-code interface and run-time behavior,
but does not specify its implementation. Source code interfaces described are for
the C language. While only the run-time behavior of these components is sup-
ported by the Base System, the source-code interfaces to these components are
defined because an objective of the SVID is to facilitate application program
source-code portability across all System V implementations. It is assumed that an
application program targeted to run on a system that provides only the Base Sys-
tem (a run-time environment) would be compiled on a system supporting software
development.

No end-user level utilities (commands) are defined in the Base System. Executable
application programs designed for maximum portability are expected to use
library routines rather than System V end-user level utilities. For example, an
application program written in C would use the c h m o d () routine to change the
owner of a file rather than using the c h m o d user-level utility. This does not say
that an application program running in a target environment that supports only
the Base System cannot execute another program. Using the s y s t e m routine, an
application can execute another program or application.

It should be noted that some Extensions may add features to components defined
in the Base System. Additional features that are supported in an extended
environment are described with the Extension in a section titled
e f f e c t s (XX_ E N V). [See, for example, e f f e c t s (K E _ E N V).]

OS Service Routines

The Base OS Service routines provide access to and control over system resources
such as memory, files and process execution. Some System V routines that pro-
vide operating system services are not supported by the Base System. An
application-program that uses any of these would require an extended environ-
ment. [See, for example, the Kernel Extension Definition.]

There are three groups of Base OS Service Routines (listed below), which reflect
recommended usage by application programs.

Base System Introduction 2-1

FINAL COPY
June 15, 1995
File: ba_int.txt

svid

Page: 17

Group 1 should fulfill the needs of most application programs.

Group 2 should be used by application programs only when some special need
requires it. For example, application programs, when possible, should use the
routine s y s t e m () rather than the routines f o r k () and exec because it is easier to
use and supplies more functionality. The corresponding Standard Input/Output,
stdio routines [see "stdio routines" in the Base System Definitions chapter] should be
used instead of the routines c l o s e (), c r e a t (), l s e e k (), o p e n (), r e a d () and
w r i t e () (for example, the stdio routine f o p e n () should be used rather than the
routine o p e n ()).

Group 3 routines, although defined as part of the basic set of routines supported
by any System V operating system, are not expected to be used by application pro-
grams. These routines are used by other components of the Base System.

The following OS service routines are supported by a SVID-compliant Base sys-
tem. Items marked with a star (*) are Level 2, as defined in the General Introduction
to this volume. Items marked with a dagger (†) are new to this issue of the SVID.

Base OS Service Routines (group 1)

a b o r t f c h o w n g e t c o n t e x t m a l l o c r e w i n d d i r
a c c e s s f c l o s e g e t c w d m a l l o p t * r m d i r
a d j t i m e * f c n t l g e t e g i d m k d i r s e e k d i r
a l a r m f d o p e n g e t e u i d m k f i f o s e t c o n t e x t
a t e x i t f e o f g e t g i d m k n o d s e t g i d
c a l l o c f e r r o r g e t g r o u p s o p e n d i r s e t g r o u p s
c f g e t i s p e e d f f l u s h g e t m s g p a t h c o n f s e t l o c a l e
c f g e t o s p e e d f g e t p o s g e t p g i d p a u s e s e t p g i d
c f s e t i s p e e d f i l e n o g e t p g r p p c l o s e s e t r l i m i t
c f s e t o s p e e d f i l e p r i v g e t p i d p i p e s e t s i d
c h d i r f o p e n g e t p m s g p o l l s e t u i d
c h m o d f p a t h c o n f g e t p p i d p o p e n s i g a c t i o n
c h o w n f r e a d g e t r l i m i t p r o c p r i v s i g a d d s e t
c l e a r e r r f r e e g e t s i d p u t m s g s i g a l t s t a c k
c l o s e d i r f r e o p e n g e t u i d p u t p m s g s i g d e l s e t
c o n f s t r † f s e e k i o c t l r a i s e s i g e m p t y s e t
c u s e r i d f s e t p o s k i l l r e a d d i r s i g f i l l s e t
d u p f s t a t l c h o w n r e a d l i n k s i g i s m e m b e r
d u p 2 f s t a t v f s l i n k r e a l l o c s i g n a l
e x i t f s y n c l o c k f r e m o v e s i g p e n d i n g
f c h d i r f t e l l l s t a t r e n a m e s i g p r o c m a s k
f c h m o d f w r i t e m a l l i n f o * r e w i n d s i g s e n d

2-2 BASE SYSTEM INTRODUCTION

FINAL COPY
June 15, 1995
File: ba_int.txt

svid

Page: 18

Base OS Service Routines (group 1)

s i g s e n d s e t s t i m e t c f l u s h t c s e t p g r p u n a m e
s i g s u s p e n d s y m l i n k t c g e t a t t r t e l l d i r u n l i n k
s i g w a i t † s y s c o n f t c g e t p g r p t i m e u t i m e
s l e e p s y s t e m t c g e t s i d t i m e s w a i t
s t a t t c d r a i n t c s e n d b r e a k u l i m i t w a i t i d
s t a t v f s t c f l o w t c s e t a t t r u m a s k w a i t p i d

Base OS Service Routines (group 2)

c l o s e d l s y m † e x e c v l s e e k r e a d v
c r e a t e x e c l e x e c v e m o u n t u m o u n t
d l c l o s e † e x e c l e e x e c v p o p e n w r i t e
d l e r r o r † e x e c l p f o r k r e a d w r i t e v
d l o p e n †

Base OS Service Routines (group 3)

_ e x i t s y n c

Base System Introduction 2-3

FINAL COPY
June 15, 1995
File: ba_int.txt

svid

Page: 19

Library Routines

The Base System library routines perform a wide range of useful tasks, including

mathematical functions

string and character handling, including XPG4 Worldwide Portability Inter-
faces and functions in the ISO C Multibyte Support Extension (MSE).

networking functions

general library functions (including I/O, searching and sorting routines)

The run-time behavior of these routines, as defined in the SVID, must be supported
by any System V operating system. The libraries themselves are not required to
be present on a system that consists only of the Base System. While the Base Sys-
tem is required to support the execution of application programs that use these
routines, the Software Development Extension is required to support the compila-
tion of those application programs.

The following routines are supported by the Base System (exception: items marked
with a sharp (#) are optional and may not be present on all conforming systems).
Items marked with a star (*) are Level 2, as defined in the General Introduction to
this volume. Items marked with a dagger (†) are new to this issue of the SVID.

Mathematical Functions

a b s c e i l f m o d l d i v s c a l b
a c o s c o s f r e x p l g a m m a s i n
a c o s h c o s h g a m m a * l o g s i n h
a s i n d i v h y p o t l o g 1 0 s q r t
a s i n h e r f j 0 l o g b t a n
a t a n e r f c j 1 m o d f t a n h
a t a n 2 e x p j n n e x t a f t e r y 0
a t a n h f a b s l a b s p o w y n
c b r t f l o o r l d e x p r e m a i n d e r

2-4 BASE SYSTEM INTRODUCTION

FINAL COPY
June 15, 1995
File: ba_int.txt

svid

Page: 20

String and Character Handling

_ t o l o w e r i s g r a p h m e m c h r s t r s t r w c s c m p †
_ t o u p p e r i s l o w e r m e m c m p s t r t o d w c s c o l l †
a d v a n c e * i s n a n m e m c p y s t r t o f † w c s c p y †
a s c t i m e i s p r i n t m e m m o v e s t r t o k w c s c s p n †
a t o f i s p u n c t m e m s e t s t r t o l w c s f t i m e †
a t o i i s s p a c e m k t i m e s t r t o l d † w c s l e n †
a t o l i s u p p e r p u t w c † s t r t o u l w c s n c a t †
c o m p i l e * i s w a l n u m † p u t w c h a r † s t r x f r m w c s n c m p †
c r y p t# i s w a l p h a † s e t k e y# s w p r i n t f † w c s n c p y †
c t i m e i s w c n t r l † s n p r i n t f † s w s c a n f † w c s p b r k †
d i f f t i m e i s w c t y p e † s t e p * t o a s c i i w c s r c h r †
e n c r y p t# i s w d i g i t † s t r c a t t o l o w e r w c s r t o m b s †
f g e t w c † i s w g r a p h † s t r c h r t o u p p e r w c s s p n †
f g e t w s † i s w l o w e r † s t r c m p t o w l o w e r † w c s s t r †
f p u t w c † i s w p r i n t † s t r c o l l t o w u p p e r † w c s t o d †
f p u t w s † i s w p u n c t † s t r c p y t z s e t w c s t o f †
f t o k * i s w s p a c e † s t r c s p n u n g e t w c † w c s t o k †
f w p r i n t f † i s w u p p e r † s t r d u p v f s c a n f † w c s t o l d †
f w s c a n f † i s w x d i g i t † s t r e r r o r v f w p r i n t f † w c s t o m b s
g e t w c † i s x d i g i t s t r f m o n † v f w s c a n f † w c s t o u l †
g e t w c h a r † l o c a l e c o n v s t r f t i m e v s c a n f † w c s w c s * †
g m t i m e l o c a l t i m e s t r l e n v s n p r i n t f † w c s w i d t h †
i c o n v _ c l o s e † m b l e n s t r l i s t † v s s c a n f † w c s x f r m †
i c o n v _ o p e n † m b r l e n † s t r n c a t v s w p r i n t f † w c t o b †
i s a l n u m m b r t o w c † s t r n c m p v s w s c a n f † w c t o m b
i s a l p h a m b s i n i t † s t r n c p y v w p r i n t f † w c t y p e †
i s a s c i i m b s r t o w c s † s t r p b r k v w s c a n f † w c w i d t h †
i s a t t y m b s t o w c s s t r p t i m e † w c r t o m b † w p r i n t f †
i s c n t r l m b t o w c s t r r c h r w c s c a t † w s c a n f †
i s d i g i t m e m c c p y s t r s p n w c s c h r †

Networking Functions

g e t _ t _ e r r n o † t _ c o n n e c t t _ l i s t e n t _ r c v d i s t _ s n d r e l
s e t _ t _ e r r n o † t _ e r r o r t _ l o o k t _ r c v r e l t _ s n d u d a t a
t _ a c c e p t t _ f r e e t _ o p e n t _ r c v u d a t a t _ s t r e r r o r †
t _ a l l o c t _ g e t i n f o t _ o p t m g m t t _ r c v u d e r r t _ s y n c
t _ b i n d t _ g e t p r o t a d d r † t _ r c v t _ s n d t _ u n b i n d
t _ c l o s e t _ g e t s t a t e t _ r c v c o n n e c t t _ s n d d i s

Base System Introduction 2-5

FINAL COPY
June 15, 1995
File: ba_int.txt

svid

Page: 21

General Library Functions

a d d s e v * f s c a n f h d e s t r o y p u t e n v s r a n d *
a s s e r t f t o k * h s e a r c h p u t s s s c a n f
b s e a r c h f t w i n i t g r o u p s p u t w s t d i o
c a t c l o s e g e t c j r a n d 4 8 * q s o r t s w a b
c a t g e t s g e t c h a r l c o n g 4 8 * r a n d s w a p c o n t e x t
c a t o p e n g e t d a t e * l f i n d r e g c o m p † t d e l e t e
c l o c k g e t e n v l f m t * r e g e r r o r † t e m p n a m
c t e r m i d g e t g r e n t l o n g j m p r e g e x e c † t f i n d
d r a n d 4 8 * g e t g r g i d l r a n d 4 8 * r e g f r e e † t m p f i l e
e n d g r e n t g e t g r n a m l s e a r c h s c a n f t m p n a m
e n d p w e n t g e t l o g i n m a k e c o n t e x t s e e d 4 8 * t s e a r c h
e r a n d 4 8 * g e t o p t m k t e m p s e t b u f t t y n a m e
f a t t a c h g e t p w e n t m r a n d 4 8 * s e t c a t * t w a l k
f d e t a c h g e t p w n a m n f t w s e t g r e n t u n g e t c
f g e t c g e t p w u i d n l _ l a n g i n f o s e t j m p u n l o c k p t
f g e t g r e n t g e t s n r a n d 4 8 * s e t l a b e l * v f p r i n t f †
f g e t p w e n t g e t s u b o p t p e r r o r * s e t p w e n t v l f m t *
f g e t s g e t t x t p f m t * s e t v b u f v p f m t *
f m t m s g * g e t w p r i n t f s i g l o n g j m p v p r i n t f
f n m a t c h † g l o b † p r o c p r i v l s i g s e t j m p v s p r i n t f
f p r i n t f g l o b f r e e † p t s n a m e s p r i n t f w o r d e x p †
f p u t c g r a n t p t p u t c s r a n d 4 8 * w o r d f r e e †
f p u t s h c r e a t e p u t c h a r

Organization of Technical Information

The ‘‘Base OS Service Routines’’ chapter provides manual page descriptions of
operating system service routines supported by this extension.

The ‘‘Base OS Library Routines’’ chapter provides manual page descriptions of
general purpose library routines supported by this extension.

2-6 BASE SYSTEM INTRODUCTION

FINAL COPY
June 15, 1995
File: ba_int.txt

svid

Page: 22

Base System Definitions

Active Transport User

A transport user that initiates a transport connection.

Appropriate Privileges

An implementation-defined means of associating privileges with a process with
regard to functions that need special privileges. There may be zero or more such
means.

ASCII Character Set

Maps of the ASCII character set, giving octal and hexadecimal equivalents of each
character, appear below. Although the ASCII code does not use the eighth-bit in
an octet, this bit must not be used for other purposes because codes for other
languages may need to use it (see the section on Internationalization in the General
Introduction to this volume.)

Octal map of ASCII character set.

0 0 0 n u l 0 0 1 s o h 0 0 2 s t x 0 0 3 e t x 0 0 4 e o t 0 0 5 e n q 0 0 6 a c k 0 0 7 b e l
0 1 0 b s 0 1 1 h t 0 1 2 n l 0 1 3 v t 0 1 4 n p 0 1 5 c r 0 1 6 s o 0 1 7 s i
0 2 0 d l e 0 2 1 d c 1 0 2 2 d c 2 0 2 3 d c 3 0 2 4 d c 4 0 2 5 n a k 0 2 6 s y n 0 2 7 e t b
0 3 0 c a n 0 3 1 e m 0 3 2 s u b 0 3 3 e s c 0 3 4 f s 0 3 5 g s 0 3 6 r s 0 3 7 u s
0 4 0 s p 0 4 1 ! 0 4 2 " 0 4 3 # 0 4 4 $ 0 4 5 % 0 4 6 & 0 4 7 ’
0 5 0 (0 5 1) 0 5 2 * 0 5 3 + 0 5 4 , 0 5 5 – 0 5 6 . 0 5 7 /
0 6 0 0 0 6 1 1 0 6 2 2 0 6 3 3 0 6 4 4 0 6 5 5 0 6 6 6 0 6 7 7
0 7 0 8 0 7 1 9 0 7 2 : 0 7 3 ; 0 7 4 < 0 7 5 = 0 7 6 > 0 7 7 ?
1 0 0 @ 1 0 1 A 1 0 2 B 1 0 3 C 1 0 4 D 1 0 5 E 1 0 6 F 1 0 7 G
1 1 0 H 1 1 1 I 1 1 2 J 1 1 3 K 1 1 4 L 1 1 5 M 1 1 6 N 1 1 7 O
1 2 0 P 1 2 1 Q 1 2 2 R 1 2 3 S 1 2 4 T 1 2 5 U 1 2 6 V 1 2 7 W
1 3 0 X 1 3 1 Y 1 3 2 Z 1 3 3 [1 3 4 \ 1 3 5] 1 3 6 ̂ 1 3 7 _
1 4 0 ‘ 1 4 1 a 1 4 2 b 1 4 3 c 1 4 4 d 1 4 5 e 1 4 6 f 1 4 7 g
1 5 0 h 1 5 1 i 1 5 2 j 1 5 3 k 1 5 4 l 1 5 5 m 1 5 6 n 1 5 7 o
1 6 0 p 1 6 1 q 1 6 2 r 1 6 3 s 1 6 4 t 1 6 5 u 1 6 6 v 1 6 7 w

Base System Definitions 3-1

FINAL COPY
June 15, 1995
File: ba_def.txt

svid

Page: 23

1 7 0 x 1 7 1 y 1 7 2 z 1 7 3 { 1 7 4 | 1 7 5 } 1 7 6 ̃ 1 7 7 d e l

3-2 BASE SYSTEM DEFINITIONS

FINAL COPY
June 15, 1995
File: ba_def.txt

svid

Page: 24

Hexadecimal map of ASCII character set.

0 0 n u l 0 1 s o h 0 2 s t x 0 3 e t x 0 4 e o t 0 5 e n q 0 6 a c k 0 7 b e l
0 8 b s 0 9 h t 0 a n l 0 b v t 0 c n p 0 d c r 0 e s o 0 f s i
1 0 d l e 1 1 d c 1 1 2 d c 2 1 3 d c 3 1 4 d c 4 1 5 n a k 1 6 s y n 1 7 e t b
1 8 c a n 1 9 e m 1 a s u b 1 b e s c 1 c f s 1 d g s 1 e r s 1 f u s
2 0 s p 2 1 ! 2 2 " 2 3 # 2 4 $ 2 5 % 2 6 & 2 7 ’
2 8 (2 9) 2 a * 2 b + 2 c , 2 d – 2 e . 2 f /
3 0 0 3 1 1 3 2 2 3 3 3 3 4 4 3 5 5 3 6 6 3 7 7
3 8 8 3 9 9 3 a : 3 b ; 3 c < 3 d = 3 e > 3 f ?
4 0 @ 4 1 A 4 2 B 4 3 C 4 4 D 4 5 E 4 6 F 4 7 G
4 8 H 4 9 I 4 a J 4 b K 4 c L 4 d M 4 e N 4 f O
5 0 P 5 1 Q 5 2 R 5 3 S 5 4 T 5 5 U 5 6 V 5 7 W
5 8 X 5 9 Y 5 a Z 5 b [5 c \ 5 d] 5 e ̂ 5 f _
6 0 ‘ 6 1 a 6 2 b 6 3 c 6 4 d 6 5 e 6 6 f 6 7 g
6 8 h 6 9 i 6 a j 6 b k 6 c l 6 d m 6 e n 6 f o
7 0 p 7 1 q 7 2 r 7 3 s 7 4 t 7 5 u 7 6 v 7 7 w
7 8 x 7 9 y 7 a z 7 b { 7 c | 7 d } 7 e ̃ 7 f d e l

Asynchronous Execution

The mode of execution in which transport service functions do not wait for
specific events to occur before returning control to the user, but instead return
immediately if the event is not pending.

Background Process Group

A background process group is any process group that is a member of a session
which has established a connection with a controlling terminal that is not in the
foreground process group.

Connection Mode

A connection mode is a mode of transfer in which data is passed from one process
to another over an established connection in a reliable, sequenced fashion. The
connection may also be called a virtual circuit.

Base System Definitions 3-3

FINAL COPY
June 15, 1995
File: ba_def.txt

svid

Page: 25

Connectionless (datagram) Mode

A connectionless (datagram) mode is a mode of transfer in which data is passed
from one process to another in self-contained units (datagrams) with no logical
relationship required among multiple units.

Controlling Process

A controlling process is a session leader that establishes a connection to a control-
ling terminal. Should the terminal subsequently cease to be a controlling terminal
for the session leader’s session, the session leader shall cease to be a controlling
process.

Controlling Terminal

A controlling terminal is a terminal that is associated with one session. Each ses-
sion may have at most one controlling terminal associated with it and vice versa.
Certain input sequences from the controlling terminal cause signals to be sent to
processes associated with the controlling terminal.

Directory

Directories organize files into a hierarchical system where directories are the
nodes in the hierarchy. A directory is a file that catalogues the list of files, includ-
ing directories (sub-directories), that are directly beneath it in the hierarchy.
Entries in a directory file are called links. A link associates a file identifier with a
filename. By convention, a directory contains at least two links, . (dot) and . .
(dot-dot). The link called dot refers to the directory itself while dot-dot refers to
its parent directory. The root directory, which is the top-most node of the hierar-
chy, has itself as its parent directory. The pathname of the root directory is / and
the parent directory of the root directory is /.

3-4 BASE SYSTEM DEFINITIONS

FINAL COPY
June 15, 1995
File: ba_def.txt

svid

Page: 26

Execution-time Symbolic Constants

The following constants may be used by applications at execution time to deter-
mine which optional facilities are present and what actions shall be taken by the
implementation in implementation defined circumstances [see
f p a t h c o n f(BA_OS)].

_POSIX_CHOWN_RESTRICTED If true, and the calling process is not
super-user, the c h o w n function cannot
be used to modify the user ID of a file,
and may only be used to modify the
group of a file to the effective group ID
or one of the supplementary group IDs
of the calling process.

_POSIX_NO_TRUNC If true, pathname components longer
than { N A M E _ M A X } generate an error.

_POSIX_VDISABLE If true, terminal special characters can
be disabled.

Effective User ID and Effective Group ID

An active process has an effective user ID and an effective group ID that are used
to determine file access permissions. The effective user ID and effective group ID
are equal to the process’s real user ID and real group ID respectively, unless the
process, or one of its ancestors, evolved from a file that had the set user ID bit or
set group ID bit set [see e x e c(BA_OS)]. In addition, they can be reset with the
s e t u i d and s e t g i d routines, respectively [see s e t u i d(BA_OS)].

Environmental Variables

When a process begins, an array of strings called the environment is made available
by an exec routine [see s y s t e m(BA_OS)]. By convention, these strings have the
form variable=value, for example, P A T H = : / u s r / s b i n. These environmental vari-
ables provide a way to make information about an end-user’s environment avail-
able to programs [see e n v v a r(BA_ENV)].

Base System Definitions 3-5

FINAL COPY
June 15, 1995
File: ba_def.txt

svid

Page: 27

ETSDU

The Expedited Transport Service Data Unit (ETSDU), is the expedited data
transmitted over a transport connection and whose identity is preserved from one
end of a transport connection to the other (i.e., an expedited message).

File

A file is an object that can be written to, or read from, or both. A file has certain
attributes, including access permissions and type. File types include regular, char-
acter special, block special, FIFO special and directory.

File Access Permissions

Read, write, and execute/search permissions [see c h m o d(BA_OS)] on a file are
granted to a process if one or more of the following are true:

The effective user ID of the process is a user with appropriate permissions
(such as a super-user).

The effective user ID of the process matches the user ID of the owner of the
file and the appropriate access bit of the owner portion of the file mode is set.

The effective user ID of the process does not match the user ID of the owner
of the file and the effective group ID of the process matches the group of the
file and the appropriate access bit of the group portion of the file mode is set.

The effective user ID of the process does not match the user ID of the owner
of the file and the effective group ID of the process does not match the
group ID of the file and the appropriate access bit of the other portion of the
file mode is set.

Otherwise, the corresponding permissions are denied.

File Descriptor

A file descriptor is a non-negative integer used to identify a file for the purposes of
doing I/O. An open file descriptor is obtained (for example) from a call to the
c r e a t, d u p, f c n t l, o p e n, or p i p e routines.

A file descriptor has associated with it information used in performing I/O on the
file: a file pointer that marks the current position within the file where I/O will
begin; file status and access modes (e.g., read, write, read/write) [see
o p e n(BA_OS)]; and close-on-exec flag [see f c n t l(BA_OS)]. Multiple file descrip-
tors may identify the same file. The file descriptor is used as an argument by such

3-6 BASE SYSTEM DEFINITIONS

FINAL COPY
June 15, 1995
File: ba_def.txt

svid

Page: 28

routines as the r e a d, w r i t e, i o c t l, and c l o s e routines.

Filename

Strings consisting of 1 to { N A M E _ M A X } characters may be used to name, for exam-
ple, a regular file, a special file or a directory. { N A M E _ M A X } must be at least 1 4.
These characters may be selected from the set of all character values excluding the
characters "null" and slash (/).

Note that it is generally unwise to use *, $, ?, !, [, or] as part of a filename
because of the special meaning attached to these characters for filename expansion
by the command interpreter [see s y s t e m(BA_OS)]. Other characters to avoid are
the hyphen, blank, tab, <, >, backslash, single and double quotes, grave accent,
vertical bar, circumflex, curly braces, and parentheses. It is also advisable to avoid
the use of non-printing characters in filenames. A filename is sometimes referred
to as a pathname component. The interpretation of a pathname component is
dependent on the values of { N A M E _ M A X } and { _ P O S I X _ N O _ T R U N C } associated with
the path prefix of that component. If any pathname component is longer than
{ N A M E _ M A X } and { _ P O S I X _ N O _ T R U N C } is in effect for the path prefix of that com-
ponent [see f p a t h c o n f(BA_OS)], an error condition exists in that implementation.
Otherwise, the implementation uses the first { N A M E _ M A X } bytes of the pathname
component.

File Times Update

Each file has three associated time values that are updated when file data has been
accessed, file data has been modified, or file status has been changed, respectively.
These values are returned in the file characteristics structure [see s t a t(BA_OS)].

Many functions in this interface definition that read or write file data or change
the file status specify that the appropriate time-related fields are marked for
update. At an update point in time, any marked fields are set to the current time
and the update marks cleared. Two such update points are when the file is no
longer open by any process and when s t a t or f s t a t are performed on the file.
Additional update points are unspecified. Updates are not done for files on read-
only file systems.

Base System Definitions 3-7

FINAL COPY
June 15, 1995
File: ba_def.txt

svid

Page: 29

Foreground Process Group

Each session that has established a connection with a controlling terminal distin-
guishes one process group of the session as the foreground process group of that
controlling terminal. The foreground process group has certain privileges when
accessing its controlling terminal that are denied to background process groups
[see t e r m i o(BA_DEV)].

Foreground Process Group ID

The foreground process group ID is the process group ID of the foreground pro-
cess group.

Group ID

Each system user is a member of at least one group. A group is identified by a
group ID, which is a non-negative integer that can be contained in an object of
type g i d _ t. When the identity of a group is associated with a process, a group ID
value is referred to as a real group ID, an effective group ID, a saved set-group-ID,
or one of the supplementary group IDs. When the identity of a group is associ-
ated with a file, it is used to verify its access by processes. The group ID of a
newly created file is initialized to the effective group ID of the process that created
it unless the set-group-ID flag of the file’s parent directory is set; in that case, it is
initialized to the group ID of the parent directory.

Implementation-specific Symbolic Names

In detailed definitions of components, it is sometimes necessary to refer to sym-
bolic names that are implementation-specific, but which are not necessarily
expected to be accessible to an application program. Many of these symbolic
names describe boundary conditions and system limits.

In the SVID, for readability, these implementation-specific values are given sym-
bolic names. These names always appear enclosed in curly brackets to distinguish
them from symbolic names of other implementation-specific constants that are
accessible to application programs by header files. These names are not neces-
sarily accessible to an application-program through a header file, although they
may be defined in the documentation for a particular system.

3-8 BASE SYSTEM DEFINITIONS

FINAL COPY
June 15, 1995
File: ba_def.txt

svid

Page: 30

In general, a portable application program should not refer to these symbolic
names in its code. For example, an application-program would not be expected to
test the length of an argument list given to an exec routine to determine if it was
greater than { A R G _ M A X }. The following is a list of the implementation-specific
symbolic names that may be used in System V component definitions:

Name Description

{ A R G _ M A X } max. length of argument list to exec

{ C H A R _ B I T } number of bits in a c h a r

{ C H A R _ M A X } max. integer value of a c h a r

{ S C H A R _ M A X } max. integer value of a s i g n e d c h a r

{ U C H A R _ M A X } max. integer value of a u n s i g n e d c h a r

{ C H I L D _ M A X } max. number of processes per user ID

{ C L K _ T C K } number of clock ticks per second

{ F C H R _ M A X } max. size of a file in bytes

{ I N T _ M A X } max. decimal value of an i n t

{ U I N T _ M A X } max. decimal value of an u n s i g n e d i n t

{ L I N K _ M A X } max. number of links to a single file

{ L O C K _ M A X } max. number of entries in system lock table

{ L O N G _ B I T } number of bits in a l o n g

{ L O N G _ M A X } max. decimal value of a l o n g

{ U L O N G _ M A X } max. decimal value of an u n s i g n e d l o n g

{ M A X D O U B L E } max. decimal value of a d o u b l e

{ M A X _ C A N O N } max. number of bytes in a terminal canonical input line

{ M A X _ I N P U T } max. number of bytes required as input

{ M A X _ C H A R } max. size of character input buffer

{ M A X U I D } max. value for a user ID

{ M B _ L E N _ M A X } max. number of bytes in a multibyte character for any sup-
ported locale

{ N A M E _ M A X } max. number of characters in a filename

Base System Definitions 3-9

FINAL COPY
June 15, 1995
File: ba_def.txt

svid

Page: 31

{ N G R O U P S _ M A X } max. number of supplementary group IDs per process

{ F I L E N A M E _ M A X } size needed for an array of c h a r large enough to hold the
longest filename string that can be opened

{ O P E N _ M A X } max. number of files a process can have open

{ F O P E N _ M A X } max. number of files that can be open simultaneously

{ P A S S _ M A X } max. number of significant characters in a password

{ P A T H _ M A X } max. number of characters in a pathname

{ P I D _ M A X } max. value for a process ID

{ P I P E _ B U F } max. number bytes atomic in write to a pipe

{ P R O C _ M A X } max. number of simultaneous processes, system wide

{ S H R T _ M A X } max. decimal value of a s h o r t

{ U S H R T _ M A X } max. decimal value of an u n s i g n e d s h o r t

{ S T D _ B L K } number of bytes in a physical I/O block

{ S Y S _ N M L N } number of characters in string returned by u n a m e

{ S Y S _ O P E N } max. number of files open on system

{ T M P _ M A X } max. number of unique names generated by t m p n a m

{ W O R D _ B I T } number of bits in a w o r d or i n t

{ C H A R _ M I N } min. integer value of a c h a r

{ S C H A R _ M I N } min. integer value of a s i g n e d c h a r

{ I N T _ M I N } min. decimal value of an i n t

{ L O N G _ M I N } min. decimal value of a l o n g

{ S H R T _ M I N } min. decimal value of a s h o r t

Named Stream

A STREAMS-based file descriptor can be attached to any name in the file system
namespace by means of the f a t t a c h routine. This new object is a named stream.
All subsequent o p e n s and operations on the named stream act on the stream that
was associated with the file descriptor until the name is disassociated from the
stream by using the f d e t a c h routine.

3-10 BASE SYSTEM DEFINITIONS

FINAL COPY
June 15, 1995
File: ba_def.txt

svid

Page: 32

netbuf Structure

The n e t b u f structure is used by many of the library functions and is defined by
the t i u s e r . h header file. This structure includes the following members:

u n s i g n e d i n t m a x l e n ; / * m a x b u f f e r l e n g t h * /
u n s i g n e d i n t l e n ; / * l e n g t h o f d a t a i n b u f f e r * /
c h a r * b u f ; / * p o i n t e r t o d a t a b u f f e r * /
v o i d * b u f ;

Orphaned Process

An orphaned process is a process whose creator’s lifetime has ended.

Orphaned Process Group

An orphaned process group is a process group in which the parent of every
member is either itself a member of the group or is not a member of the group’s
session.

Parent Process ID

The parent process ID of a process is the process ID of its creator, for the lifetime
of its creator [see e x i t(BA_OS)]. A new process is created by a currently active
process [see f o r k(BA_OS)]. After the creator’s lifetime has ended, the parent pro-
cess ID is set to the process ID of a special system process.

Passive Transport User

A passive transport user is a transport user that listens for an incoming connect
indication.

Base System Definitions 3-11

FINAL COPY
June 15, 1995
File: ba_def.txt

svid

Page: 33

Pathname and Path Prefix

In a C program, a pathname is a null-terminated character string starting with an
optional slash (/), followed by zero or more directory-names separated by slashes,
optionally followed by a filename. A null string is undefined and may be con-
sidered an error.

A pathname is used to identify a file. It consists of at most, { P A T H _ M A X } bytes,
including the terminating null character. It has an optional beginning slash, fol-
lowed by zero or more filenames separated by slashes. If the pathname refers to a
directory, it may also have one or more trailing slashes. Multiple consecutive
slashes may be interpreted in an implementation-defined manner, although more
than two leading slashes are treated as a single slash.

If a pathname begins with a slash, the path search begins at the root directory.
Otherwise, the search begins from the current working directory. If a pathname
refers to a directory, it may also have one or more trailing slashes. Multiple con-
secutive slashes are considered the same as a single slash.

A slash by itself names the root directory. An attempt to create or delete the path-
name slash by itself is undefined and may be considered an error.

The meanings of . (dot) and . . (dot-dot) are defined under d i r e c t o r y.

Persistent Link

A persistent link is a "link" created between a multiplexer and a driver by the
I _ P L I N K i o c t l request. This differs from a normal link created by the I _ L I N K
i o c t l request in that a persistent link remains intact even after the file descriptor
associated with the stream above the multiplexer has been closed.

Process

A process is an address space and single thread of control that executes within
that address space and its required system resources. A process is created by
another process issuing the f o r k function. The process that issues the f o r k is
known as the parent process, and the new process created by the f o r k is known as
the child process.

3-12 BASE SYSTEM DEFINITIONS

FINAL COPY
June 15, 1995
File: ba_def.txt

svid

Page: 34

Process Group

Each process in the system is a member of a process group that is identified by a
process group ID. This grouping permits the signaling of related processes. A
newly-created process joins the process group of its creator. A process may
change its process group via the s e t p g i d function [see s e t p g i d(BA_OS)].

Process Group ID

Each process group in the system is uniquely identified by a positive integer that
can be contained in an object of type p i d _ t, called a process group ID.

Process Group Leader

A process group leader is a process that creates a new process group. The process
group ID of a process group is equal to the process ID of the process group leader.

Process Group Lifetime

After a process group is created with the s e t p g i d or s e t s i d functions, it is con-
sidered active. During its lifetime, other processes may join and leave the process
group [see s e t p g i d(BA_OS)]. The lifetime of the process group ends when the
last remaining process in the group either leaves the process group or terminates.

Process ID

Each process in the system is uniquely identified by a positive integer that can be
contained in an object of type p i d _ t, called a process ID. A process ID may not be
reused by the system until the lifetimes of any process, process group, or session
whose IDs are equal to the process ID are ended.

Process Lifetime

After a process is created with a f o r k function, it is considered active. Its thread
of control and address space exist until it terminates. It then enters an inactive or
zombie state, where certain resources may be returned to the system, although
some resources such as process IDs, are still in use. When another process exe-
cutes a w a i t function for an inactive process, the remaining resources are returned
to the system, and the lifetime of the process ends.

Base System Definitions 3-13

FINAL COPY
June 15, 1995
File: ba_def.txt

svid

Page: 35

Protocol Address

An address, also known as the Transport Service Access Point (TSAP) address,
that identifies the transport user.

pseudo-tty

A pseudo-tty consists of a slave side and a master side. The slave side presents a
terminal interface to the user and the master side implements the terminal func-
tions as if an actual terminal device were present. Any data written to the slave
side is given to the master side as input and vice versa.

Real User ID and Real Group ID

Each user allowed on the system is identified by a positive integer called a real
user ID. Each user is also a member of a group. The group is identified by a
positive-integer called the real group ID.

An active process has a real user ID and real group ID that are set to the real user
ID and real group ID, respectively, of the user responsible for the creation of the
process. They can be reset with the s e t u i d and s e t g i d routines, respectively.

Root Directory and Current Working Directory

Each process has associated with it a concept of a root directory and a current
working directory for the purpose of resolving path searches. The root directory
of a process need not be the root directory of the root file system [see
c h r o o t(KE_OS)].

Saved Set-user-ID and Saved Set-group-ID

The saved set-user-ID and saved set-group-ID are the values of the effective user
ID and effective group ID prior to an exec of a file whose set-user or set-group file
mode bit has been set [see e x e c(BA_OS)].

3-14 BASE SYSTEM DEFINITIONS

FINAL COPY
June 15, 1995
File: ba_def.txt

svid

Page: 36

Scheduling class

A scheduling class is a process attribute that determines the scheduling policy
applied to the process. Every active process in a system has a class associated with
it, i.e. belongs to a scheduling class.

Session

Each process group is a member of a session. A process is considered to be a
member of the session of which its process group is a member. A newly created
process joins the session of its creator. A process can alter its session
membership[see s e t s i d(BA_OS)].

Session ID

Each session in the system is uniquely identified by a positive integer that can be
contained in an object of type p i d _ t, called a session ID.

Session Leader

A session leader is a process that creates a new session. The session ID of a session
is equal to the process ID of the session leader. Session leaders may allocate con-
trolling terminals to their session, thereby becoming controlling processes [see
s e t s i d(BA_OS)].

Session Lifetime

After a session is created by a session leader, it is considered active. The lifetime
of the session ends when the last remaining process in the session either leaves the
session or terminates.

Signal

A signal is a mechanism by which a process may be notified of, or affected by, an
event occurring in the system. Examples of such events include hardware excep-
tions and specific actions by processes. The term signal is also used to refer to the
event itself [see s i g n a l(BA_ENV)].

Base System Definitions 3-15

FINAL COPY
June 15, 1995
File: ba_def.txt

svid

Page: 37

Special Processes

All special processes are system processes (e.g., a system’s swapper process). Cer-
tain process IDs are reserved for special processes.

stdio Routines

A set of routines described as Standard I/O (stdio) routines constitute an efficient,
user-level I/O buffering scheme. The complete set of stdio routines is shown
below [see the definition of s t d i o - s t r e a m]. Detailed component definitions of
each can be found in either the Base OS Service Routines chapter or in the Base Sys-
tem Library Routines chapter.

(BA_OS)
c l e a r e r r, f c l o s e, f d o p e n, f e o f, f e r r o r, f i l e n o, f f l u s h, f o p e n,
f r e a d, f r e o p e n, f s e e k, f t e l l, f w r i t e, p o p e n, p c l o s e, r e w i n d.

(BA_LIB)
c t e r m i d, f g e t c, f g e t s, f p r i n t f, f p u t c, f p u t s, f s c a n f, g e t c h a r,
g e t s, g e t w, p r i n t f, p u t c, p u t c h a r, p u t s, p u t w, s c a n f, s e t b u f,
s e t v b u f, t e m p n a m, t m p n a m, u n g e t c, v p r i n t f, v f p r i n t f, v s p r i n t f.

The Standard I/O routines and constants are declared in the s t d i o . h header file
and need no further declaration.

The s t d i o . h header file also defines three symbolic constants used by the stdio
routines:

The defined constant N U L L designates a nonexistent null pointer.

The integer constant E O F is returned upon end-of-file or error by most integer
functions that deal with streams (see the individual component definitions for
details).

The integer constant B U F S I Z specifies the size of the buffer required by the s e t b u f
routine [see s e t b u f(BA_LIB)].

Any application program that uses the stdio routines must include the s t d i o . h
header file.

3-16 BASE SYSTEM DEFINITIONS

FINAL COPY
June 15, 1995
File: ba_def.txt

svid

Page: 38

stdio-stream

A file with associated stdio buffering is called a stdio-stream. A stdio-stream is a
pointer to a type F I L E defined by the s t d i o . h header file. The f o p e n routine [see
f o p e n(BA_OS)] creates certain descriptive data for a stream and returns a pointer
that identifies the stream in all further transactions with other stdio routines.

Most stdio routines manipulate either a stream created by the function f o p e n or
one of three streams that are associated with three files that are expected to be
open in the Base System [see t e r m i o(BA_ENV)]. These three streams are declared
in the s t d i o . h header file:

s t d i n the standard input.

s t d o u t the standard output.

s t d e r r the standard error.

Output streams, with the exception of the standard error stream s t d e r r, are by
default buffered if the output refers to a file and line-buffered if the output refers
to a terminal. The standard error output stream s t d e r r is by default unbuffered.
When an output stream is unbuffered, information is queued for writing on the
destination file or terminal immediately; when it is buffered, many characters are
saved up and written as a block. When it is line-buffered, each line of output is
queued for writing on the destination terminal as soon as the line is completed
(that is, as soon as a newline character is written or terminal input is requested).
The s e t b u f and s e t v b u f routines [see s e t b u f(BA_LIB)] may be used to change
the stream’s buffering strategy.

Stream

A stream is a full duplex connection between a user process and an open device or
pseudo-device. The stream itself exists entirely within the kernel and provides a
general character I/O interface for user processes. It optionally includes one or
more intermediate processing modules that are interposed between the user pro-
cess end of the stream and the device driver (or pseudo-device driver) end of the
stream.

Base System Definitions 3-17

FINAL COPY
June 15, 1995
File: ba_def.txt

svid

Page: 39

Stream head and stream end

The stream head is the beginning of the stream and is at the kernel/user boun-
dary. This is also known as the upstream end of the stream.

The stream end is the driver end of the stream and is also known as the down-
stream end of the stream.

Data generated as a result of a system call and destined for the driver end of the
stream moves downstream; and data moving from the driver end of the stream
toward the stream head is moving upstream. Also, an intermediate Module A is
said to be upstream from Module B when it is interposed between Module B and
the stream head (upstream) end of the stream, and downstream from Module B
when it is between Module B and the driver end of the stream.

STREAMS messages

STREAMS I/O is based on messages. A message may contain a data part, control
part, or both. The data part is information that is sent out to a device and the con-
trol information is used by the local STREAMS modules. Some messages are used
between modules and are not accessible to users. Message types are classified
according to their queuing priority and may be normal (non-priority), priority, or
high priority messages. A message belongs to a particular priority band that
determines its ordering when placed in a queue. Normal messages are always
placed at the end of the queue following all other messages in the queue. High
priority messages are always placed at the head of a queue but after any other
high priority messages already in the queue. Priority messages are always placed
after any messages of the same priority or other priority messages but before nor-
mal messages. High priority and priority messages are used to send control and
data information outside the normal flow of control.

STREAMS module and STREAMS driver

A STREAMS component may be a module or a driver that conforms to the rules
specified for STREAMS. A STREAMS device driver or pseudo-device driver is
always "opened" and may be "linked" if it is a multiplexing driver. A STREAMS
module is any other type of software module such as a line discipline or protocol
module and is always "pushed" onto the stream.

3-18 BASE SYSTEM DEFINITIONS

FINAL COPY
June 15, 1995
File: ba_def.txt

svid

Page: 40

STREAMS queue

Each STREAMS module contains two queues, one for messages moving in each
direction. A queue structure is defined for STREAMS and is important to the
module implementer.

Super-user

The functional implementation means of associating all appropriate privileges to a
process. A process is recognized as a super-user process if its effective user ID is 0.

Supplementary Group ID

A process has up to { N G R O U P S _ M A X } supplementary group IDs used in determin-
ing file access permissions in addition to the effective group ID. The supplemen-
tary group IDs of a process are set to the supplementary group IDs of the parent
process when the process is created, and can be initialized with the s e t g r o u p s
function [see s e t g r o u p s in g e t g r o u p s(BA_OS)].

symbolic link

A symbolic link is a special type of file that symbolically represents another file.
The contents of a symbolic link are the pathname of the file to which it refers
where the referenced file may be any type of file. The use of this mechanism
allows directories as well as files to be linked together and permits linking across
file systems.

Synchronous Execution

Synchronous execution is the mode of execution in which transport service func-
tions wait for specific events to occur before returning control to the user.

Base System Definitions 3-19

FINAL COPY
June 15, 1995
File: ba_def.txt

svid

Page: 41

Transport Endpoint

A transport endpoint is the communication path, which is identified by a local file
descriptor, between a transport user and a specific transport provider. A tran-
sport endpoint is manifested as an open device special file.

Transport Provider

A transport provider is an implementation of a transport protocol that provides
the services of the transport layer as defined by the Open Systems Interconnection
(OSI) Reference Model. All requests to the transport provider must pass through
a transport endpoint.

Transport User

A transport user is a user-level application or protocol that is accessing the ser-
vices of the transport interface.

TSDU

The Transport Service Data Unit (TSDU), which is the user data transmitted over a
transport connection and whose identity is preserved from one end of a transport
connection to the other (i.e., a message).

User ID

Each system user is identified by a user ID, which is a non-negative integer that
can be contained in an object of type u i d _ t. When the identity of a user is associ-
ated with a process, a user ID value is referred to as a real user ID, an effective
user ID, or a saved set-user-ID. The user ID of a newly created file is initialized to
the effective user ID of the process that created it.

3-20 BASE SYSTEM DEFINITIONS

FINAL COPY
June 15, 1995
File: ba_def.txt

svid

Page: 42

Zombie Process

A zombie process is an inactive process which will be deleted at some later time
when its parent process waits for it [see w a i t(BA_OS) and w a i t p i d(BA_OS)].

Base System Definitions 3-21

FINAL COPY
June 15, 1995
File: ba_def.txt

svid

Page: 43

FINAL COPY
June 15, 1995

File:

Page: 44

Base Syetem Environment Routines

The following section contains the manual pages for the BA_ENV routines.

Base Syetem Environment Routines 4-1

FINAL COPY
June 15, 1995

File: ba_env.cov
svid

Page: 45

FINAL COPY
June 15, 1995

File:

Page: 46

assert (BA_ENV) assert (BA_ENV)

NAME
assert: assert.h – verify program assertion

SYNOPSIS
#include <assert.h>

DESCRIPTION
The <assert.h> header defines the macro assert() and refers to the macro
NDEBUG which is not defined in the header. If NDEBUG is defined as a macro name
before the inclusion of this header, the assert() macro is defined simply as:

#define assert(ignore) ((void) 0)

otherwise, the macro behaves as described in assert(BA_LIB).

The assert() macro is implemented as a macro, not as a function. If the macro
definition is suppressed in order to access an actual function, the behavior is
undefined.

SEE ALSO
assert(BA_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_env/assert
svid

Page: 47

cpio (BA_ENV) cpio (BA_ENV)

NAME
cpio: cpio.h – cpio archive values

SYNOPSIS
#include <cpio.h>

DESCRIPTION
Values needed by the c_mode field in the header of the cpio archive format are
described by:

Name Description Value (octal)___

C_IRUSR read by owner 0000400
C_IWUSR write by owner 0000200
C_IXUSR execute by owner 0000100
C_IRGRP read by group 0000040
C_IWGRP write by group 0000020
C_IXGRP execute by group 0000010
C_IROTH read by others 0000004
C_IWOTH write by others 0000002
C_IXOTH execute by others 0000001
C_ISUID set uid 0004000
C_ISGID set gid 0002000
C_ISVTX reserved 0001000
C_ISDIR directory 0040000
C_ISFIFO FIFO 0010000
C_ISREG regular file 0100000
C_ISBLK block special 0060000
C_ISCHR character special 0020000
C_ISCTG reserved 0110000
C_ISLNK reserved 0120000
C_ISSOCK reserved 0140000___

The header defines the symbolic constant:

MAGIC "070707"

SEE ALSO
cpio(BU_CMD).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_env/cpio
svid

Page: 48

ctype (BA_ENV) ctype (BA_ENV)

NAME
ctype: ctype.h – character types

SYNOPSIS
#include <ctype.h>

DESCRIPTION
The <ctype.h> header declares the following as functions or macros:

isalnum() isgraph() isupper()
isalpha() islower() isxdigit()
isascii() isprint() toascii()
iscntrl() ispunct() tolower()
isdigit() isspace() toupper()

The following are declared as macros:

_toupper()
_tolower()

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_env/ctype
svid

Page: 49

dirent (BA_ENV) dirent (BA_ENV)

NAME
dirent: dirent.h – format of directory entries

SYNOPSIS
#include <dirent.h>

DESCRIPTION
The <dirent.h> header defines the following data type through typedef:

DIR A type representing a directory stream.

Defines the structure dirent which includes the following members:

ino_t d_ino; /* file serial number */
char d_name[{NAME_MAX}]; /* name of entry */

The type ino_t is defined in <sys/types.h> [see types(BA_ENV)].

The character array d_name is of unspecified size, but the number of characters
preceding the terminating null character shall not exceed {NAME_MAX}.

The following are declared as the functions:

closedir() rewinddir()
opendir() seekdir()
readdir() telldir()

SEE ALSO
directory(BA_OS), types(BA_ENV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_env/dirent
svid

Page: 50

envvar (BA_ENV) envvar (BA_ENV)

NAME
envvar – environment variables

DESCRIPTION
When a process begins execution, exec routines make available an array of strings
called the environment [see exec(BA_OS)]. By convention, these strings have the
form variable=value, for example, PATH=/sbin:/usr/sbin. These environ-
mental variables provide a way to make information about a program’s environ-
ment available to programs. The following environmental variables can be used by
applications and are expected to be set in the target run-time environment.

Variable Use

HOME Full pathname of the user’s home directory, the user’s initial working
directory [see passwd(BA_ENV)].

PATH Colon-separated, ordered list of pathnames that determines the search
sequence used in locating files [see system(BA_OS)].

LANG The string used to specify localization information that allows users to
work with different national conventions. The setlocale() function
[see setlocale(BA_OS)] looks for the LANG environment variable when it
is called with "" as the locale argument. LANG is used as the default
locale if the corresponding environment variable for a particular
category is unset.

For example, when setlocale() is invoked as

setlocale(LC_CTYPE, "")

setlocale() will query the LC_CTYPE environment variable first to
see if it is set and non-null. If LC_CTYPE is not set or null, then
setlocale() will check the LANG environment variable to see if it is
set and non-null. If both LANG and LC_CTYPE are unset or null, the
default C locale will be used to set the LC_CTYPE category.

Most commands will invoke

setlocale(LC_ALL, ""),

prior to any other processing. This allows the command to be used with
different national conventions by setting the appropriate environment
variables.

The following environment variables are supported to correspond with
each category of setlocale():

LC_COLLATE This category specifies the collation sequence being
used. This category affects strcoll() and
strxfrm() [see strcoll(BA_LIB) and strxfrm(BA_LIB),
respectively].

LC_CTYPE This category specifies character classification, charac-
ter conversion, and widths of multibyte characters. The
default C locale corresponds to the 7-bit ASCII charac-
ter set. This category affects ctype() and mbchar()

Page 1

FINAL COPY
June 15, 1995

File: ba_env/envvar
svid

Page: 51

envvar (BA_ENV) envvar (BA_ENV)

[see ctype(BA_LIB) and mbchar(BA_LIB), respectively].

LC_MESSAGES This category specifies the language of the message
database being used. For example, an application may
have one message database with French messages, and
another database with German messages [see
gettxt(BA_LIB)].

LC_MONETARY This category specifies the monetary symbols and
delimiters used for a particular locale. This category
affects localeconv() [see localeconv(BA_LIB)].

LC_NUMERIC This category specifies the decimal and thousandths
delimiters. The default C locale corresponds to . as the
decimal delimiter and no thousands delimiter. This
category affects localeconv(), printf() [see
printf(BA_LIB)], scanf() [see scanf(BA_LIB)] and
strtod() [see strtod(BA_LIB)].

LC_TIME This category specifies date and time formats. The
default C locale corresponds to U.S. date and time for-
mats. This category affects strftime() [see
strftime(BA_LIB)].

SEV_LEVEL Define severity levels and associates and print strings
with them in standard format error messages [see
fmtmsg(BA_LIB)].

MSGVERB Controls which standard format message components
fmtmsg() selects when messages are displayed to
stderr[see also fmtmsg(BA_LIB)].

NETPATH A colon-separated list of network identifiers. A network identifier is a
character string used by the Network Selection component of the sys-
tem to provide application-specific default network search paths. A
network identifier must consist of non-NULL characters and must
have a length of at least 1. No maximum length is specified. Network
identifiers are normally chosen by the system administrator.

NLSPATH Contains a sequence of templates which catopen() uses when
attempting to locate message catalogues. Each template consists of an
optional prefix, one or more substitution fields, a filename and an
optional suffix.

For example:

NLSPATH="/system/nlslib/%N.cat"

defines that catopen() should look for all message catalogues in the
directory /system/nlslib, where the catalogue name should be
constructed from the name parameter passed to catopen(), %N,
with the suffix .cat.

Page 2

FINAL COPY
June 15, 1995

File: ba_env/envvar
svid

Page: 52

envvar (BA_ENV) envvar (BA_ENV)

Substitution fields consist of a % symbol, followed by a single-letter
keyword. The following keywords are currently defined:

_ _____________________________________
%N The value of the name parameter

passed to catopen().
%L The value of LANG.
%l The language element from LANG.
%t The territory element from LANG.
%c The codeset element from LANG.
%% A single % character._ _____________________________________

An empty string is substituted if the specified value is not currently
defined. The separators ‘‘_’’ and ‘‘.’’ are not included in %t and %c
substitutions.

Templates defined in NLSPATH are separated by colons (:). A lead-
ing colon or two adjacent colons (::) is equivalent to specifying %N.

For example:

NLSPATH=":%N.cat:/nlslib/%L/%N.cat"

indicates to catopen() that it should look for the requested message
catalogue in name, name.cat and /nlslib/$LANG/name.cat.

PATH The sequence of directory prefixes that are applied in searching for a
file known by an incomplete path name. The prefixes are separated
by colons (:).

TERM The kind of terminal for which output is to be prepared. This infor-
mation is used by commands which may exploit special capabilities of
that terminal.

TZ Time zone information.
The contents of the environment variable named TZ are used by the
functions ctime(), localtime(), strftime() and mktime()
to override the default timezone. If the first character of TZ is a colon
(:), the behavior is implementation defined, otherwise TZ has the
form:

std offset [dst [offset], [start [/time], end [/time]]]

Where:

std and dst
Three or more bytes that are the designation for the standard
(std) and summer (dst) timezones. Only std is required, if dst is
missing, then summer time does not apply in this locale.
Upper- and lower-case letters are explicitly allowed. Any
characters except a leading colon (:), digits, a comma (,), a
minus (–) or a plus (+) are allowed.

Page 3

FINAL COPY
June 15, 1995

File: ba_env/envvar
svid

Page: 53

envvar (BA_ENV) envvar (BA_ENV)

offset Indicates the value one must add to the local time to arrive at
Coordinated Universal Time. The offset has the form:

hh [: mm [: ss]]

The minutes (mm) and seconds (ss) are optional. The hour
(hh) is required and may be a single digit. The offset following
std is required. If no offset follows dst , summer time is
assumed to be one hour ahead of standard time. One or more
digits may be used; the value is always interpreted as a
decimal number. The hour must be between 0 and 24, and the
minutes (and seconds) if present between 0 and 59. Out of
range values may cause unpredictable behaviour. If preceded
by a ‘‘–’’, the timezone is east of the Prime Meridean; other-
wise it is west (which may be indicated by an optional preced-
ing ‘‘+’’ sign).

start/time, end/time
Indicates when to change to and back from summer time,
where start/time describes when the change from standard time
to summer time occurs, and end/time describes when the
change back happens. Each time field describes when, in
current local time, the change is made.

The formats of start and end are one of the following:

Jn The Julian day n (1 ≤ n ≤ 365). Leap days are not
counted. That is, in all years, February 28 is day
59 and March 1 is day 60. It is impossible to refer
to the occasional February 29.

n The zero-based Julian day (0 ≤ n ≤ 365). Leap
days are counted, and it is possible to refer to
February 29.

Mm.n.d
The dth day, (0 ≤ d ≤ 6) of week n of month m of
the year (1 ≤ n ≤ 5, 1 ≤ m ≤ 12), where week 5
means ‘‘the last d-day in month m’’ which may
occur in either the fourth or the fifth week).
Week 1 is the week in which the first day of the
month falls. Day zero is Sunday.

Implementation specific defaults are used for start and end if
these optional fields are not given.

The time has the same format as offset except that no leading
sign (‘‘–’’ or ‘‘+’’) is allowed. The default, if time is not given is
02:00:00.

SEE ALSO
ctype(BA_LIB), exec(BA_OS), filsys(BA_ENV), getenv(BA_LIB), gettxt(BA_LIB),
localeconv(BA_LIB), mbchar(BA_LIB), printf(BA_LIB), putenv(BA_LIB),
setlocale(BA_OS), strcoll(BA_LIB), strftime(BA_LIB), strtod(BA_LIB),
strxfrm(BA_LIB), system(BA_OS).

Page 4

FINAL COPY
June 15, 1995

File: ba_env/envvar
svid

Page: 54

envvar (BA_ENV) envvar (BA_ENV)

FUTURE DIRECTIONS
The number in TZ will be defined as an optional minus sign followed by two hour
digits and two minute digits, hhmm, in order to represent fractional time-zones.

LEVEL
Level 1.

Page 5

FINAL COPY
June 15, 1995

File: ba_env/envvar
svid

Page: 55

errno (BA_ENV) errno (BA_ENV)

NAME
errors – error code and condition definitions

SYNOPSIS
#include <errno.h>

errno

DESCRIPTION
The numerical value represented by the symbolic name of an error condition is
assigned to errno for errors that occur when executing a system service routine or
general library routine.

To be consistent with the C Standard, the interface definition of errno has been
change in the SIVD, Fourth Edition. Programs should obtain the value of errno by
including <errno.h>.

The macro errno expands to a modifiable lvalue that has type int, the value of
which is set to a positive error number by several library functions. errno need
not be the identifier of an object, e.g., it might expand to a modifiable lvalue result-
ing from a function call. It is unspecified whether errno is a macro or an identifier
declared with external linkage. If an errno macro definition is suppressed to
access an actual object, or if a program defines an identifier with the name errno,
the behavior is undefined.

The component definitions given in the BASE OS SERVICE ROUTINES chapter and
in the BASE LIBRARY ROUTINES chapter, list possible error conditions for each
routine and the meaning of the error in that context. The order in which possible
errors are listed is not significant and does not imply precedence. The value of
errno should be checked only after an error has been indicated; that is, when the
return value of the component indicates an error, and the component definition
specifies that errno be set. The errno value 0 is reserved; no error condition is
equal to zero. An application that checks the value of errno must include the
<errno.h> header file.

Additional error conditions may be defined by Extensions to the Base System or by
particular implementations.

The following list describes the general meaning of each error:

E2BIG Argument list is too long.
An argument list longer than {ARG_MAX} bytes was presented to a
member of the exec family of routines.

EACCES Permission is denied.
An attempt was made to access a resource in a way forbidden by the
protection system.

EAGAIN Resource is temporarily unavailable; try again later.
For example, the fork() routine failed because the process table of
the system is full.

EBADF File number is bad.
Either a file descriptor refers to no open file, or a read (respectively,
write) request was made to a file that is open only for writing (respec-
tively, reading).

Page 1

FINAL COPY
June 15, 1995

File: ba_env/errno
svid

Page: 56

errno (BA_ENV) errno (BA_ENV)

EBADMSG Bad message.
During a read(), getmsg(), or ioctl() I_RECVFD system call
to a STREAMS device, something has come to the head of the queue
that can’t be processed. That something depends on the system call:
read() - control information or a passed file descriptor.
getmsg() - passed file descriptor.
ioctl() - control or data information.

EBUSY Device or resource busy or unavailable.
An attempt was made to make use of a system resource that is not
currently available, as it is being used by another process in a manner
that would have conflicted with the request being made by this pro-
cess. For example attempting to mount a device that was already
mounted or to unmount a device on which there is an active file (open
file, current directory, mounted on file, active text segment).

ECANCELED Asynchronous I/O canceled.
The requested I/O was canceled before the I/O completed because of
aio_cancel.

ECHILD No child processes.
An attempt was made to obtain the status of a child process or
processes, by a process that had no existing child process in the
appropriate state.

EDEADLK Deadlock avoided.
The request would have caused a deadlock; the situation was detected
and avoided.

EDOM Math argument.
The argument of a function in the math package is out of the domain
of the function.

EEXIST File exists.
An existing file was mentioned in an inappropriate context (e.g., a call
to the link() routine).

EFAULT Address is bad.
The system encountered a hardware fault in attempting to use an
argument of a routine. For example, errno potentially may be set to
EFAULT any time an invalid address is passed a routine that takes a
pointer argument if the system can detect the condition. Because sys-
tems differ in their ability to reliably detect a bad address, on some
implementations passing a bad address to a routine will result in
undefined behavior.

EFBIG File is too large.
The size of a file exceeded the maximum file size limit [see
getrlimit(BA_OS)].

EIDRM Identifier removed.
An identifier has been removed from the system.

Page 2

FINAL COPY
June 15, 1995

File: ba_env/errno
svid

Page: 57

errno (BA_ENV) errno (BA_ENV)

EINPROGRESS
The operation requested is now in progress.
An operation that takes a long time to complete was attempted on a
non-blocking object.

EINTR Interrupted system service.
An asynchronous signal (such as interrupt or quit), which the user has
elected to catch, occurred during a system service routine. If execu-
tion is resumed after processing the signal, it will appear as if the
interrupted routine returned this error condition.

EINVAL Invalid argument.
An invalid argument (e.g., unmounting a non-mounted device; men-
tioning an undefined signal in a call to the signal() or kill()
routine). Also set by math routines.

EIO I/O error.
Some physical I/O error has occurred, or access to controlling termi-
nal denied to a background process. For physical I/O errors, this
error may, in some cases, occur on a call following the one to which it
actually applies.

EISDIR Is a directory.
An invalid operation on a directory was attempted. For example, an
attempt was made to write on a directory.

ELIBACC Reserved for system use.

ELIBBAD Reserved for system use.

ELIBEXEC Reserved for system use.

ELIBMAX Reserved for system use.

ELIBSCN Reserved for system use.

ELOOP Too many levels of symbolic links.
Too many symbolic links were encountered in translating pathname.

EMFILE Too many open files in a process.
No process may have more than {OPEN_MAX} file descriptors open at
a time.

EMLINK Too many links.
An attempt was made to make more than the maximum number of
links {LINK_MAX} to a file.

ENAMETOOLONG
if the filename is too long. if the length of a pathname exceeds
{PATH_MAX}, or the length of a path component exceeds
{NAME_MAX} while {_POSIX_NO_TRUNC} is in effect.

ENFILE Too many open files in the system.
The system file table is full (i.e., {SYS_OPEN} files are open, and tem-
porarily no more opens can be accepted).

Page 3

FINAL COPY
June 15, 1995

File: ba_env/errno
svid

Page: 58

errno (BA_ENV) errno (BA_ENV)

ENODEV No such device.
An inappropriate operation to a device is attempted. (e.g., read a
write-only device).

ENOENT No such file or directory.
A filename is specified and the file should exist but doesn’t, or one of
the directories in a pathname does not exist.

ENOEXEC Exec format error.
A request is made to execute a file which, despite appropriate permis-
sions, does not start with a valid format.

ENOLCK No locks available.
A system-imposed limit on the number of simultaneous file and
record locks was reached and no more are available at that time.

ENOLOAD Failure in loading a loadable exec module.
An attempt was made to dynamically load an executable module and
the attempt failed.

ENOMEM Not enough space.
During execution of an exec routine, a program asks for more space
than the system is able to supply. This is not a temporary condition
until other processes release resources. The error may also occur if the
arrangement of text, data, and stack segments requires too many seg-
mentation registers, or if there is not enough swap space during exe-
cution of the fork() routine.

ENOMSG No message of the desired type.
The message queue does not contain a message of the required type.

ENOPKG Package not installed.
An attempt was made to use a system call from a package which has
not been installed.

ENOSPC No space is left on the device.
While writing a regular file or creating a directory entry, no free space
is left on the device.

ENOSR No stream resources.
Insufficient STREAMS memory resources are available to perform a
STREAMS related system call. This is a temporary condition; one may
recover from it if other processes release resources.

ENOSTR Not a stream.
putmsg() or getmsg() system call is attempted on a file descriptor
that is not a STREAMS device.

ENOSYS Operation not applicable.
A non-existing system operation is requested from a file system type,
or an attempt was made to use a function that is not available in this
implementation.

Page 4

FINAL COPY
June 15, 1995

File: ba_env/errno
svid

Page: 59

errno (BA_ENV) errno (BA_ENV)

ENOTBLK Block device is required.
A non-block file is mentioned where a block device is required (e.g., in
a call to the mount() routine).

ENOTDIR Not a directory.
A non-directory is specified where a directory is required (e.g. in a
path-prefix or as an argument to the chdir() routine).

ENOTEMPTY Directory not empty.
A directory with entries other than . and .. was supplied when an
empty directory was expected.

ENOTTY Not a character device.
A call is made to a character special device system server routine,
specifying a file that is not a character special device.

ENXIO No such device or address.
I/O on a special file refers to a subdevice which does not exist, or
exists beyond the limits of the device. It may also occur when, for
example, a tape drive is not on-line or no disk pack is loaded on a
drive.

EOVERFLOW Reserved for system use.

EPERM Operation not permitted.
Typically this error indicates an attempt to modify a file in some way
forbidden except to its owner or a process with appropriate privileges.
It is also returned for attempts by processes to do things allowed only
to processes with appropriate privileges.

EPIPE Broken pipe.
A write on a pipe for which no process can read the data. This condi-
tion generates a SIGPIPE signal; the error is returned if the signal is
ignored.

EPROTO Protocol error.
Some protocol error occurred. This error is device specific, but is gen-
erally not related to a hardware failure.

ERANGE Result is too large.
The value of a function in the math package is not representable
within machine precision.

ERESTART Reserved for system use.

EROFS Read-only file system.
An attempt to modify a file or directory is made on a device mounted
read-only.

ESPIPE Illegal seek.
A call to the lseek() routine is issued to a pipe or a named
STREAMS pipe [see lseek(BA_OS)].

ESRCH No such process.
No process can be found corresponding to the specified search cri-
teria.

Page 5

FINAL COPY
June 15, 1995

File: ba_env/errno
svid

Page: 60

errno (BA_ENV) errno (BA_ENV)

ESTRPIPE Reserved for system use.

ETXTBSY Text file busy.
An attempt made to execute a pure-procedure program that is
currently open for writing. Also an attempt to open for writing a
pure-procedure program that is being executed.

ETIME Stream ioctl() timeout.
The timer set for a STREAMS ioctl() call has expired. The cause
of this error is device specific and could indicate either a hardware or
software failure, or a timeout value that is too short for the specific
operation. The status of the ioctl() operation is indeterminate.

EXDEV Cross-device link.
A link to a file on another device is attempted.

USAGE
Some routines do not have an error return value. Because no routine sets errno to
zero, an application may, in this case, set errno to zero, call a routine, and then if
the component definition specifies that errno be set, check whether errno has been
set to indicate an error. A routine can save the value of errno on entry and then
set it to zero, as long as the original value is restored if errno is still zero just before
return.

SEE ALSO
chdir(BA_OS), exec(BA_OS), fork(BA_OS), getmsg(BA_OS), ioctl(BA_OS),
kill(BA_OS), link(BA_OS), lseek(BA_OS), mount(BA_OS), ptrace(KE_OS),
putmsg(BA_OS), read(BA_OS), ulimit(BA_OS), wait(BA_OS).

LEVEL
Level 1.

Page 6

FINAL COPY
June 15, 1995

File: ba_env/errno
svid

Page: 61

fcntl (BA_ENV) fcntl (BA_ENV)

NAME
fcntl: fcntl.h – file control options

SYNOPSIS
#include <fcntl.h>

DESCRIPTION
The <fcntl.h> header defines the following requests and arguments for use by
the functions fcntl() [see fcntl(BA_OS)] and open() [see open(BA_OS)].

Values for cmd used by fcntl() (the following values are unique):
F_DUPFD Duplicate file descriptor
F_GETFD Get file descriptor flags
F_SETFD Set file descriptor flags
F_GETFL Get file status flags
F_SETFL Set file status flags
F_GETLK Get record locking information
F_SETLK Set record locking information
F_SETLKW Set record locking information;

wait if blocked

File descriptor flags used for fcntl():
FD_CLOEXEC Close the file descriptor upon

execution of an exec function [see exec(BA_OS)]

Values for l_type used for record locking with fcntl()
(the following values are unique):

F_RDLCK Shared or read lock
F_UNLCK Unlock
F_WRLCK Exclusive or write lock

The following three sets of values are bitwise distinct:
Values for oflag used by open():

O_CREAT Create file if it does not exist
O_EXCL Exclusive use flag
O_NOCTTY Do not assign controlling tty
O_TRUNC Truncate flag

File status flags used for open() and fcntl():
O_APPEND Set append mode
O_NONBLOCK Non-blocking mode
O_SYNC Synchronous writes

Mask for use with file access modes:
O_ACCMODE Mask for file access modes

Page 1

FINAL COPY
June 15, 1995

File: ba_env/fcntl
svid

Page: 62

fcntl (BA_ENV) fcntl (BA_ENV)

File access modes used for open() and fcntl():
O_RDONLY Open for reading only
O_RDWR Open for reading and writing
O_WRONLY Open for writing only

The structure flock describes a file lock. It includes the following members:

short l_type; /* Type of lock */
short l_whence; /* Flag for starting offset */
off_t l_start; /* Relative offset in bytes */
off_t l_len; /* Size; if 0 then until EOF */
pid_t l_pid; /* Process ID of the process holding

the lock; returned with F_GETLK */

The following are declared as either functions or macros:

creat() fcntl()
open()

SEE ALSO
creat(BA_OS), exec(BA_OS), fcntl(BA_OS), open(BA_OS).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ba_env/fcntl
svid

Page: 63

filsys (BA_ENV) filsys (BA_ENV)

NAME
file system – directory tree structure

DESCRIPTION
Directory Tree Structure

The file system on any System V operating system is a tree-like structure, and is
divided into a "root" file system and a collection of mountable file systems.

All System V conforming systems must have a "root" (/), a "user" (/usr) and a
"var" (/var) subtree accessible to user-level programs. The user, root and var sub-
trees may or may not be different physical file systems, but their appearance to user
programs will always be the same.

The root file system contains machine-specific information (i.e., system data files,
log files, etc.) and files necessary to boot and run the system.

The directory /usr of the root file system is the point of access to the /usr subtree,
whether it is a real, mounted file system or a subtree of the root file system. All files
under the /usr directory can be shared between machines of the same architecture,
while all files under /usr/share can be shared between all machines of the same
and disparate architectures.

The directory /var is the point of access to the /var subtree, whether it is a real,
mounted file system or a subtree of the root file system. The /var subtree contains
files that vary in size and presence during normal system operations, including log-
ging, accounting and temporary files created by the system and applications.

Below is a diagram of the minimal directory tree structure expected to be on any
System V operating system.

share

opt dev sbin

bin sbin

var proc

/

usretc tmp

lib

The following guidelines apply to the contents of these directories:

/dev, /etc, /proc, /tmp, /sbin, and /usr/sbin
primarily for the use of the system. Most applications should
never create files in any of these directories, though they may read
and execute them. Applications, as well as the system, can use
/usr/bin and /var.

/dev holds special device files.

Page 1

FINAL COPY
June 15, 1995

File: ba_env/filsys
svid

Page: 64

filsys (BA_ENV) filsys (BA_ENV)

/etc holds system data files, such as /etc/passwd.

/opt root directory for add-on application packages. For example,
/opt/x would contain the root of the directory tree for applica-
tion x. Application x should place varying files (such as log files
and temporary files) in /var/opt/x.

/proc place holder for the proc file system type.

/tmp holds temporary files created by utilities in /sbin and by other
system processes.

/sbin holds executable system commands (utilities), if any, needed to
bring the system up to a usable state.

/usr/bin holds (user-level) executable application and system commands.

/usr/lib holds libraries and machine architecture-dependent databases.

/usr/sbin holds the bulk of executable system commands (utilities).

/usr/share holds machine-architecture independent database files (such as
manual page files). These files many be shared between machines
of different hardware types.

/var holds system varying files, such as log files and temporary files.

Applications should install or create files only in designated places within the tree.
The primary locations are the /opt and /var/opt subtrees. Temporary files
should always be created using the library routines provided for this purpose [see
tmpnam(BA_LIB), tempnam() in tmpnam(BA_LIB), tmpfile(BA_LIB), and
mktemp(BA_LIB), for example].

Some extensions to the Base System will have additional requirements on the tree
structure when the extension is installed on a system. Directory tree requirements
specific to an extension will be identified when the extension is defined in detail.

System Data Files
The Base System Definition specifies only these system-resident data files:

/etc/group
/etc/passwd
/etc/profile

The /etc/passwd and /etc/profile files are owned by the system and are
readable but not writable by ordinary users.

/etc/passwd is a generally useful file, readable by applications, that makes avail-
able to application programs some basic information about end-users on a system.
It has one entry for each user. Minimally, each user’s entry contains a string that is
the name by which the user is known on the system, a numerical user-ID, and the
home directory or initial working directory of the user. [See passwd(BA_ENV) for
file format and content details.]

Conventionally, the information in this file is used during the initialization of the
environment for a particular user. However, the /etc/passwd file is also useful as
a database with a standard format containing information about users, which can
be used independently of the mechanisms that maintain the data file.

Page 2

FINAL COPY
June 15, 1995

File: ba_env/filsys
svid

Page: 65

filsys (BA_ENV) filsys (BA_ENV)

The /etc/profile file may contain a string assignment of the PATH and TZ vari-
ables [see envvar(BA_ENV)].

SEE ALSO
envvar(BA_ENV), passwd(BA_ENV).

LEVEL
Level 1.

Page 3

FINAL COPY
June 15, 1995

File: ba_env/filsys
svid

Page: 66

float (BA_ENV) float (BA_ENV)

NAME
float: float.h – numerical limits

SYNOPSIS
#include <float.h>

DESCRIPTION
The <float.h> header provides for the following constants.

The rounding mode for floating point addition is characterized by the value of
FLT_ROUNDS:

-1 indeterminable
0 toward zero
1 to nearest
2 toward positive infinity
3 toward negative infinity

All other values for FLT_ROUNDS characterize implementation-defined behavior.

The values given in the following list shall be replaced by implementation-defined
expressions that shall be equal or greater in magnitude (absolute value) to those
shown, with the same sign.

#define DBL_DIG 10
#define DBL_MANT_DIG
#define DBL_MAX_10_EXP +37
#define DBL_MAX_EXP
#define DBL_MIN_10_EXP -37
#define DBL_MIN_EXP
#define FLT_DIG 6
#define FLT_MANT_DIG
#define FLT_MAX_10_EXP +37
#define FLT_MAX_EXP
#define FLT_MIN_10_EXP -37
#define FLT_MIN_EXP
#define FLT_RADIX 2
#define LDBL_DIG 10
#define LDBL_MANT_DIG
#define LDBL_MAX_10_EXP +37
#define LDBL_MAX_EXP
#define LDBL_MIN_10_EXP -37
#define LDBL_MIN_EXP

The values given in the following list shall be replaced by implementation-defined
expressions that shall be equal to or greater than those shown.

#define DBL_MAX 1E+37
#define FLT_MAX 1E+37
#define LDBL_MAX 1E+37

The values given in the following list shall be replaced by implementation-defined
expressions that shall be equal to or less than those shown.

#define DBL_EPSILON 1E-9
#define DBL_MIN 1E-37
#define FLT_EPSILON 1E-5

Page 1

FINAL COPY
June 15, 1995

File: ba_env/float
svid

Page: 67

float (BA_ENV) float (BA_ENV)

#define FLT_MIN 1E-37
#define LDBL_EPSILON 1E-9
#define LDBL_MIN 1E-37

The value of FLT_RADIX shall be a constant expression suitable for use in prepro-
cessing directives. Values that need not be constant expressions shall be supplied
for all other components.

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ba_env/float
svid

Page: 68

ftw (BA_ENV) ftw (BA_ENV)

NAME
ftw: ftw.h – file tree traversal

SYNOPSIS
#include <ftw.h>

DESCRIPTION
The <ftw.h> header defines codes for the third argument to the user-supplied
function which is passed as the second argument to ftw() [see ftw(BA_LIB)]:

FTW_F File
FTW_D Directory
FTW_DNR Directory without read permission
FTW_NS Unknown type, stat() failed

Declares the following as a function or a macro:

ftw() nftw()

SEE ALSO
ftw(BA_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_env/ftw
svid

Page: 69

group (BA_ENV) group (BA_ENV)

NAME
group – group file

DESCRIPTION
The file group contains for each group the following information:

group name
encrypted password
numerical group ID
comma-separated list of all users allowed in the group

The file group is an ASCII file. The fields are separated by colons; each group is
separated from the next by a new-line. If the password field is null, no password is
demanded.

This file resides in directory /etc. Because of the encrypted passwords, it can and
does have general read permission and can be used, for example, to map numerical
group ID’s to names.

During user identification and authentication, the supplementary group access list
is initialized sequentially from information in this file. If a user is in more groups
than the system is configured for, {NGROUPS_MAX}, subsequent group
specifications will be ignored.

FILES
/etc/group

SEE ALSO
groups(AU_CMD), passwd(AU_CMD), getgroups(BA_OS), initgroups(BA_LIB)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_env/group
svid

Page: 70

grp (BA_ENV) grp (BA_ENV)

NAME
grp: grp.h – group structure

SYNOPSIS
#include <grp.h>

DESCRIPTION
The <grp.h> header declares struct group which includes the following
members:

char *gr_name; /* name */
gid_t gr_gid; /* numerical group ID */
char **gr_mem; /* pointer to a null terminated

array of character pointers
to member names */

The following are declared as either a function or macro:

getgrgid() getgrnam()

SEE ALSO
getgrent(BA_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_env/grp
svid

Page: 71

langinfo (BA_ENV) langinfo (BA_ENV)

NAME
langinfo: langinfo.h – language information constants

SYNOPSIS
#include <langinfo.h>

DESCRIPTION
The <langinfo.h> header contains the constants used to identify items of lan-
ginfo data [see nl_langinfo(BA_LIB)]. The mode of the constants is given in
<nl_types.h> [see nl_types(BA_ENV)].

The entries under the Category column of the table below indicate in which setlo-
cale() category each item is defined [see setlocale(BA_OS)].

The following constants are defined on all systems:_ ___
Constant Category Meaning_ ___
D_T_FMT LC_TIME string for formatting date and time
D_FMT LC_TIME date format string
T_FMT LC_TIME time format string
AM_STR LC_TIME Ante Meridiem affix
PM_STR LC_TIME Post Meridiem affix
DAY_1 LC_TIME name of the first day of the week (e.g., Sunday)
DAY_2 LC_TIME name of the second day of the week (e.g., Monday)
DAY_3 LC_TIME name of the third day of the week (e.g., Tuesday)
DAY_4 LC_TIME name of the fourth day of the week (e.g., Wednesday)
DAY_5 LC_TIME name of the fifth day of the week (e.g., Thursday)
DAY_6 LC_TIME name of the sixth day of the week (e.g., Friday)
DAY_7 LC_TIME name of the seventh day of the week (e.g., Saturday)
ABDAY_1 LC_TIME abbreviated name of the first day of the week
ABDAY_2 LC_TIME abbreviated name of the second day of the week
ABDAY_3 LC_TIME abbreviated name of the third day of the week
ABDAY_4 LC_TIME abbreviated name of the fourth day of the week
ABDAY_5 LC_TIME abbreviated name of the fifth day of the week
ABDAY_6 LC_TIME abbreviated name of the sixth day of the week
ABDAY_7 LC_TIME abbreviated name of the seventh day of the week
MON_1 LC_TIME name of the first month in the Gregorian calendar
MON_2 LC_TIME name of the second month
MON_3 LC_TIME name of the third month
MON_4 LC_TIME name of the fourth month
MON_5 LC_TIME name of the fifth month
MON_6 LC_TIME name of the sixth month
MON_7 LC_TIME name of the seventh month
MON_8 LC_TIME name of the eighth month
MON_9 LC_TIME name of the ninth month
MON_10 LC_TIME name of the tenth month
MON_11 LC_TIME name of the eleventh month
MON_12 LC_TIME name of the twelfth month
ABMON_1 LC_TIME abbreviated name of the first month

_ ___

Page 1

FINAL COPY
June 15, 1995

File: ba_env/langinfo
svid

Page: 72

langinfo (BA_ENV) langinfo (BA_ENV)

_ ___
Constant Category Meaning_ ___
ABMON_2 LC_TIME abbreviated name of the second month
ABMON_3 LC_TIME abbreviated name of the third month
ABMON_4 LC_TIME abbreviated name of the fourth month
ABMON_5 LC_TIME abbreviated name of the fifth month
ABMON_6 LC_TIME abbreviated name of the sixth month
ABMON_7 LC_TIME abbreviated name of the seventh month
ABMON_8 LC_TIME abbreviated name of the eighth month
ABMON_9 LC_TIME abbreviated name of the ninth month
ABMON_10 LC_TIME abbreviated name of the tenth month
ABMON_11 LC_TIME abbreviated name of the eleventh month
ABMON_12 LC_TIME abbreviated name of the twelfth month
RADIXCHAR LC_NUMERIC radix character
THOUSEP LC_NUMERIC separator for thousands
YESSTR LC_ALL affirmative response for yes/no queries
NOSTR LC_ALL negative response for yes/no queries
CRNCYSTR LC_MONETARY currency symbol, preceded by – if the symbol should

appear before the value, + if the symbol should
appear after the value, or . if the symbol should
replace the radix character_ ___

Declares the following as a function:

nl_langinfo()

SEE ALSO
nl_langinfo(BA_LIB), nl_types(BA_ENV), setlocale(BA_OS).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ba_env/langinfo
svid

Page: 73

limits (BA_ENV) limits (BA_ENV)

NAME
limits: limits.h – implementation specific constants

SYNOPSIS
#include <limits.h>

DESCRIPTION
The <limits.h> header defines various names which are used throughout the
descriptive text of the System V Interface Definition. Different categories of names
are described in the tables below.

The names represent various limits on resources which the system imposes on
applications.

Implementations may choose any appropriate value for each limit, provided it is
not more restrictive than the values listed in the column headed ‘‘Minimum Accept-
able Value’’ in the table below.

Applications should not assume any particular value for a limit. To achieve max-
imum portability, an application should not require more resource than the quan-
tity listed in the ‘‘Minimum Acceptable Value’’ column. However, an application
wishing to avail itself of the full amount of a resource available on an implementa-
tion may make use of the value given in <limits.h> on that particular system, by
using the symbolic names listed in the first column of the table. It should be noted,
however, that many of the listed limits are not invariant, and at run-time, the value
of the limit may differ from those given in this header, for the following reasons: the
limit is pathname dependent and the limit differs between the compile and run-time
machines.

For these reasons, an application may use the fpathconf() [see
fpathconf(BA_OS)], pathconf() [see pathconf() in fpathconf(BA_OS)] and
sysconf() [see sysconf(BA_OS)] functions to determine the actual value of a limit
at run-time.

The items in the list ending in ‘‘_MIN’’ give the most negative values that the
mathematical types are guaranteed to be capable of representing. Numbers of a
more negative value may be supported on some systems, as indicated by the
<limits.h> header on the system, but applications requiring such numbers are
not guaranteed to be portable to all systems.

Page 1

FINAL COPY
June 15, 1995

File: ba_env/limits
svid

Page: 74

limits (BA_ENV) limits (BA_ENV)

The symbol ∗ in the ‘‘Minimum Acceptable Value’’ column indicates that there is no
guaranteed value across all compliant systems.

The definition for any of the following names may be omitted from <limits.h> if
the actual value of the limit is indeterminate but equal to or greater than the
stated minimum. Applications should therefore only use these symbols in code
conditionally compiled on the existence of the symbol, or in calls to fpathconf(),
pathconf() or sysconf().

_ ___
MinimumName Description Acceptable Value_ ___

ARG_MAX _POSIX_ARG_MAXMax length of argument to the exec
functions including environment data

CHILD_MAX _POSIX_CHILD_MAXMax number of processes per user ID
LINK_MAX _POSIX_LINK_MAXMax number of links to a single file
MAX_CANON _POSIX_MAX_CANONMax number of bytes in a terminal

canonical input line
MAX_INPUT _POSIX_MAX_INPUTMax number of bytes allowed in a ter-

minal input queue
MB_LEN_MAX 1Max number of bytes in a multibyte

character, for any supported locale
NAME_MAX _POSIX_NAME_MAXMax number of characters in a filename

(not including terminating null)
OPEN_MAX _POSIX_OPEN_MAXMax number of files that one process

can have open at any one time
PASS_MAX 8 Max number of significant characters in

a password (not including terminating
null)

PATH_MAX _POSIX_PATH_MAXMax number of characters in a path-
name (not including terminating null)

PIPE_BUF _POSIX_PIPE_BUFMax number bytes that is guaranteed
to be atomic when writing to a pipe_ ___

The following constant will always be defined in <limits.h> and will also be
available from sysconf().

_ ___
MinimumName Description Acceptable Value_ ___

NGROUPS_MAX _POSIX_NGROUPS_MAXMax number of simultaneous supple-
mentary group IDs per process_ ___

Page 2

FINAL COPY
June 15, 1995

File: ba_env/limits
svid

Page: 75

limits (BA_ENV) limits (BA_ENV)

The following constants will always be defined in <limits.h>
_ ___

MinimumName Description Acceptable Value_ ___
NL_ARGMAX 9 Max value of ‘‘digit’’ in calls to the

printf() and scanf() functions
NL_LANGMAX 14 Max number of bytes in a LANG name
NL_MSGMAX 32 767 Max message number
NL_NMAX ∗Max number of bytes in N-to-1 map-

ping characters
NL_SETMAX 255 Max set number
NL_TEXTMAX 2048 Max number of bytes in a message

string
NZERO 20 default process priority
TMP_MAX 10 000 Max number of unique names gen-

erated by tmpnam()_ ___

The following constants are specified by POSIX 1003.1-1988 and will always be
defined in <limits.h> . They are invariant:

_ __
Name Description Value_ __
_POSIX_ARG_MAX 4 096 The length of the argument strings for

the exec functions in bytes, including
environment data

_POSIX_CHILD_MAX 6 The number of simultaneous processes
per real user ID.

_POSIX_LINK_MAX 8 the value of a file’s link count.
_POSIX_MAX_CANON 255 The number of bytes in a terminal

canonical input queue
_POSIX_MAX_INPUT 255 The number of bytes for which space

will be available in a terminal input
queue.

_POSIX_NAME_MAX 14 The number of bytes in a filename.
_POSIX_NGROUPS_MAX 0 The number of simultaneous supple-

mentary group IDs per process.
_POSIX_OPEN_MAX 16 The number of files that one process

can have open at one time.
_POSIX_PATH_MAX 255 The number of bytes in a pathame.
_POSIX_PIPE_BUF 512 The number of bytes that can be writ-

ten atomically when writing to a pipe._ __

Page 3

FINAL COPY
June 15, 1995

File: ba_env/limits
svid

Page: 76

limits (BA_ENV) limits (BA_ENV)

The following constants will always be defined in <limits.h>. They are invari-
ant:

_ ___
MinimumName Description Acceptable Value_ ___

CHAR_BIT 8 Number of bits in a char
CHAR_MAX 127 Max integer value of a char
DBL_DIG 10 Digits of precision of a double
DBL_MAX 1E+37 Max decimal value of a double
FLT_DIG 6 Digits of precision of a float
FLT_MAX 1E+37 Max decimal value of a float
INT_MAX 32 767 Max decimal value of an int
LONG_BIT 32 Number of bits in a long
LONG_MAX 2 147 483 647 Max decimal value of a long
SCHAR_MAX 127 Max value of a signed char
SHRT_MAX 32 767 Max decimal value of a short
UCHAR_MAX 255 Max value of an unsigned char
UINT_MAX 65 535 Max value of an unsigned int
ULONG_MAX 4 294 967 295 Max value of an unsigned long int
USHRT_MAX 65 535 Max value for an unsigned short int
WORD_BIT 16 Number of bits in a ‘‘word’’ or int_ ___

_ ___
MaximumName Description Acceptable Value_ ___

CHAR_MIN 0 Min integer value of a char
DBL_MIN 1E–37 Min decimal value of a double
FLT_MIN 1E–37 Min decimal value of a float
INT_MIN –32 768 Min decimal value of a int
LONG_MIN –2 147 483 648 Min decimal value of a long
SCHAR_MIN –127 Min value of a signed char
SHRT_MIN –32 768 Min decimal value of a short_ ___

USAGE
If the value of an object of type char sign-extends when used in an expression, the
value of CHAR_MIN is the same as that of SCHAR_MIN and the value of CHAR_MAX
is the same as that of SCHAR_MAX. Otherwise, the value of CHAR_MIN is 0 and the
value of CHAR_MAX will be the same as that of UCHAR_MAX.

SEE ALSO
fpathconf(BA_OS), sysconf(BA_OS).

LEVEL
Level 1.

Page 4

FINAL COPY
June 15, 1995

File: ba_env/limits
svid

Page: 77

locale (BA_ENV) locale (BA_ENV)

NAME
locale: locale.h – category macros

SYNOPSIS
#include <locale.h>

DESCRIPTION
The <locale.h> header defines at least the following as macros:

LC_ALL
LC_COLLATE
LC_CTYPE
LC_MONETARY
LC_NUMERIC
LC_TIME
LC_MESSAGES
NULL

which expand to distinct integral-constant expressions, for use as the first argument
to the setlocale() function [see setlocale(BA_OS)].

Declares the structure lconv which includes at least the following members:

char *decimal_point; /* "." */
char *thousands_sep; /* "" */
char *grouping; /* "" */
char *int_curr_symbol; /* "" */
char *currency_symbol; /* "" */
char *mon_decimal_point; /* "" */
char *mon_thousands_sep; /* "" */
char *mon_grouping; /* "" */
char *positive_sign; /* "" */
char *negative_sign; /* "" */
char int_frac_digits; /* CHAR_MAX */
char frac_digits; /* CHAR_MAX */
char p_cs_precedes; /* CHAR_MAX */
char p_sep_by_space; /* CHAR_MAX */
char n_cs_precedes; /* CHAR_MAX */
char n_sep_by_space; /* CHAR_MAX */
char p_sign_posn; /* CHAR_MAX */
char n_sign_posn; /* CHAR_MAX */

Declares setlocale() and localeconf() as a function.

Additional macro definitions, beginning with the characters LC_ and an upper case
letter, may also be given here.

SEE ALSO
setlocale(BA_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_env/locale
svid

Page: 78

math (BA_ENV) math (BA_ENV)

NAME
math: math.h – mathematical declarations

SYNOPSIS
#include <math.h>

DESCRIPTION
The <math.h> header provides for the following constants. The values are of type
double and are accurate within the precision of the double type.

M_E Value of e
M_LOG2E Value of log

2
e

M_LOG10E Value of log
10

e
M_LN2 Value of log

e
2

M_LN10 Value of log
e
10

M_PI Value of π
M_PI_2 Value of π/2
M_PI_4 Value of π/4
M_1_PI Value of 1/π
M_2_PI Value of 2/π
M_2_SQRTPI Value of 2/√ π
M_SQRT2 Value of √ 2
M_SQRT1_2 Value of 1/√ 2

The header contains a define statement for the MAXFLOAT symbol which is system
dependent, and the value HUGE_VAL which is returned for error conditions found
in the math library.

MAXFLOAT Value of maximum non-infinite single-precision floating point
number

HUGE_VAL Error value returned by the math library

The macro HUGE_VAL is defined to represent error values returned by the math
functions. HUGE_VAL will return either + inf on a system supporting IEEE Std
754-1985 or +{DBL_MAX} on a system that does not support the standard.

The following are declared as functions or macros:

acos()
acosh()
asin()
asinh()
atan2()
atan()
atanh()
cbrt()
ceil()
cos()

cosh()
erf()
exp()
fabs()
floor()
fmod()
frexp()
isnan()
gamma()
hypot()

j0()
j1()
jn()
ldexp()
lgamma()
log10()
log()
logb()
modf()
nextafter()

pow()
scalb()
sin()
sinh()
sqrt()
tan()
tanh()
y0()
y1()
yn()

Declares signgam as an external int.

Page 1

FINAL COPY
June 15, 1995

File: ba_env/math
svid

Page: 79

math (BA_ENV) math (BA_ENV)

SEE ALSO
Bessel(BA_LIB), erf(BA_LIB), exp(BA_LIB), floor(BA_LIB), frexp(BA_LIB),
hyperbolic(BA_LIB), hypot(BA_LIB), lgamma(BA_LIB), trig(BA_LIB).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ba_env/math
svid

Page: 80

nl_types (BA_ENV) nl_types (BA_ENV)

NAME
nl_types: nl_types.h – data types

SYNOPSIS
#include <nl_types.h>

DESCRIPTION
The <nl_types.h> header contains definitions of at least the following types:

nl_catd used by the message catalogue functions to identify a catalogue.

nl_item used by nl_langinfo() [see nl_langinfo(BA_LIB)] to identify items
of langinfo data. Values of objects of type nl_item are defined in
<langinfo.h> [see langinfo(BA_ENV)].

and at least the following constant:

NL_SETD used by the catalogue compiler when no $set directive is specified
in a message text source file. This constant can be passed as the value
of set_id on subsequent calls to catgets() [see catgets(BA_LIB)]
(i.e., to retrieve messages from the default message set). The value of
NL_SETD is implementation defined.

The following functions are declared:

catclose()
catgets()
catopen()

SEE ALSO
catopen(BA_LIB), catgets(BA_LIB), nl_langinfo(BA_LIB), langinfo(BA_ENV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_env/nl_types
svid

Page: 81

passwd (BA_ENV) passwd (BA_ENV)

NAME
passwd – password file

SYNOPSIS
/etc/passwd

DESCRIPTION
The file /etc/passwd contains the following information for each user:

name
encrypted password (may be empty)
numerical user-ID
numerical group-ID (may be empty)
free field
initial-working-directory
program to use as command interpreter (may be empty)

This text file resides in directory /etc. It has general read permission and can be
used, for example, to map numerical user-IDs to names.

Each field within each user’s entry is separated from the next by a colon. The field
encrypted password may contain the encrypted password, nothing, or a lock string.
The fields numerical group-ID, and program to use as command interpreter may be
empty. However, if these fields are not empty, they must be used for their stated
purpose. free field is a free field that is implementation-specific. Fields beyond the
program to use as command interpreter field are also free but may be standardized in
the future. Each user’s entry is separated from the next by a newline.

The name is a character string that identifies a user.

By convention, the last element in the pathname of the initial-working-directory is
typically name.

USAGE
In secure installations the /etc/passwd file may not contain the users actual pass-
word. Applications should not assume that the password in /etc/passwd is the
user’s actual password and should not use it for user authentication.

SEE ALSO
crypt(BA_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_env/passwd
svid

Page: 82

pwd (BA_ENV) pwd (BA_ENV)

NAME
pwd: pwd.h – password structure

SYNOPSIS
#include <pwd.h>

DESCRIPTION
The <pwd.h> header provides a definition for struct passwd, which includes
the following members:

char *pw_name: /* user’s login name */
char *pw_passwd; /* encrypted password */
char *pw_dir; /* initial working directory */
char *pw_shell; /* program to use as shell */

The following are declared as either functions or macros:

getpwnam() getpwuid()

SEE ALSO
getpwent(SD_LIB).

Level
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_env/pwd
svid

Page: 83

regexp (BA_ENV) regexp (BA_ENV)

NAME
regexp: regexp.h – regular-expression declarations

SYNOPSIS
#include <regexp.h>

DESCRIPTION
The <regexp.h> header declares the following functions as macros:

advance() compile() step()

and declares the following as external variables:

loc1 loc2 locs

SEE ALSO
regexp(BA_LIB).

FUTURE DIRECTIONS
The functionality of the regexp functions will eventually be replaced by a more
complete interface and the regexp functions will be discontinued.

LEVEL
Level 2: September 30, 1989.

Page 1

FINAL COPY
June 15, 1995

File: ba_env/regexp
svid

Page: 84

search (BA_ENV) search (BA_ENV)

NAME
search: search.h – search tables

SYNOPSIS
#include <search.h>

DESCRIPTION
The <search.h> header provides a typedef, ENTRY, for struct entry which
includes the following members:

char *key;
char *data;

and defines ACTION and VISIT as enumeration data types through typedefs as
follows:

enum { FIND, ENTER } ACTION;
enum { preorder, postorder, endorder, leaf } VISIT;

The following are declared as either functions or macros:

hcreate() lfind() tdelete()
hdestroy() lsearch() tfind()
hsearch() tsearch() twalk()

SEE ALSO
hsearch(BA_LIB), lsearch(BA_LIB), tsearch(BA_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_env/search
svid

Page: 85

setjmp (BA_ENV) setjmp (BA_ENV)

NAME
setjmp: setjmp.h – stack environment declarations

SYNOPSIS
#include <setjmp.h>

DESCRIPTION
The <setjmp.h> header contains the typedefs for types jmp_buf and
sigjmp_buf.

The following are declared as functions: longjmp() and siglongjmp().

Declares setjmp() and sigsetjmp() as either functions or macros.

SEE ALSO
setjmp(BA_LIB), sigsetjmp(BA_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_env/setjmp
svid

Page: 86

siginfo (BA_ENV) siginfo (BA_ENV)

NAME
siginfo – signal generation information

SYNOPSIS
#include <siginfo.h>

DESCRIPTION
If a process is catching a signal, it may request a record detailing why the system
has generated that signal [see sigaction (BA_OS)]. If a process is monitoring its chil-
dren, it may receive a record detailing the cause of any child’s change of state [see
waitid(BA_OS)]. In either case, the system will return that information in a struc-
ture of type siginfo_t that includes the following members:

int si_signo; /* signal number */
int si_errno; /* error number */
int si_code; /* signal code */

si_signo contains the system generated signal number. (For the waitid() func-
tion, si_signo will always be equal to SIGCHLD.)

If si_errno is non-zero, it contains an error number associated with this signal, as
defined in errno.h.

si_code contains a code identifying the cause of the signal. If the value of
si_code is less than or equal to 0, then the signal was generated by a user process
[see kill(BA_OS) and sigsend(BA_OS)] and the siginfo structure will contain the fol-
lowing additional members:

pid_t si_pid; /* sending process ID */
uid_t si_uid; /* sending user ID */

Otherwise, si_code contains a signal-specific reason why the signal was gen-
erated as follows:

Signal Code Reason_ __
SIGILL ILL_ILLOPC illegal opcode

ILL_ILLOPN illegal operand
ILL_ILLADR illegal addressing mode
ILL_ILLTRP illegal trap
ILL_PRVOPC privileged opcode
ILL_PRVREG privileged register
ILL_COPROC coprocessor error
ILL_BADSTK internal stack error_ __

SIGFPE FPE_INTDIV integer divide by zero
FPE_INTOVF integer overflow
FPE_FLTDIV floating point divide by zero
FPE_FLTOVF floating point overflow
FPE_FLTUND floating point underflow
FPE_FLTRES floating point inexact result

Page 1

FINAL COPY
June 15, 1995

File: ba_env/siginfo
svid

Page: 87

siginfo (BA_ENV) siginfo (BA_ENV)

FPE_FLTINV invalid floating point operation
FPE_FLTSUB subscript out of range_ __

SIGSEGV SEGV_MAPERR address not mapped to object
SEGV_ACCERR invalid permissions for mapped object_ __

SIGBUS BUS_ADRALN invalid address alignment
BUS_ADRERR non-existent physical address
BUS_OBJERR object specific hardware error_ __

SIGTRAP TRAP_BRKPT process breakpoint
TRAP_TRACE process trace trap_ __

SIGCHLD CLD_EXITED child has exited
CLD_KILLED child was killed
CLD_DUMPED child has terminated abnormally
CLD_TRAPPED traced child has trapped
CLD_STOPPED child has stopped
CLD_CONTINUED stopped child has continued_ __

SIGPOLL POLL_IN data input available
POLL_OUT output buffers available
POLL_MSG input message available
POLL_ERR I/O error
POLL_PRI high priority input available
POLL_HUP device disconnected

In addition, the following signal dependent information will be available:

Signal Field Value_ ___
SIGILL caddr_t si_addr address of faulting instruction
SIGFPE_ ___
SIGSEGV caddr_t si_addr address of faulting memory reference
SIGBUS_ ___
SIGCHLD pid_t si_pid child process ID

int si_status exit value or signal_ ___
SIGPOLL long si_band band event for POLL_IN, POLL_OUT, or

POLL_MSG

For some implementations, the exact value of si_addr may not be available; in
that case, si_addr is guaranteed to be on the same page as the faulting instruction
or memory reference.

SEE ALSO
kill(BA_OS), sigaction(BA_OS), signal(BA_ENV), sigsend(BA_OS), waitid(BA_OS).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ba_env/siginfo
svid

Page: 88

signal (BA_ENV) signal (BA_ENV)

NAME
signal – base signals

SYNOPSIS
i n c l u d e < s i g n a l . h >

DESCRIPTION
The < s i g n a l . h > header defines the following data type through t y p e d e f:

s i g _ a t o m i c _ t Integral type of an object that can be accessed as an atomic entity,
even in the presence of asynchronous interrupts.

and defines at least the following macros:

S I G _ D F L
S I G _ E R R
S I G _ I G N

DESCRIPTION
A signal is an asynchronous notification of an event. A signal is said to be gen-
erated for (or sent to) a process when the event associated with that signal first
occurs. Examples of such events include hardware faults, timer expiration and ter-
minal activity, as well as the invocation of the k i l l or s i g s e n d system calls. In
some circumstances, the same event generates signals for multiple processes. The
receiver may request a detailed notification of the source of the signal and the rea-
son why it was generated [see s i g i n f o(BA_ENV)].

Each process may a system action specified to be taken in response to each signal
sent to it, called the signal’s disposition. The set of system signal actions for a pro-
cess is initialized from that of its parent. Once an action is installed for a specific
signal, it usually remains installed until another disposition is explicitly requested
by a call to either s i g a c t i o n , s i g n a l or s i g s e t, or until the process e x e cs [see
s i g a c t i o n(BA_OS) and s i g n a l(BA_OS)]. When a process e x e cs, all signals whose
disposition has been set to catch the signal will be set to S I G _ D F L. Alternatively, on
request, the system will automatically reset the disposition of a signal to S I G _ D F L
after it has been caught [see s i g a c t i o n(BA_OS) and s i g n a l(BA_OS)].

A signal is said to be delivered to a process when the appropriate action for the pro-
cess and signal is taken. During the time between the generation of a signal and its
delivery, the signal is said to be pending [see s i g p e n d i n g(BA_OS)]. Ordinarily, this
interval cannot be detected by an application. However, a signal can be blocked
from delivery [see s i g n a l(BA_OS) and s i g p r o c m a s k(BA_OS)]. If the action associ-
ated with a blocked signal is anything other than to ignore the signal, and if that
signal is generated for the process, the signal remains pending until either it is
unblocked or the signal’s disposition requests that the signal be ignored. If the sig-
nal disposition of a blocked signal requests that the signal be ignored, and if that
signal is generated for the process, the signal is discarded immediately upon gen-
eration.

Each process has a signal mask that defines the set of signals currently blocked from
delivery to it [see s i g p r o c m a s k(BA_OS)]. The signal mask for a process is initial-
ized from that of its creator.

Page 1

FINAL COPY
June 15, 1995

File: ba_env/signal
svid

Page: 89

signal (BA_ENV) signal (BA_ENV)

The determination of which action is taken in response to a signal is made at the
time the signal is delivered, allowing for any changes since the time of generation.
This determination is independent of the means by which the signal was originally
generated.

The signals currently defined in s y s / s i g n a l . h are as follows:

Name Default Event_ __
S I G H U P Exit Hangup [see t e r m i o(7)]
S I G I N T Exit Interrupt [see t e r m i o(7)]
S I G Q U I T Core Quit [see t e r m i o(7)]
S I G I L L Core Illegal Instruction
S I G T R A P Core Trace/Breakpoint Trap
S I G A B R T Core Abort
S I G E M T Core Emulation Trap
S I G F P E Core Arithmetic Exception
S I G K I L L Exit Killed
S I G B U S Core Bus Error
S I G S E G V Core Segmentation Fault
S I G S Y S Core Bad System Call
S I G P I P E Exit Broken Pipe
S I G A L R M Exit Alarm Clock
S I G T E R M Exit Terminated
S I G U S R 1 Exit User Signal 1
S I G U S R 2 Exit User Signal 2
S I G C H L D Ignore Child Status
S I G P W R Ignore Power Fail/Restart
S I G W I N C H Ignore Window Size Change
S I G U R G Ignore Urgent Socket Condition
S I G P O L L Ignore Socket I/O Possible
S I G S T O P Stop Stopped (signal)
S I G T S T P Stop Stopped (user) [see t e r m i o(7)]
S I G C O N T Ignore Continued
S I G T T I N Stop Stopped (tty input) [see t e r m i o(7)]
S I G T T O U Stop Stopped (tty output) [see t e r m i o(7)]
S I G V T A L R M Exit Virtual Timer Expired
S I G P R O F Exit Profiling Timer Expired
S I G X C P U Core CPU time limit exceeded [see g e t r l i m i t(2)]
S I G X F S Z Core File size limit exceeded [see g e t r l i m i t(2)]

The s i g n a l, s i g s e t or s i g a c t i o n system calls, can be used to specify one of three
dispositions for a signal: take the default action for the signal, ignore the signal, or
catch the signal.

Default Action: S I G _ D F L
A disposition of S I G _ D F L specifies the default action. The default action for each
signal is listed in the table above and is selected from the following:

Exit When it gets the signal, the receiving process is to be terminated with all
the consequences outlined in e x i t(BA_OS).

Page 2

FINAL COPY
June 15, 1995

File: ba_env/signal
svid

Page: 90

signal (BA_ENV) signal (BA_ENV)

Core When it gets the signal, the receiving process is to be terminated with all
the consequences outlined in e x i t(BA_OS). In addition, a ‘‘core image’’ of
the process is constructed in the current working directory.

Stop When it gets the signal, the receiving process is to stop.

Ignore When it gets the signal, the receiving process is to ignore it. This is identi-
cal to setting the disposition to S I G _ I G N.

Note that to support compatibility for applications written before this functionality
in System V, typical configurations have i n i t ignore S I G X C P U and S I G X F S Z.
Processes wanting to receive S I G X C P U and S I G X F S Z must explicitly set the disposi-
tion to S I G _ D F L.

Ignore Signal: S I G _ I G N
A disposition of S I G _ I G N specifies that the signal is to be ignored.

Catch Signal: function address
A disposition that is a function address specifies that, when it gets the signal, the
receiving process is to execute the signal handler at the specified address. Nor-
mally, the signal handler is passed the signal number as its only argument; if the
disposition was set with the s i g a c t i o n function however, additional arguments
may be requested [see s i g a c t i o n(BA_OS)]. When the signal handler returns, the
receiving process resumes execution at the point it was interrupted, unless the sig-
nal handler makes other arrangements. If an invalid function address is specified,
results are undefined.

If the disposition has been set with the s i g s e t or s i g a c t i o n function, the signal is
automatically blocked by the system while the signal catcher is executing. If a
l o n g j m p [see s e t j m p(BA_LIBC)] is used to leave the signal catcher, then the signal
must be explicitly unblocked by the user [see s i g n a l(BA_OS) and
s i g p r o c m a s k(BA_OS)].

If execution of the signal handler interrupts a blocked system call, the handler is
executed and the interrupted system call returns a –1 to the calling process with
e r r n o set to E I N T R. However, if the S A _ R E S T A R T flag is set the system call will be
transparently restarted.

NOTICES
Signal Disposition

The dispositions of the S I G K I L L and S I G S T O P signals cannot be altered from their
default values. The system will generate an error if this is attempted.

The S I G K I L L and S I G S T O P signals cannot be blocked. The system silently enforces
this restriction.

Whenever a process receives a S I G S T O P, S I G T S T P, S I G T T I N, or S I G T T O U signal,
regardless of its disposition, any pending S I G C O N T signal will be discarded. A pro-
cess stopped by the above four signals is said to be in a job control stop.

Whenever a process receives a S I G C O N T signal, regardless of its disposition, any
pending S I G S T O P, S I G T S T P, S I G T T I N, and S I G T T O U signals will be discarded. In
addition, if the process was stopped, it will be continued.

Page 3

FINAL COPY
June 15, 1995

File: ba_env/signal
svid

Page: 91

signal (BA_ENV) signal (BA_ENV)

S I G P O L L is issued when a file descriptor corresponding to a S T R E A M S [see BASE
SYSTEM INTRODUCTION] file has a "selectable" event pending. A process must
specifically request that this signal be sent using the I _ S E T S I G i o c t l () call. Other-
wise, the process will never receive S I G P O L L.

If the disposition of the S I G C H L D signal has been set with the s i g n a l () or s i g -
s e t () functions, or with the s i g a c t i o n () function and the S A _ N O C L D S T O P flag has
been specified, it will only be sent to the calling process when its children exit; oth-
erwise, it will also be sent when its children are stopped or continued due to job
control.

If the signal occurs other than as the result of calling the a b o r t () or r a i s e () func-
tion, the behavior is undefined if the signal handler calls any function in the stan-
dard library, other than the s i g n a l () function itself, or refers to any object with
static storage duration other than by assigning a value to a storage duration vari-
able of type v o l a t i l e s i g _ a t o m i c _ t.

When signal-catching functions are invoked asynchronously with process execu-
tion, the behavior of some of the functions defined by this interface definition is
unspecified if they are called from a signal-catching function. The following table
defines a set of functions that are guaranteed to be either re-entrant or not interrup-
tible by signals. Therefore applications may invoke them, without restriction, from
signal-catching functions:

a b o r t () f o r k () r e a d () t c d r a i n ()
a c c e s s () f s t a t () r e n a m e () t c f l o w ()
a l a r m () g e t e g i d () r m d i r () t c f l u s h ()
c f g e t i s p e e d () g e t e u i d () s e t g i d () t c g e t a t t r ()
c f g e t o s p e e d () g e t g i d () s e t p g i d () t c g e t p g r p ()
c f s e t i s p e e d () g e t g r o u p s () s e t s i d () t c s e n d b r e a k ()
c f s e t o s p e e d () g e t p g r p () s e t u i d () t c s e t a t t r ()
c h d i r () g e t p i d () s i g a c t i o n () t c s e t p g r p ()
c h m o d () g e t p p i d () s i g a d d s e t () t i m e ()
c h o w n () g e t u i d () s i g d e l s e t () t i m e s ()
c h r o o t () k i l l () s i g e m p t y s e t () u m a s k ()
c l o s e () l i n k () s i g f i l l s e t () u n a m e ()
c r e a t () l o n g j m p () s i g i s m e m b e r () u n l i n k ()
d u p 2 () l s e e k () s i g n a l () u s t a t ()
d u p () m k d i r () s i g p e n d i n g () u t i m e ()
e x e c l e () m k f i f o () s i g p r o c m a s k () w a i t ()
e x e c v e () o p e n () s i g s u s p e n d () w a i t p i d ()
_ e x i t () p a t h c o n f () s l e e p () w r i t e ()
e x i t () p a u s e () s t a t ()
f c n t l () p i p e () s y s c o n f ()

All functions not in the above tables are considered to be unsafe with respect to sig-
nals. If any function that is unsafe is interrupted by a signal-catching function that
then calls any function that is unsafe, the behavior is undefined.

Page 4

FINAL COPY
June 15, 1995

File: ba_env/signal
svid

Page: 92

signal (BA_ENV) signal (BA_ENV)

The structure s i g a c t i o n and the constants:

S A _ O N S T A C K
S A _ R E S E T H A N D
S A _ R E S T A R T
S A _ S I G I N F O
S A _ N O C L D W A I T
S A _ N O C L D S T O P

are defined for use with the function s i g a c t i o n () [see sigaction(BA_OS)].

The constants:

S I G _ B L O C K
S I G _ U N B L O C K
S I G _ S E T M A S K

are defined for use with the function s i g p r o c m a s k () [see sigprocmask(BA_OS)].

The following are declared as functions or macros:

k i l l () s i g e m p t y s e t () s i g p e n d i n g ()
s i g a c t i o n () s i g f i l l s e t () s i g p r o c m a s k ()
s i g a d d s e t () s i g i s m e m b e r () s i g s u s p e n d ()
s i g d e l s e t () s i g n a l ()

Considerations for Threads Programming
Signal disposition (that is, to default or to ignore or to trap by function a given sig-
nal type) is maintained at the process level and is shared by all threads. Signal
masks, on the other hand, are maintained per thread.

Depending on circumstances (outlined below), caught signals are handled either by
a specific thread or an arbitrary thread.

Synchronous Signals
Signals that are initiated by a specific thread (for example, division by zero,
a request for a S I G A L R M signal, a reference to an invalid address) are
delivered to and handled by that thread. (Note: that thread will use the
common handler function currently defined for the containing process.)

Asynchronous Signals
Signals that are not initiated by a specific thread (for example, a S I G I N T sig-
nal from a terminal, a signal from another process via k i l l(BA_OS)) are
handled by an arbitrary thread of the process that meets either of the follow-
ing conditions.

The thread has a signal mask that does not include the type of the
caught signal.

The thread is blocked is a s i g w a i t(BA_OS) system call whose argu-
ment does include the type of the caught signal.

A caught signal will be delivered to only one thread of a process. Applications can-
not predict which of several eligible threads will receive a caught signal. If this
behavior is undesirable, applications should maintain only a single eligible thread
per signal type.

Page 5

FINAL COPY
June 15, 1995

File: ba_env/signal
svid

Page: 93

signal (BA_ENV) signal (BA_ENV)

Signal handling occurs only when a thread is scheduled to run. That latency can be
reduced by having signals caught by (permanently) bound threads.

SEE ALSO
exit(BA_OS), getrlimit(BA_OS), kill(BA_OS), pause(BA_OS), raise(BA_OS),
sigaction(BA_OS), sigalstack(BA_OS), siginfo(BA_ENV), signal(BA_OS),
sigprocmask(BA_OS), sigsend(BA_OS), sigsetops(BA_OS), sigsuspend(BA_OS),
streams(BA_DEV), termio(BA_DEV), wait(BA_OS).

LEVEL
Level 1.

Page 6

FINAL COPY
June 15, 1995

File: ba_env/signal
svid

Page: 94

stat (BA_ENV) stat (BA_ENV)

NAME
stat: sys/stat.h – data returned by stat function

SYNOPSIS
#include <sys/stat.h>

DESCRIPTION
The <sys/stat.h> header defines the structure of the data returned by the func-
tions stat() and fstat() [see stat(BA_OS)].

The structure stat contains at least the following members:

dev_t st_dev; /* ID of device containing file */
ino_t st_ino; /* file serial number */
mode_t st_mode; /* type of file (see below) */
nlink_t st_nlink; /* number of links */
uid_t st_uid; /* user ID of file owner */
gid_t st_gid; /* group ID of file owner */
dev_t st_rdev; /* device ID (if file is character

or block special) */
off_t st_size; /* file size in bytes (if file is a

regular file) */
time_t st_atime; /* time of last access */
time_t st_mtime; /* time of last data modification */
time_t st_ctime; /* time of last status change */
long st_blksize; /* the preferred I/O block size for

this object */
long st_blocks; /* number of st_blksize blocks allocated

for this object */

The following symbolic names for the values of st_mode are also defined:

File type:

S_IFMT type of file
S_IFBLK block special
S_IFCHR character special
S_IFDIR directory
S_IFIFO FIFO special
S_IFREG regular
S_IFLNK symbolic link

File modes:

S_IRWXU read, write, execute/search by owner
S_IRUSR read permission, owner
S_IWUSR write permission, owner
S_IXUSR execute/search permission, owner

S_IRWXG read, write, execute/search by group
S_IRGRP read permission, group
S_IWGRP write permission, group

Page 1

FINAL COPY
June 15, 1995

File: ba_env/stat
svid

Page: 95

stat (BA_ENV) stat (BA_ENV)

S_IXGRP execute/search permission, group
S_IRWXO read, write, execute/search by others

S_IROTH read permission, others
S_IWOTH write permission,others
S_IXOTH execute/search permission, others

S_ISUID set user ID on execution
S_ISGID set group ID on execution
S_ISVTX reserved

File type test macros:

S_ISBLK () test for a block special file
S_ISCHR () test for a character special file
S_ISDIR () test for a directory
S_ISFIFO () test for a FIFO special file
S_ISREG () test for a regular file

The following are declared as either functions or macros:

chmod() mkfifo()
fstat() mknod()
lstat() stat()
mkdir() umask()

USAGE
Use of the macros is recommended for determining the type of a file.

SEE ALSO
chmod(BA_OS), mkdir(BA_OS), mknod(BA_OS), stat(BA_OS), umask(BA_OS),
types(BA_ENV).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ba_env/stat
svid

Page: 96

stdarg (BA_ENV) stdarg (BA_ENV)

NAME
stdarg: va_start, va_arg, va_end – handle variable argument list

SYNOPSIS
#include <stdarg.h>

void va_start(va_list ap, parmN);

type va_arg(va_list ap, type);

void va_end(va_list ap);

DESCRIPTION
This set of macros allows portable procedures that accept variable argument lists to
be written. Routines that have variable argument lists [see printf(BA_LIB)] but do
not use the stdarg macros are inherently nonportable, because different machines
use different argument-passing conventions.

va_list is a type defined for the variable used to traverse the list.

The va_start() macro is invoked before any access to the unnamed arguments
and initializes ap for subsequent use by va_arg() and va_end(). The parameter
parmN is the identifier of the rightmost parameter in the variable parameter list in
the function definition (the one just before the , ...). If this parameter is declared
with the register storage class or with a function or array type, the behavior is
undefined.

The parameter parmN is required under strict ANSI C compilation. In other compi-
lation modes, parmN need not be supplied and the second parameter to the
va_start() macro can be left empty [e.g., va_start(ap,);]. This allows for
routines that contain no parameters before the ... in the variable parameter list.

The va_arg() macro expands to an expression that has the type and value of the
next argument in the call. The parameter ap should have been previously initialized
by va_start(). Each invocation of va_arg() modifies ap so that the values of
successive arguments are returned in turn. The parameter type is the type name of
the next argument to be returned. The type name must be specified in such a way
so that the type of a pointer to an object that has the specified type can be obtained
simply by postfixing a * to type. If there is no actual next argument, or if type is not
compatible with the type of the actual next argument (as promoted according to the
default argument promotions), the behavior is undefined.

The va_end() macro is used to clean up.

Multiple traversals, each bracketed by va_start() ... va_end(), are possible.

USAGE
It is up to the calling routine to specify how many arguments there are, because it is
not always possible to determine this from the stack frame. For example, execl()
is passed a zero pointer to signal the end of the list. printf() can tell how many
arguments are there by the format. It is non-portable to specify a second argument
of char, short, or float to va_arg(), because arguments seen by the called
function are not char, short, or float. C converts char and short arguments
to int and converts float arguments to double before passing them to a func-
tion.

Page 1

FINAL COPY
June 15, 1995

File: ba_env/stdarg
svid

Page: 97

stdarg (BA_ENV) stdarg (BA_ENV)

EXAMPLE
The function f1() gathers into an array a list of arguments that are pointers to
strings (but not more than MAXARGS arguments), then passes the array as a single
argument to function f2(). The number of pointers is specified by the first argu-
ment to f1().

#include <stdarg.h>
#define MAXARGS 31

void f1(int n_ptrs, ...)
{

va_list ap;
char *array[MAXARGS];
int ptr_no = 0;

if (n_ptrs > MAXARGS)
n_ptrs = MAXARGS;

va_start(ap, n_ptrs);
while (ptr_no < n_ptrs)

array[ptr_no++] = va_arg(ap, char *);
va_end(ap);
f2(n_ptrs, array);

}

Each call to f1() should have visible the definition of the function or a declaration
such as

void f1(int, ...);

SEE ALSO
exec(BA_OS), printf(BA_LIB), vprintf(BA_LIB).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ba_env/stdarg
svid

Page: 98

stddef (BA_ENV) stddef (BA_ENV)

NAME
stddef: stddef.h – standard definitions

SYNOPSIS
#include <stddef.h>

DESCRIPTION
The following types and macros are defined in the standard header <stddef.h>.
Some are also defined in other headers.

The types are:

ptrdiff_t signed integral type of the result of subtracting two pointers

size_t unsigned integral type of the result of the sizeof operator

wchar_t integral type whose range of values can represent distinct codes for all
members of the largest extended character set specified among the
supported locales; the null character shall have the code value zero.
The space character, control characters representing horizontal tab,
vertical tab and form feed, and each member of

[A-Za-z0-9!"#%&’()*+,-./:;<=>?[\]ˆ_{|}˜]
shall have a code value equal to its value when used as the lone char-
acter in an integer character constant.

The macros are NULL and
offsetof(type, member-designator)

which expands to an integral constant expression that has type size_t, the value
of which is the offset, in bytes, to the structure member (designated by member-
designator), from the beginning of its structure (designated by type). The member-
designator shall be such that given

static type t;
then the expression (t.member-designator) evaluates to an address constant. (If
the specified member is a bit-field, the behavior is undefined.)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_env/stddef
svid

Page: 99

stdio (BA_ENV) stdio (BA_ENV)

NAME
stdio: stdio.h – standard buffered input/output

SYNOPSIS
#include <stdio.h>

DESCRIPTION
The <stdio.h> header defines the following symbolic names:

BUFSIZ Size of stdio buffers
EOF End-of-file return value
FILENAME_MAX Maximum size of character array

to hold longest filename string
FOPEN_MAX Maximum number of open streams
_IOFBF Input/output fully buffered
_IOLBF Input/output line buffered
_IONBF Input/output unbuffered
L_ctermid Maximum size of character

array to hold ctermid() output
L_cuserid Maximum size of character

array to hold cuserid() output
L_tmpnam Maximum size of character

array to hold tmpnam() output
NULL Null pointer
P_tmpdir Path prefix used by tmpnam() and

tempnam() for generated file names.
SEEK_CUR Seek relative to current position
SEEK_END Seek relative to end-of-file
SEEK_SET Seek relative to start-of-file
stderr Standard error output stream
stdin Standard input stream
stdout Standard output stream
TMP_MAX Minimum number of unique filenames

generated by tmpnam()
NAME_MAX maximum number of characters

in a filename

The following data type is defined through typedef:

FILE A structure containing information about a file
fpos_t An object type capable of recording all the information

needed to specify uniquely every position within a file
size_t Type returned by sizeof C-Language operator

Page 1

FINAL COPY
June 15, 1995

File: ba_env/stdio
svid

Page: 100

stdio (BA_ENV) stdio (BA_ENV)

The following are declared, as either functions or macros:

clearerr()
ctermid()
cuserid()
fclose()
fdopen()
feof()
ferror()
fflush()
fgetc()
fgetpos()
fgets()
fileno()
fopen()
fprintf()
fputc()
fputs()
fread()
freopen()

fscanf()
fseek()
fsetpos()
ftell()
fwrite()
getc()
getchar()
gets()
getw()
pclose()
perror()
popen()
printf()
putc()
putchar()
puts()
putw()
remove()

rename()
rewind()
scanf()
setbuf()
setvbuf()
sprintf()
sscanf()
tempnam()
tmpfile()
tmpnam()
ungetc()
vfprintf()
vprintf()
vsprintf()
putw()
remove()

SEE ALSO
ctermid(BA_LIB), cuserid(BA_OS), fclose(BA_OS), ferror(BA_OS), fopen(BA_OS),
fread(BA_OS), fseek(BA_OS), getc(BA_LIB), getopt(BA_LIB), gets(BA_LIB),
perror(BA_LIB), popen(BA_OS), printf(BA_LIB), putc(BA_LIB), puts(BA_LIB),
rename(BA_OS), scanf(BA_LIB), setbuf(BA_LIB), stdio(BA_LIB), system(BA_OS),
tmpfile(BA_LIB), tmpnam(BA_LIB), ungetc(BA_LIB), vprintf(BA_LIB).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ba_env/stdio
svid

Page: 101

stdlib (BA_ENV) stdlib (BA_ENV)

NAME
stdlib: stdlib.h – standard library definitions

SYNOPSIS
#include <stdlib.h>

DESCRIPTION
The <stdlib.h> header defines the following symbolic names:

EXIT_FAILURE Unsuccessful termination
EXIT_SUCCESS Successful termination
MB_CUR_MAX Maximum number of bytes in a multibyte character for the

extended character set specified by the current locale
NULL null pointer
RAND_MAX Maximum value returned by rand()

The following data type is defined through typedef:

div_t Type returned by the div() function
ldiv_t Type returned by the ldiv() function
size_t Type returned by sizeof C-language operator
wchar_t Type whose range can represent distinct codes for all members of

the largest extended character set specified among supported locales

The following are declared as either functions or macros:

abort() calloc() malloc() srand()
abs() div() mblen() strtod()
atexit() exit() mbstowcs() strtol()
atof() free() mbtowc() strtoul()
atoi() getenv() qsort() system()
atol() labs() rand() wcstombs()
bsearch() ldiv() realloc() wctomb()

SEE ALSO
bsearch(BA_LIB), malloc(BA_OS), qsort(BA_LIB), rand(BA_LIB), setlocale(BA_OS),
strtod(BA_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_env/stdlib
svid

Page: 102

string (BA_ENV) string (BA_ENV)

NAME
string: string.h – string operations

SYNOPSIS
#include <string.h>

DESCRIPTION
The <string.h> header defines the following symbolic name:

NULL null pointer

and the following data type through typedef:

size_t Unsigned integral return of sizeof C-language operator.

The following are declared, as either functions or macros:

memccpy()
memchr()
memcmp()
memcpy()
memmove()
memset()
strcat()
strchr()

strcmp()
strcoll()
strcpy()
strcspn()
strdup()
strerror()
strlen()
strncat()

strncmp()
strncpy()
strpbrk()
strrchr()
strspn()
strstr()
strtok()
strxfrm()

SEE ALSO
memory(BA_LIB), string(BA_LIB), strcoll(BA_LIB), strerror(BA_LIB),
strxfrm(BA_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_env/string
svid

Page: 103

tar (BA_ENV) tar (BA_ENV)

NAME
tar: tar.h – extended tar definitions

SYNOPSIS
#include <tar.h>

DESCRIPTION
Header block definitions are:

General definitions:
Name Description Value

TMAGIC "ustar" ustar plus null byte
TMAGLEN 6 Length of the above
TVERSION "00" 00 without a null byte
TVERSLEN 2 Length of the above

Typeflag field definitions:
Name Description Value

REGTYPE ’0’ Regular file
AREGTYPE ’ \0’ Regular file
LNKTYPE ’1’ Link
SYMTYPE ’2’ Reserved
CHRTYPE ’3’ Character special
BLKTYPE ’4’ Block special
DIRTYPE ’5’ Directory
FIFOTYPE ’6’ FIFO special
CONTTYPE ’7’ Reserved

Mode field bit definitions (octal) :
Name Description Value

TSUID 04000 Set UID on execution
TSGID 02000 Set GID on execution
TSVTX 01000 Reserved
TUREAD 00400 Read by owner
TUWRITE 00200 Write by owner special
TUEXEC 00100 Execute/search by owner
TGREAD 00040 Read by group
TGWRITE 00020 Write by group
TGEXEC 00010 Execute/search by group
TOREAD 00004 Read by other
TOWRITE 00002 Write by other
TOEXEC 00001 Execute/search by other

SEE ALSO
tar(AU_CMD).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_env/tar
svid

Page: 104

termios (BA_ENV) termios (BA_ENV)

NAME
termios: termios.h – define values for termios

SYNOPSIS
#include <termios.h>

DESCRIPTION
The <termios.h> header contains the definitions used by the termios interfaces
[see termios(BA_OS)].

Termios Structure
Unsigned integral type definitions exist for:

cc_t
speed_t
tcflag_t

The termios structure includes the following members:

tcflag_t c_iflag; /* input modes */
tcflag_t c_oflag; /* output modes */
tcflag_t c_cflag; /* control modes */
tcflag_t c_lflag; /* local modes */
cc_t c_cc[NCCS]; /* control chars */

A definition is given for:

NCCS size of the array c_cc for control characters

The special control characters are defined by the array c_cc:_ ___
Subscript Usage

Canonical Non-Canonical
Mode Mode Description

_ ___
VEOF EOF character
VEOL EOL character
VERASE ERASE character
VINTR VINTR INTR character
VKILL KILL character

VMIN MIN value
VQUIT VQUIT QUIT character
VSTART VSTART START character
VSTOP VSTOP STOP character
VSUSP VSUSP SUSP character

VTIME TIME character_ ___

The subscript values are unique, except that the VMIN and VTIME subscripts may
have the same values as the VEOF and VEOL subscripts, respectively.

Input Modes
The c_iflag field describes the basic terminal input control:

BRKINT Signal interrupt on break
ICRNL Map CR to NL on input
IGNBRK Ignore break condition
IGNCR Ignore CR

Page 1

FINAL COPY
June 15, 1995

File: ba_env/termios
svid

Page: 105

termios (BA_ENV) termios (BA_ENV)

IGNPAR Ignore characters with parity errors
INLCR Map NL to CR on input
INPCK Enable input parity check
ISTRIP Strip character
IUCLC Map upper case to lower case on input
IXANY Enable any character to restart output
IXOFF Enable start/stop input control
IXON Enable start/stop output control
PARMRK Mark parity errors

Output Modes
The c_oflag field specifies the system treatment of output:

OPOST Postprocess output
OLCUC Map lower case to upper on output
ONLCR Map NL to CR-NL on output
OCRNL Map CR to NL on output
ONOCR No CR output at column 0
ONLRET NL performs CR function
OFILL Use fill characters for delay
OFDEL Fill is DEL, else NUL
NLDLY Select newline delays:

NL0 Newline character type 0
NL1 Newline character type 1

CRDLY Select carriage-return delays:
CR0 Carriage-return delay type 0
CR1 Carriage-return delay type 1
CR2 Carriage-return delay type 2
CR3 Carriage-return delay type 3

TABDLY Select horizontal-tab delays:
TAB0 Horizontal-tab delay type 0
TAB1 Horizontal-tab delay type 1
TAB2 Horizontal-tab delay type 2
TAB3 Expand tabs to spaces

BSDLY Select backspace delays:
BS0 Backspace-delay type 0
BS1 Backspace-delay type 1

VTDLY Select vertical-tab delays:
VT0 Vertical-tab delay type 0
VT1 Vertical-tab delay type 1

FFDLY Select form-feed delays:
FF0 Form-feed delay type 0
FF1 Form-feed delay type 1

Page 2

FINAL COPY
June 15, 1995

File: ba_env/termios
svid

Page: 106

termios (BA_ENV) termios (BA_ENV)

Baud Rate Selection
The input and output baud rates are stored in the termios structure. These are
the valid values for objects of type speed_t. The following values are defined, but
not all baud rates need be supported by the underlying hardware.

B0 Hang up
B50 50 baud
B75 75 baud
B110 110 baud
B134 134.5 baud
B150 150 baud
B200 200 baud
B300 300 baud
B600 600 baud
B1200 1200 baud
B1800 1800 baud
B2400 2400 baud
B4800 4800 baud
B9600 9600 baud
B19200 19200 baud
B38400 38400 baud

Control Modes
The c_cflag field describes the hardware control of the terminal; not all values
specified are required to be supported by the underlying hardware:

CSIZE Character size:
CS5 5 bits
CS6 6 bits
CS7 7 bits
CS8 8 bits

CSTOPB Send two stop bits, else one
CREAD Enable receiver
PARENB Parity enable
PARODD Odd parity, else even
HUPCL Hang up on last close
CLOCAL Local line, else dial-up

Local Modes
The c_lflag field of the argument structure is used to control various terminal
functions:

ECHO Enable echo
ECHOE Echo erase character as error-correcting backspace
ECHOK Echo KILL
ECHONL Echo NL
ICANON Canonical input (erase and kill processing)
IEXTEN Enable extended input character processing
ISIG Enable signals
NOFLSH Disable flush after interrupt or quit
TOSTOP Send SIGTTOU for background output
XCASE Canonical upper/lower presentation

Page 3

FINAL COPY
June 15, 1995

File: ba_env/termios
svid

Page: 107

termios (BA_ENV) termios (BA_ENV)

Attribute Selection
The following symbolic constants for use with tcsetattr() [see tcsetattr()
in termios(BA_OS)] are defined:

TCSANOW change attributes immediately
TCSADRAIN change attributes when output has drained
TCSAFLUSH change attributes when output has drained; also

flush pending input

Line Control
The following symbolic constants for use with tcflush() [see tcflush() in
termios(BA_OS)] are defined:

TCIFLUSH flush pending input
TCOFLUSH flush untransmitted output
TCIOFLUSH flush both pending input and untransmitted output

The following symbolic constants for use with tcflow() [see tcflow() in
termios(BA_OS)] are defined:

TCIOFF transmit a STOP character, intended to suspend input data
TCION transmit a START character, intended to restart input data
TCOOFF suspend output
TCOON restart output

The following are declared as either functions or macros:

cfgetispeed()
cfgetospeed()
cfsetispeed()
cfsetospeed()
tcdrain()

tcflow()
tcflush()
tcgetattr()
tcgetgrp()
tcgetsid()

tcsendbreak()
tcsetattr()
tcsetgrp()

SEE ALSO
termios(BA_OS), termio(BA_DEV).

LEVEL
Level 1.

Page 4

FINAL COPY
June 15, 1995

File: ba_env/termios
svid

Page: 108

time (BA_ENV) time (BA_ENV)

NAME
time: time.h – time types

SYNOPSIS
#include <time.h>

DESCRIPTION
The <time.h> header declares the structure tm, which includes at least the fol-
lowing members:

int tm_sec; /* seconds [0, 61] */
int tm_min; /* minutes [0, 59] */
int tm_hour; /* hour [0, 23] */
int tm_mday; /* day of month [1, 31] */
int tm_mon; /* month of year [0, 11] */
int tm_year; /* year since 1900 */
int tm_wday; /* day of week [0, 6] (Sunday = 0) */
int tm_yday; /* day of year [0, 365] */
int tm_isdst; /* daylight savings flag */

This header defines the following symbolic names:

NULL null pointer
CLK_TCK number of clock ticks per second
CLOCKS_PER_SEC number of units per second returned by clock()

and the following data types through typedef:

clock_t Arithmetic type capable of representing time in CLOCKS_PER_SEC
size_t Unsigned integral return of sizeof operator
time_t Arithmetic type capable of representing time in seconds

The value of CLK_TCK may be variable and it should not be assumed that CLK_TCK
is a compile-time constant. The value of CLK_TCK is the same as the value of
sysconf(_SC_CLK_TCK) [see sysconf(BA_OS)].

The following are declared as either functions or macros:

asctime() difftime() mktime() time()
clock() gmtime() strftime() tzset()
ctime() localtime()

and the following are declared as variables:

daylight timezone tzname[]

SEE ALSO
clock(BA_LIB), ctime(BA_LIB), mktime(BA_LIB), strftime(BA_LIB),
sysconf(BA_OS), time(BA_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_env/time
svid

Page: 109

times (BA_ENV) times (BA_ENV)

NAME
times: sys/times.h – process and child process times structure

SYNOPSIS
#include <sys/times.h>

DESCRIPTION
The <sys/times.h> header defines the structure returned by times() [see
times(BA_OS)], struct tms, and includes the following members:

clock_t tms_utime; /* User CPU time */
clock_t tms_stime; /* System CPU time
clock_t tms_cutime; /* User CPU time of terminated

child processes */
clock_t tms_cstime; /* System CPU time of terminated

child processes */

The type clock_t is defined through a typedef.

Declares the following as a function:

times()

SEE ALSO
times(BA_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_env/times
svid

Page: 110

types (BA_ENV) types (BA_ENV)

NAME
types: sys/types.h – data types

SYNOPSIS
#include <sys/types.h>

DESCRIPTION
The <sys/types.h> header define data types and includes definitions for at least
the following types:

clock_t Used for system times in CLK_TCKs or CLOCKS_PER_SEC
dev_t Used for device IDs
gid_t Used for group IDs
ino_t Used for file serial numbers
†key_t Used for inter-process communication
mode_t Used for some file attributes
nlink_t Used for link counts
off_t Used for file sizes
pid_t Used for process IDs
size_t Used for sizes of objects
ssize_t Used for count of bytes or error indication
time_t Used for time in seconds
uid_t Used for user IDs

†All of the types except those marked above are defined as arithmetic types of an
appropriate length. Additionally, size_t is unsigned, and pid_t is signed.

USAGE
The following names are commonly used as extensions to the above. They are
therefore reserved and portable applications should not use them:

addr_t
caddr_t

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_env/types
svid

Page: 111

ucontext (BA_ENV) ucontext (BA_ENV)

NAME
ucontext – user context

SYNOPSIS
#include <ucontext.h>

DESCRIPTION
The ucontext structure defines the context of a thread of control within an exe-
cuting process.

This structure includes at least the following members:

ucontext_t *uc_link
sigset_t uc_sigmask
stack_t uc_stack
mcontext_t uc_mcontext

uc_link is a pointer to the context that will be resumed when this context returns.
If uc_link is equal to 0, then this context is the main context, and the process will
exit when this context returns.

uc_sigmask defines the set of signals that are blocked when this context is active
[see sigprocmask(BA_OS)].

uc_stack defines the stack used by this context [see sigaltstack(BA_OS)].

uc_mcontext contains the saved set of machine registers and any implementation
specific context data. Portable applications should not modify or access
uc_mcontext.

SEE ALSO
getcontext(BA_OS), sigaction(BA_OS), sigprocmask(BA_OS), sigaltstack(BA_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_env/ucontext
svid

Page: 112

ulimit (BA_ENV) ulimit (BA_ENV)

NAME
ulimit: ulimit.h – ulimit commands

SYNOPSIS
#include <ulimit.h>

DESCRIPTION
The <ulimit.h> header defines the symbolic constants used in the ulimit()
function [see ulimit(BA_OS)].

Symbolic constants:

UL_GETFSIZE get maximum file size
UL_SETFSIZE set maximum file size

Declares the following as either a function or a macro:

ulimit()

SEE ALSO
ulimit(BA_OS).

LEVEL
Level 2: September 30, 1989.

Page 1

FINAL COPY
June 15, 1995

File: ba_env/ulimit
svid

Page: 113

unistd (BA_ENV) unistd (BA_ENV)

NAME
unistd: unistd.h – standard symbolic constants and structures

SYNOPSIS
#include <unistd.h>

DESCRIPTION
The <unistd.h> header defines the symbolic constants and structures which are
referenced elsewhere in the System V Interface Definition and which are not
already defined or declared in some other header. The contents of this header are
shown below.

The following symbolic constants are defined for the access() function [see
access(BA_OS)]:

R_OK Test for read permission
W_OK Test for write permission
X_OK Test for execute (search) permission
F_OK Test for existence of file

The constants F_OK, R_OK, W_OK and X_OK and the expressions R_OK | W_OK,
R_OK | X_OK and R_OK | W_OK | X_OK all have distinct values.

Declares the constant

NULL null pointer

The following symbolic constants are defined for the lseek() [see lseek(BA_OS)]
and fcntl() [see fcntl(BA_OS)] functions (they have distinct values):

SEEK_SET Set file offset to offset
SEEK_CUR Set file offset to current plus offset
SEEK_END Set file offset to EOF plus offset

The following symbolic constants are defined (with fixed values):

_POSIX_VERSION Integer value indicating version
of the POSIX standard

_XOPEN_VERSION integer value indicating version of the XPG
to which system is compliant

Page 1

FINAL COPY
June 15, 1995

File: ba_env/unistd
svid

Page: 114

unistd (BA_ENV) unistd (BA_ENV)

The following symbolic constants are defined if that option is present:

_POSIX_CHOWN_RESTRICTED the use of chown() is res-
tricted to a process with
appropriate privileges

_POSIX_JOB_CONTROL implementation supports job
control (will be defined on all
compliant systems)

_POSIX_NO_TRUNC pathname components longer
than {NAME_MAX} generate
an error

_POSIX_SAVED_IDS causes the exec functions [see
exec(BA_OS)] to save effective
user and group (will be
defined on all compliant sys-
tems)

_POSIX_VDISABLE terminal special characters
defined in <termios.h> [see
termios(BA_ENV)] can be dis-
abled using this character

The following symbolic constants are defined for sysconf() [see
sysconf(BA_OS)]:

_SC_ARG_MAX
_SC_CHILD_MAX
_SC_CLK_TCK
_SC_JOB_CONTROL
_SC_NGROUPS_MAX
_SC_OPEN_MAX
_SC_PAGESIZE
_SC_PASS_MAX
_SC_SAVED_IDS
_SC_VERSION
_SC_XOPEN_VERSION

The following symbolic constants are defined for pathconf() [see
fpathconf(BA_OS)]:

_PC_CHOWN_RESTRICTED
_PC_LINK_MAX
_PC_MAX_CANON
_PC_MAX_INPUT
_PC_NAME_MAX
_PC_NO_TRUNC
_PC_PATH_MAX
_PC_PIPE_BUF
_PC_VDISABLE

Page 2

FINAL COPY
June 15, 1995

File: ba_env/unistd
svid

Page: 115

unistd (BA_ENV) unistd (BA_ENV)

The following symbolic constants are defined for confstr() [see confstr(BA_OS)]:

_CS_SYSNAME
_CS_HOSTNAME
_CS_RELEASE
_CS_VERSION
_CS_MACHINE
_CS_ARCHITECTURE
_CS_HW_SERIAL
_CS_HW_PROVIDER
_CS_SPRC_DOMAIN

The following symbolic constants are defined for file streams:

STDIN_FILENO File number of stdin. It is 0.
STDOUT_FILENO File number of stout. It is 1.
STDERR_FILENO File number of stderr. It is 2.

The following are declared as either functions or macros:

access() execv() getpgrp() rmdir()
alarm() execve() getpid() setgid()
chdir() execvp() getppid() setpgid()
chown() _exit() getuid() setsid()
close() fork() isatty() setuid()
ctermid() fpathconf() link() sleep()
cuserid() getcwd() lseek() sysconf()
dup2() getegid() pathconf() tcgetpgrp()
dup() geteuid() pause() tcsetpgrp()
execl() getgid() pipe() ttyname()
execle() getgroups() read() unlink()
execlp() getlogin() rename() write()

USAGE
The following values for constants are defined for systems compliant to this issue of
the System V Interface Definition:

_POSIX_VERSION 198808L
_XOPEN_VERSION 3

SEE ALSO
access(BA_OS), alarm(BA_OS), chdir(BA_OS), chown(BA_OS), close(BA_OS),
ctermid(BA_LIB), cuserid(BA_OS), dup(BA_OS), exec(BA_OS), exit(BA_OS),
fcntl(BA_OS), fork(BA_OS), fpathconf(BA_OS), getcwd(BA_OS),
getgroups(BA_OS), getlogin(BA_LIB), getpid(BA_OS), getuid(BA_OS), kill(BA_OS),
link(BA_OS), lseek(BA_OS), open(BA_OS), pause(BA_OS), pipe(BA_OS),
read(BA_OS), rmdir(BA_OS), setpgid(BA_OS), setsid(BA_OS), setuid(BA_OS),
sleep(BA_OS), sysconf(BA_OS), termios(BA_OS), termios(BA_ENV),
ttyname(BA_LIB), unlink(BA_OS), utime(BA_OS), write(BA_OS), limits(BA_ENV).

Page 3

FINAL COPY
June 15, 1995

File: ba_env/unistd
svid

Page: 116

unistd (BA_ENV) unistd (BA_ENV)

LEVEL
Level 1.

Page 4

FINAL COPY
June 15, 1995

File: ba_env/unistd
svid

Page: 117

utime (BA_ENV) utime (BA_ENV)

NAME
utime: utime.h – access and modification times structure

SYNOPSIS
#include <utime.h>

DESCRIPTION
The <utime.h> header declares the structure utimbuf, which includes the follow-
ing members:

time_t actime; /* access time */
time_t modtime; /* modification time */

The times are measured in seconds since the Epoch.

The type time_t is declared in <sys/types.h> [see types(BA_ENV)].

Declares the following as a function.

utime()

SEE ALSO
utime(BA_OS), types(BA_ENV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_env/utime
svid

Page: 118

utsname (BA_ENV) utsname (BA_ENV)

NAME
utsname: sys/utsname.h – system name structure

SYNOPSIS
#include <sys/utsname.h>

DESCRIPTION
The <sys/utsname.h> header defines struct utsname, which includes the
following members:

char sysname[{SYS_NMLN}]; /* Name of this implementation of
the operating system */

char nodename[{SYS_NMLN}]; /* Name of this node within an
implementation-specified
communications network */

char release[{SYS_NMLN}]; /* Current release level of this
implementation */

char version[{SYS_NMLN}]; /* Current version level of this
release */

char machine[{SYS_NMLN}]; /* Name of the hardware type that
the system is running on */

The data stored in the character arrays is terminated by a null character.

Declares the following as a function:

uname()

SEE ALSO
uname(BA_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_env/utsname
svid

Page: 119

wait (BA_ENV) wait (BA_ENV)

NAME
wait: sys/wait.h – declarations for waiting

SYNOPSIS
#include <sys/wait.h>

DESCRIPTION
The <sys/wait.h> header defines the following symbolic constants for use with
the waitpid() function [see wait(BA_OS)]:

WNOHANG do not hang if no status is available, return immediately
WUNTRACED report status of stopped child process

and the following macros for analysis of process status values:

WEXITSTATUS () return exit status
WIFEXITED () true if child exited normally
WIFSIGNALED () true if child exited due to uncaught signal
WIFSTOPPED () true if child is currently stopped
WSTOPSIG () return signal number that caused process to stop
WTERMSIG () return signal number that caused process to terminate

The following are declared as either functions or macros.

wait() waitpid() waitid()

SEE ALSO
wait(BA_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_env/wait
svid

Page: 120

wchar (BA_ENV) wchar (BA_ENV)

NAME
w c h a r – extended wide character utilities

SYNOPSIS
i n c l u d e < w c h a r . h >

DESCRIPTION
The w c h a r . h header defines the data types listed below through t y p e d e fs:

w c h a r _ t Integral type whose range of values can represent distinct wide char-
acter codes for all members of the largest character set specified
among the locales supported by the compilation environment: the null
character has the code value zero and each member of the Portable
Character Set has a code value equal to its value when used as the
lone character in an integer character constant.

w u c h a r _ t The unsigned version of w c h a r _ t.

m b s t a t e _ t A type that can represent the state of the conversion between wide
and multibyte characters.

w i n t _ t An integral type that is able to store any valid wide character value
and W E O F.

w c t y p e _ t A scalar type (pointer or integer) that can hold values which represent
locale specific character classification categories.

s i z e _ t Unsigned integral type which is the result of the sizeof operator.

The following functions are declared by the w c h a r header:

i n t i s w a s c i i (w i n t _ t wc) ;
i n t i s w a l n u m (w i n t _ t wc) ;
i n t i s w a l p h a (w i n t _ t wc) ;
i n t i s w c n t r l (w i n t _ t wc) ;
i n t i s w d i g i t (w i n t _ t wc) ;
i n t i s w g r a p h (w i n t _ t wc) ;
i n t i s w l o w e r (w i n t _ t wc) ;
i n t i s w p r i n t (w i n t _ t wc) ;
i n t i s w p u n c t (w i n t _ t wc) ;
i n t i s w s p a c e (w i n t _ t wc) ;
i n t i s w u p p e r (w i n t _ t wc) ;
i n t i s w x d i g i t (w i n t _ t wc) ;
i n t i s w c t y p e (w i n t _ t wc, w c t y p e _ t prop) ;
i n t f w p r i n t f (F I L E *stream, c o n s t w c h a r _ t *format, . . .) ;
i n t f w s c a n f (F I L E *stream, c o n s t w c h a r _ t *format, . . .) ;
i n t w p r i n t f (c o n s t w c h a r _ t *format, . . .) ;
i n t w s c a n f (c o n s t w c h a r _ t *format, . . .) ;
i n t s w p r i n t f (w c h a r _ t *s, s i z e _ t n,

c o n s t w c h a r _ t *format, . . .) ;
i n t s w s c a n f (c o n s t w c h a r _ t *s, c o n s t w c h a r _ t *format,

. . .) ;
i n t v f w p r i n t f (F I L E *stream, c o n s t w c h a r _ t *format,

v a _ l i s t arg) ;
i n t v f w s c a n f (F I L E *stream, c o n s t w c h a r _ t *format,

Page 1

FINAL COPY
June 15, 1995

File: ba_env/wchar
svid

Page: 121

wchar (BA_ENV) wchar (BA_ENV)

v a _ l i s t arg) ;
i n t v w p r i n t f (c o n s t w c h a r _ t *format, v a _ l i s t arg) ;
i n t v w s c a n f (c o n s t w c h a r _ t *format, v a _ l i s t arg) ;
i n t v s w p r i n t f (w c h a r _ t * s , s i z e _ t n,

c o n s t w c h a r _ t *format, v a _ l i s t arg) ;
i n t v s w s c a n f (c o n s t w c h a r _ t *s, c o n s t w c h a r _ t *format,

v a _ l i s targ) ;
i n t w c t o b (w i n t _ t c) ;
i n t m b s i n i t (c o n s t m b s t a t e _ t *ps) ;
i n t m b r l e n (c o n s t c h a r *s, s i z e _ t n, m b s t a t e _ t *ps) ;
i n t m b r t o w c (w c h a r _ t *pwc, c o n s t c h a r *s, s i z e _ t n,

m b s t a t e _ t *ps) ;
i n t w c r t o m b (c h a r *s, w c h a r _ t wc, m b s t a t e _ t *ps) ;
s i z e _ t m b s r t o w c s (w c h a r _ t *dst, c o n s t c h a r * *src, s i z e _ t len,

m b s t a t e _ t *ps) ;
s i z e _ t w c s r t o m b s (c h a r *dst, c o n s t w c h a r _ t * *src, s i z e _ t len,

m b s t a t e _ t *ps) ;
w i n t _ t f g e t w c (F I L E *stream) ;
w c h a r _ t * f g e t w s (w c h a r _ t *s, i n t n, F I L E *stream) ;
w i n t _ t f p u t w c (w i n t _ t c, F I L E stream) ;
i n t f p u t w s (c o n s t w c h a r _ t s, F I L E *stream) ;
w i n t _ t g e t w c (F I L E *stream) ;
w i n t _ t g e t w c h a r (v o i d) ;
w i n t _ t p u t w c (w i n t _ t c, F I L E *stream) ;
w i n t _ t p u t w c h a r (w i n t _ t c) ;
w i n t _ t t o w l o w e r (w i n t _ t wc) ;
w i n t _ t t o w u p p e r (w i n t _ t wc) ;
w i n t _ t u n g e t w c (w i n t _ t c, F I L E *stream) ;
w c t y p e _ t w c t y p e (c o n s t c h a r *property) ;
w c h a r _ t * w c s c a t (w c h a r _ t *ws1, c o n s t w c h a r _ t *ws2) ;
w c h a r _ t * w c s c h r (c o n s t w c h a r _ t *ws, w i n t _ t wc) ;
i n t w c s c m p (c o n s t w c h a r _ t *ws1, c o n s t w c h a r _ t *ws2) ;
i n t w c s c o l l (c o n s t w c h a r _ t *ws1, c o n s t w c h a r _ t *ws2) ;
w c h a r _ t * w c s c p y (w c h a r _ t *ws1, c o n s t w c h a r _ t *ws2) ;
s i z e _ t w c s c s p n (c o n s t w c h a r _ t *ws1, c o n s t w c h a r _ t *ws2) ;
s i z e _ t w c f s t i m e (w c h a r _ t *wcs, s i z e _ t maxsize,

c o n s t w c h a r _ t *fmt, c o n s t s t r u c t t m *timptr) ;
s i z e _ t w c s l e n (c o n s t w c h a r _ t *ws1) ;
w c h a r _ t * w c s n c a t (w c h a r _ t *ws1, c o n s t w c h a r _ t *ws2, s i z e _ t n) ;
i n t w c s n c m p (c o n s t w c h a r _ t *ws1, c o n s t w c h a r _ t *ws2,

s i z e _ t n) ;
w c h a r _ t * w c s n c p y (w c h a r _ t *ws1, c o n s t w c h a r _ t *ws2, s i z e _ t n) ;
w c h a r _ t * w c s p b r k (c o n s t w c h a r _ t *ws1, c o n s t w c h a r _ t *ws2) ;
w c h a r _ t * w c s r c h r (c o n s t w c h a r _ t *ws, w i n t r _ t wc) ;
s i z e _ t w c s s p n (c o n s t w c h a r _ t *ws1, c o n s t w c h a r _ t *ws2) ;
d o u b l e w c s t o d (c o n s t w c h a r _ t *nptr, w c h a r _ t * *endptr) ;
f l o a t w c s t o f (c o n s t w c h a r _ t *nptr, w c h a r _ t * *endptr) ;
l o n g d o u b l e w c s t o l d (c o n s t w c h a r _ t *nptr, w c h a r _ t * *endptr) ;
w c h a r _ t * w c s t o k (w c h a r _ t *ws1, c o n s t w c h a r _ t *ws2,

Page 2

FINAL COPY
June 15, 1995

File: ba_env/wchar
svid

Page: 122

wchar (BA_ENV) wchar (BA_ENV)

w c h a r _ t * *savept) ;
l o n g i n t w c s t o l (c o n s t w c h a r _ t *nptr, w c h a r _ t * *endptr,

i n t base) ;
u n s i g n e d l o n g w c s t o u l (c o n s t w c h a r _ t *nptr, w c h a r _ t * *endptr,

i n t base) ;
w c h a r _ t * w c s s t r (c o n s t w c h a r _ t *ws1, c o n s t w c h a r _ t *ws2) ;
i n t w c s w i d t h (c o n s t w c h a r _ t *pwcs, s i z e _ t n) ;
s i z e _ t w c s x f r m (w c h a r _ t *ws1, c o n s t w c h a r _ t *ws2,

s i z e _ t n) ;
i n t w c w i d t h (w i n t _ t) ;

w c h a r defines the following macro names:

W E O F Constant expression that is returned by some of the above functions to
indicate end-of-file.

N U L L Null pointer constant.

LEVEL
Level 1.

NOTICES
If the feature test macro _ X O P E N _ S O U R C E is defined, the following are available:

w c h a r _ t * w c s t o k (w c h a r _ t ws1, c o n s t w c h a r _ t *ws2) ;
w c h a r _ t * w c s w c s (c o n s t w c h a r _ t *ws1, c o n s t w c h a r _ t *ws2) ;
s i z e _ t w c s f t i m e (w c h a r _ t *wcs, s i z e _ t maxsize,

c o n s t c h a r *fmt, c o n s t s t r u c t t m *timptr) ;

and all the symbols from s t d i o . h.

Page 3

FINAL COPY
June 15, 1995

File: ba_env/wchar
svid

Page: 123

FINAL COPY
June 15, 1995

File:

Page: 124

Base OS Service Routines

The following section contains the manual pages for the BA_OS service routines.

Base OS Service Routines 5-1

FINAL COPY
June 15, 1995

File: ba_os.cov
svid

Page: 125

FINAL COPY
June 15, 1995

File:

Page: 126

abort (BA_OS) abort (BA_OS)

NAME
a b o r t – generate an abnormal termination signal

SYNOPSIS
i n c l u d e < s t d l i b . h >

v o i d a b o r t (v o i d) ;

DESCRIPTION
a b o r t first closes all open files, s t d i o streams, directory streams and message
catalogue descriptors, if possible, then causes the signal S I G A B R T to be sent to the
calling process.

USAGE
The signal sent by a b o r t (), S I G A B R T, should not be caught or ignored by applica-
tions. [see s h(BU_CMD)].

SEE ALSO
c a t o p e n(BA_LIB), e x i t(BA_OS), k i l l(BU_CMD), s d b(SD_CMD), s h(BU_CMD)
s i g n a l(BA_OS), s i g a c t i o n(BA_OS), s t d i o(BA_LIB)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/abort
svid

Page: 127

access (BA_OS) access (BA_OS)

NAME
access – determine accessibility of a file

SYNOPSIS
#include <unistd.h>

int access(const char *path, int amode);

DESCRIPTION
The function access() checks the accessibility of the file named by the pathname
pointed to by the path argument, for the file access permissions indicated by amode,
using the real user ID in place of the effective user ID, and the real group ID in place
of the effective group ID.

The symbolic constants for the argument amode are defined by the <unistd.h>
header file and are as follows:

Name Description

R_OK test for read permission.

W_OK test for write permission.

X_OK test for execute (search) permission.

F_OK test for existence of file.

The argument amode is either the bitwise inclusive OR of one or more of the values
of the symbolic constants for R_OK, W_OK, and X_OK or is the value of the symbolic
constant F_OK.

RETURN VALUE
Upon successful completion, the function access() returns a value of 0; other-
wise, it returns a value of –1 and sets errno to indicate an error.

ERRORS
Under the following conditions, the function access() fails and sets errno to:

ENOTDIR if a component of the path prefix is not a directory.

ENOENT if the named file does not exist or the path argument points to an
empty string.

EACCES if a component of the path prefix denies search permission, or if
the permission bits of the file mode do not permit the requested
access.

EROFS if write access is requested for a file on a read-only file system.

ENAMETOOLONG if the length of a pathname exceeds {PATH_MAX}, or a pathname
component is longer than {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

ELOOP if too many symbolic links are encountered in translating the
path.

SEE ALSO
chmod(BA_OS), stat(BA_OS).

Page 1

FINAL COPY
June 15, 1995

File: ba_os/access
svid

Page: 128

access (BA_OS) access (BA_OS)

FUTURE DIRECTIONS
EINVAL will be returned in errno if the argument amode is invalid.

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ba_os/access
svid

Page: 129

adjtime(BA_OS) adjtime(BA_OS)

NAME
adjtime – correct the time to synchronize the system clock

SYNOPSIS
#include <sys/time.h>

int adjtime(struct timeval *delta, struct timeval *olddelta);

DESCRIPTION
The function adjtime() adjusts the system’s notion of the current time, as
returned by gettimeofday(), advancing or retarding it by the amount of time
specified in the struct timeval pointed to by delta.

The adjustment is effected by speeding up (if that amount of time is positive) or
slowing down (if that amount of time is negative) the system’s clock by some small
percentage, generally a fraction of one percent. Thus, the time is always a
monotonically-increasing function. A time correction from an earlier call to adj-
time() may not be finished when adjtime() is called again. The second call to
adjtime() cancels the first call to adjtime(). If delta is 0, then olddelta returns
the status of the effects of the previous adjtime() call and there is no effect upon
time correction as a result of this call. If olddelta is not a null pointer, then the struc-
ture it points to will contain, upon return, the number of seconds and/or
microseconds still to be corrected from the earlier call. If olddelta is a null pointer,
the corresponding information will not be returned.

This call may be used in time servers that synchronize the clocks of computers in a
local area network. Such time servers would slow down the clocks of some
machines and speed up the clocks of others to bring them to the average network
time.

The adjustment value will be silently rounded to the resolution of the system clock.

RETURN VALUE
Upon successful completion, the function adjtime() returns a value of 0; other-
wise, it returns a value –1 and sets errno to indicate an error.

ERRORS
Under the following condition, the function adjtime() fails and sets errno to:

EPERM if the process does not have the appropriate privilege.

SEE ALSO
date(BU_CMD), gettimeofday(RT_OS).

FUTURE DIRECTIONS
The functionality of adjtime() will be supported in the future, but the means of
expressing terms will be changed to POSIX P1003.4–compatible types when that
standard is available.

LEVEL
Level 2: September 30, 1989.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/adjtime
svid

Page: 130

alarm (BA_OS) alarm (BA_OS)

NAME
a l a r m – set process alarm clock

SYNOPSIS
i n c l u d e < u n i s t d . h >

u n s i g n e d a l a r m (u n s i g n e d sec) ;

DESCRIPTION
a l a r m instructs the alarm clock of the process to send the signal S I G A L R M to the
process after the number of real time seconds specified by sec have elapsed [see
s i g n a l(BA_OS)].

Alarm requests are not stacked; successive calls reset the alarm clock of the calling
process.

If sec is 0, any previously made alarm request is canceled.

The f o r k routine sets the alarm clock of a new process to 0 [see fork(BA_OS)]. A
process created by the e x e c family of routines inherits the time left on the old
process’s alarm clock.

Return Values
a l a r m returns the amount of time previously remaining in the alarm clock of the
calling process.

SEE ALSO
e x e c(BA_OS), f o r k(BA_OS), p a u s e(BA_OS), s i g n a l(BA_OS)

LEVEL
Level 1.

NOTICES
Considerations for Threads Programming

In multithreaded applications, the alarm signal is delivered to only the requesting
thread, no other.

A thread cannot respond to a signal until it is scheduled for execution. For multi-
plexed threads, there may be a time lag between delivery of the signal and the time
it is scheduled to run. For improved response, consider using bound threads.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/alarm
svid

Page: 131

atexit(BA_OS) atexit(BA_OS)

NAME
atexit – add program termination routine

SYNOPSIS
#include <stdlib.h>

int atexit(void (*func)(void));

DESCRIPTION
The function atexit() adds the function func to a list of functions to be called
without arguments upon normal termination of the program. Normal termination
occurs by either a call to exit() or a return from main(). At least 32 functions
may be registered by atexit() and the functions will be called in the reverse
order of their registration.

RETURN VALUE
Upon successful completion, the function atexit() returns a value of zero; other-
wise, it returns a non-zero value.

SEE ALSO
exit(BA_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/atexit
svid

Page: 132

chdir (BA_OS) chdir (BA_OS)

NAME
chdir, fchdir – change working directory

SYNOPSIS
#include <unistd.h>

int chdir(const char *path);

int fchdir(int fildes);

DESCRIPTION
The functions chdir() and fchdir() cause a directory pointed to by path or
referenced by the file descriptor fildes to become the current working directory, a
directory that is the starting point for path searches of pathnames not beginning
with slash.

For a directory to become the current working directory, a process must have exe-
cute (search) access to the directory. path points to the pathname of a directory.
The fildes argument to fchdir() is a file descriptor of a directory obtained from a
call to open() [see open(BA_OS)].

RETURN VALUE
Upon successful completion, the function chdir() returns a value of 0; otherwise,
it returns a value of –1 and sets errno to indicate an error. On failure the current
working directory remains unchanged.

ERRORS
Under the following conditions, the function chdir() fails and sets errno to:

EACCES if search permission is denied for any component of the path
name.

ENOTDIR if a component of the pathname is not a directory.

ENOENT if the named directory does not exist, or path points to an empty
string.

ELOOP if too many symbolic links were encountered in translating path .

ENAMETOOLONG if the length of a pathname exceeds {PATH_MAX}, or pathname
component is longer than {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

Under the following conditions, the function fchdir() fails and sets errno to:

EACCES if search permission is denied for fildes.

EBADF if fildes is not an open file descriptor.

ENOTDIR if the open file descriptor fildes does not refer to a directory.

SEE ALSO
chroot(KE_OS), open(BA_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/chdir
svid

Page: 133

chmod (BA_OS) chmod (BA_OS)

NAME
c h m o d, f c h m o d – change mode of file

SYNOPSIS
i n c l u d e < s y s / t y p e s . h >
i n c l u d e < s y s / s t a t . h >

i n t c h m o d (c o n s t c h a r ∗path, m o d e _ t mode) ;

i n t f c h m o d (i n t fildes, m o d e _ t mode) ;

DESCRIPTION
c h m o d and f c h m o d set the access permission portion of the mode of the file whose
name is given by path or referenced by the descriptor fildes to the bit pattern con-
tained in mode. If path or fildes are symbolic links, the access permissions of the tar-
get of the symbolic links are set. Access permission bits are interpreted as follows:

S _ I S U I D 04000 Set user ID on execution.
S _ I S G I D 020#0 Set group ID on execution if # is 7, 5, 3, or 1

Enable mandatory file/record locking if # is 6, 4, 2, or 0
S _ I S V T X 01000 Save text image after execution.
S _ I R W X U 00700 Read, write, execute by owner.
S _ I R U S R 00400 Read by owner.
S _ I W U S R 00200 Write by owner.
S _ I X U S R 00100 Execute (search if a directory) by owner.
S _ I R W X G 00070 Read, write, execute by group.
S _ I R G R P 00040 Read by group.
S _ I W G R P 00020 Write by group.
S _ I X G R P 00010 Execute by group.
S _ I R W X O 00007 Read, write, execute (search) by others.
S _ I R O T H 00004 Read by others.
S _ I W O T H 00002 Write by others
S _ I X O T H 00001 Execute by others.

Modes are constructed by an OR of the access permission bits.

The effective user ID of the process must match the owner of the file or the process
must have the appropriate privilege to change the mode of a file.

If the process does not have appropriate privilege and the file is not a directory,
mode bit 01000 (save text image on execution) is cleared.

If the effective group ID of the process does not match the group ID of the file, and
the process does not have appropriate privilege mode bit 02000 (set group ID on
execution) is cleared.

If a 0410 executable file has the sticky bit (mode bit 01000) set, the operating system
will not delete the program text from the swap area when the last user process ter-
minates. If a 0413 or E L F executable file has the sticky bit set, the operating system
will not delete the program text from memory when the last user process ter-
minates. In either case, if the sticky bit is set the text will already be available
(either in a swap area or in memory) when the next user of the file executes it, thus
making execution faster.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/chmod
svid

Page: 134

chmod (BA_OS) chmod (BA_OS)

If a directory is writable and the sticky bit, S _ I S V T X, is set on the directory, a pro-
cess may remove or rename files within that directory only if one or more of the fol-
lowing is true:

the effective user ID of the process is the same as that of the owner ID of the
file

the effective user ID of the process is the same as that of the owner ID of the
directory

the process has write permission for the file.

the process has appropriate privileges

If the mode bit 02000 (set group ID on execution) is set and the mode bit 00010 (exe-
cute or search by group) is not set, mandatory file/record locking will exist on a
regular file. This may affect future calls to o p e n(BA_OS), c r e a t(BA_OS),
r e a d(BA_OS), and w r i t e(BA_OS) on this file.

The following environment variables affect the execution of c h m o d [see
envvar(BA_ENV)]:

L C _ M E S S A G E S
Determines the locale to be used for diagnostic messages. If available,
these messages will be retrieved from the message data base,
u x c o r e . a b i.

L C _ A L L If a non-empty string, this overrides the values of all the other interna-
tionalization variables.

L A N G The default value for internationalization variables that are unset or
null.

Return Values
On success, c h m o d and f c h m o d return 0 and mark for update the s t _ c t i m e field of
the file. On failure, c h m o d and f c h m o d return –1, set e r r n o to identify the error,
and the file mode is unchanged.

Errors
In the following conditions, c h m o d fails and sets e r r n o to:

E A C C E S Search permission is denied on a component of the path prefix of path.

E A C C E S Write permission on the named file is denied.

E I N T R A signal was caught during execution of the system call.

E L O O P Too many symbolic links were encountered in translating path.

E N A M E T O O L O N G
The length of the path argument exceeds {P A T H _ M A X}, or the length of a
path component exceeds {N A M E _ M A X} while _ P O S I X _ N O _ T R U N C is in
effect.

E N O T D I R A component of the prefix of path is not a directory.

E N O E N T Either a component of the path prefix, or the file referred to by path
does not exist or is a null pathname.

Page 2

FINAL COPY
June 15, 1995

File: ba_os/chmod
svid

Page: 135

chmod (BA_OS) chmod (BA_OS)

E P E R M The effective user ID does not match the owner of the file and the pro-
cess does not have appropriate privilege (P _ O W N E R).

E R O F S The file referred to by path resides on a read-only file system.

In the following conditions, f c h m o d fails and sets e r r n o to:

E B A D F fildes is not an open file descriptor

E I N T R A signal was caught during execution of the f c h m o d system call.

E N O L I N K path points to a remote machine and the link to that machine is no
longer active.

E P E R M The effective user ID does not match the owner of the file and the pro-
cess does not have appropriate privilege (P _ O W N E R).

E R O F S The file referred to by fildes resides on a read-only file system.

SEE ALSO
c h o w n(BA_OS), c r e a t(BA_OS), e x e c(BA_OS), f c n t l(BA_OS), m k f i f o(AS_CMD),
m k n o d(BA_OS), o p e n(BA_OS), r e a d(BA_OS), s t a t(BA_OS), w r i t e(BA_OS)

LEVEL
Level 1.

The enforcement mode of file and record locking has moved to Level 2 effective
September 30, 1989.

Page 3

FINAL COPY
June 15, 1995

File: ba_os/chmod
svid

Page: 136

chown (BA_OS) chown (BA_OS)

NAME
c h o w n, l c h o w n, f c h o w n – change owner and group of a file

SYNOPSIS
i n c l u d e < u n i s t d . h >
i n c l u d e < s y s / s t a t . h >

i n t c h o w n (c o n s t c h a r ∗path, u i d _ t owner, g i d _ t group) ;

i n t l c h o w n (c o n s t c h a r ∗path, u i d _ t owner, g i d _ t group) ;

i n t f c h o w n (i n t fildes, u i d _ t owner, g i d _ t group) ;

DESCRIPTION
The owner I D and group I D of the file specified by path or referenced by the
descriptor fildes, are set to owner and group respectively. If owner or group is
specified as –1, the corresponding I D of the file is not changed.

The function l c h o w n sets the owner I D and group I D of the named file just as c h o w n
does, except in the case where the named file is a symbolic link. In this case l c h o w n
changes the ownership of the symbolic link file itself, while c h o w n changes the own-
ership of the file or directory to which the symbolic link refers.

If c h o w n, l c h o w n, or f c h o w n is invoked by a process without the P _ O W N E R privilege,
the set-user-ID and set-group-ID bits of the file mode, S _ I S U I D and S _ I S G I D respec-
tively, are cleared [see c h m o d(BA_OS)].

The operating system has a configuration option, {_ P O S I X _ C H O W N _ R E S T R I C T E D},
that restricts ownership changes for the c h o w n, l c h o w n, and f c h o w n system calls.

When {_ P O S I X _ C H O W N _ R E S T R I C T E D} is not in effect, the effective user I D of the cal-
ling process must match the owner of the file or the process must have the P _ O W N E R
privilege to change the ownership of a file.

When {_ P O S I X _ C H O W N _ R E S T R I C T E D} is in effect, the c h o w n, l c h o w n, and f c h o w n
system calls prevent the owner of the file from changing the owner I D of the file
and restrict the change of the group of the file to the list of supplementary group
IDs. This restriction does not apply to calling processes with the P _ O W N E R privilege.

Return Values
On success, c h o w n, f c h o w n and l c h o w n return 0 and mark for update the s t _ c t i m e
field of the file. On failure, c h o w n, f c h o w n and l c h o w n return –1, set e r r n o to iden-
tify the error, and the owner and group of the file are unchanged.

Errors
In the following conditions, c h o w n and l c h o w n fail and set e r r n o to:

E A C C E S Search permission is denied on a component of the path prefix of path.

E A C C E S Write permission on the named file is denied.

E I N V A L group or owner is out of range.

E L O O P Too many symbolic links were encountered in translating path.

E N A M E T O O L O N G
The length of the path argument exceeds {P A T H _ M A X}, or the length of a
path component exceeds {N A M E _ M A X} while _ P O S I X _ N O _ T R U N C is in
effect.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/chown
svid

Page: 137

chown (BA_OS) chown (BA_OS)

E N O T D I R A component of the path prefix of path is not a directory.

E N O E N T Either a component of the path prefix or the file referred to by path
does not exist or is a null pathname.

E P E R M The effective user ID of the calling process does not match the owner
of the file and the calling process does not have the appropriate
privilege (P _ O W N E R) for changing file ownership.

E R O F S The named file resides on a read-only file system.

In the following conditions, f c h o w n fails and sets e r r n o to:

E B A D F fildes is not an open file descriptor.

E I N V A L group or owner is out of range.

E P E R M The effective user ID of the calling process does not match the owner
of the file and the calling process does not have the appropriate
privilege (P _ O W N E R) for changing file ownership.

E R O F S The named file referred to by fildes resides on a read-only file system.

SEE ALSO
c h g r p(AU_CMD), c h m o d(BA_OS), c h o w n(AU_CMD)

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ba_os/chown
svid

Page: 138

close (BA_OS) close (BA_OS)

NAME
c l o s e – close a file descriptor

SYNOPSIS
i n c l u d e < u n i s t d . h >

i n t c l o s e (i n t fildes) ;

DESCRIPTION
c l o s e closes a file. fildes is a file descriptor obtained from a c r e a t, o p e n, d u p,
f c n t l, p i p e, or i o c n t l system call. c l o s e closes the file descriptor indicated by
fildes. All outstanding record locks owned by the process (on the file indicated by
fildes) are removed.

Closing a file descriptor removes one reference to the associated file. When there
are no more outstanding references to the file, if the link count of the file is zero, the
space occupied by the file shall be freed and the file shall no longer be accessible.

If a STREAMS-based fildes is closed, and the calling process had previously
registered to receive a S I G P O L L signal [see s i g n a l(BA_ENV)] for events associated
with that stream [see s t r e a m s(BA_DEV)], the calling process will be unregistered
for events associated with the stream. The last c l o s e for a stream causes the stream
associated with fildes to be dismantled. If O _ N O N B L O C K are clear and there have been
no signals posted for the stream, and if there are data on the module’s write queue,
c l o s e waits up to 15 seconds (for each module and driver) for any output to drain
before dismantling the stream. The time delay can be changed via an I _ S E T C L T I M E
i o c t l request [see s t r e a m s(BA_DEV)]. If O _ N O N B L O C K is set, or if there are any
pending signals, c l o s e does not wait for output to drain, and dismantles the
stream immediately.

If fildes is associated with one end of a pipe, the last c l o s e causes a hangup to occur
on the other end of the pipe. In addition, if the other end of the pipe has been
named [see f a t t a c h(BA_LIB)], the last c l o s e forces the named end to be detached
[see f d e t a c h(BA_LIB)]. If the named end has no open processes associated with it
and becomes detached, the stream associated with that end is also dismantled.

Return Values
On success, c l o s e returns 0. On failure, c l o s e returns –1 and sets e r r n o to iden-
tify the error.

Errors
In the following conditions, c l o s e fails and sets e r r n o to:

E B A D F fildes is not a valid open file descriptor.

E I N T R A signal was caught during the c l o s e system call.

SEE ALSO
c r e a t(BA_OS), d u p(BA_OS), e x e c(BA_OS), f c n t l(BA_OS), o p e n(BA_OS),
p i p e(BA_OS), s i g n a l(BA_OS), s i g n a l(BA_ENV), s t r e a m s(BA_ENV)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/close
svid

Page: 139

close (BA_OS) close (BA_OS)

NOTICES
Considerations for Threads Programming

Open file descriptors are global to the process and accessible to any sibling thread.
If used concurrently, actions by one thread can interfere with those of a sibling.

A c l o s e executed by one thread will render the file descriptor unusable by all
siblings. The c l o s e system call will block a thread that attempts to close a file
descriptor that is in use (mid-system call) by a sibling.

Page 2

FINAL COPY
June 15, 1995

File: ba_os/close
svid

Page: 140

confstr (BA_OS) confstr (BA_OS)

NAME
c o n f s t r – obtain configurable string values

SYNOPSIS
i n c l u d e < u n i s t d . h >

s i z e _ t c o n f s t r (i n t name, c h a r *buf, s i z e _ t len) ;

DESCRIPTION
The c o n f s t r function provides a way for applications to obtain string values that
are configuration-defined. There may be be similarities in terms of purpose and use
with the s y s c o n f function, although c o n f s t r is used with string return values
rather than numeric return values. The argument name is the system variable that is
being queried.

The c o n f s t r function provides the following valid values for name:

_ C S _ S Y S N A M E Copy the string that would be returned by u n a m e [see u n a m e(2)] in
the sysname field, into the array pointed to by buf. This is the name
of the implementation of the operating system, for example,
U N I X _ S V.

_ C S _ H O S T N A M E
Copy a string that names the present host machine into the array
pointed to by buf. This is the string that would be returned by
u n a m e in the nodename field. This hostname or nodename is often
the name the machine is known by locally.

The hostname is the name of this machine as a node in some net-
work; different networks may have different names for the node,
but presenting the nodename to the appropriate network Directory
or name-to-address mapping service should produce a transport
end point address. The name may not be fully qualified.

Internet host names may be up to 256 bytes in length (plus the ter-
minating null).

_ C S _ R E L E A S E Copy the string that would be returned by u n a m e in the release field
into the array pointed to by buf. Typical values might be 4 . 2, 4 . 0,
3 . 2.

_ C S _ V E R S I O N Copy the string that would be returned by u n a m e in the version field
into the array pointed to by buf. The syntax and semantics of this
string are defined by the system provider.

_ C S _ M A C H I N E Copy the string that would be returned by u n a m e in the machine
field into the array pointed to by buf. For example, i 4 8 6.

_ C S _ A R C H I T E C T U R E
Copy a string describing the instruction set architecture of the
current system into the array pointed to by buf. For example,
m c 6 8 0 3 0, i 8 0 4 8 6. These names may not match predefined names
in the C language compilation system.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/confstr
svid

Page: 141

confstr (BA_OS) confstr (BA_OS)

The initial reason for having this function was to provide a way of finding the
configuration-defined default value for the environment variable P A T H. Applica-
tions need to be able to determine the system-supplied P A T H environment variable
value which contains the correct search paths for the various standard utilities. This
is because P A T H can be altered by users so that it can include directories that may
contain utilities that replace standard utilities.

Examples
Here is an example of the use of c o n f s t r by an application:

c o n f s t r (name, (c h a r *) N U L L , (s i z e _ t) 0) ;

In the example the c o n f s t r function is being used by the application to determine
how big a buffer is needed for the string value. m a l l o c could be used to allocate a
buffer to hold the string. To obtain the string, c o n f s t r must be called again. An
alternative is to allocate a fixed static buffer which is large enough to hold most
answers, perhaps 512 or 1024 bytes. m a l l o c could then be used to allocate a buffer
that is larger in size if it finds that this is too small.

SEE ALSO
s y s c o n f(BA_OS), u n i s t d(BA_DEV)

LEVEL
Level 1.

Page 3

FINAL COPY
June 15, 1995

File: ba_os/confstr
svid

Page: 143

creat (BA_OS) creat (BA_OS)

E A G A I N The file exists, mandatory file/record locking is set, and there are out-
standing record locks on the file [see c h m o d(BA_OS)].

E I S D I R The named file is an existing directory.

E I N T R A signal was caught during the c r e a t system call.

E L O O P Too many symbolic links were encountered in translating path.

E M F I L E The process has too many open files

E N A M E T O O L O N G
The length of the path argument exceeds {P A T H _ M A X}, or the length of a
path component exceeds {N A M E _ M A X} while _ P O S I X _ N O _ T R U N C is in
effect.

E N O T D I R A component of the path prefix is not a directory.

E N O E N T A component of the path prefix does not exist.

E N O E N T The pathname is null.

E R O F S The named file resides or would reside on a read-only file system.

E N F I L E The system file table is full.

E N O S P C The file system is out of inodes.

SEE ALSO
c h m o d(BA_OS), c l o s e(BA_OS), f c n t l(BA_OS), l s e e k(BA_OS), o p e n(BA_OS),
r e a d(BA_OS), u m a s k(BA_OS), w r i t e(BA_OS)

LEVEL
Level 1.

The enforcement mode of file and record locking has moved to Level 2 effective
September 30, 1989.

NOTICES
Considerations for Threads Programming

Open file descriptors are a process resource and available to any sibling thread; if
used concurrently, actions by one thread can interfere with those of a sibling.

Page 2

FINAL COPY
June 15, 1995

File: ba_os/creat
svid

Page: 145

cuserid(BA_OS) cuserid(BA_OS)

NAME
cuserid – get character login name of the user

SYNOPSIS
#include <unistd.h>
#include <stdio.h>

char *cuserid(char *s);

DESCRIPTION
The function cuserid() generates a character representation of the login name of
the owner of the current process.

If s is a null pointer, this representation is generated in an internal static area, the
address of which is returned. Otherwise, s is assumed to point to an array of at
least L_cuserid characters; the representation is left in this array. The constant
L_cuserid is defined in the <stdio.h> header file, and has a value greater than
zero.

RETURN VALUE
If the login name cannot be found, the function cuserid() returns a null pointer;
if s is not a null pointer, a null character (\0) will be placed at s[0].

SEE ALSO
getlogin(BA_LIB), getpwent(BA_LIB), logname(AU_CMD).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/cuserid
svid

Page: 146

directory (BA_OS) directory (BA_OS)

NAME
d i r e c t o r y: o p e n d i r, r e a d d i r, r e a d d i r _ r, r e w i n d d i r, c l o s e d i r – directory
operations

SYNOPSIS
i n c l u d e < d i r e n t . h >

i n c l u d e < s y s / t y p e s . h >

D I R ∗o p e n d i r (c o n s t c h a r ∗filename) ;

s t r u c t d i r e n t ∗r e a d d i r (D I R ∗dirp) ;

v o i d r e w i n d d i r (D I R ∗dirp) ;

i n t c l o s e d i r (D I R ∗dirp) ;

DESCRIPTION
o p e n d i r opens the directory named by filename and associates a directory stream
with it. o p e n d i r returns a pointer to be used to identify the directory stream in
subsequent operations. The directory stream is positioned at the first entry. A null
pointer is returned if filename cannot be accessed or is not a directory, or if it cannot
m a l l o c enough memory to hold a D I R structure or a buffer for the directory entries.

r e a d d i r returns a pointer to the next active directory entry and positions the direc-
tory stream at the next entry. No inactive entries are returned. It returns N U L L
upon reaching the end of the directory or upon detecting an invalid location in the
directory. r e a d d i r buffers several directory entries per actual read operation;
r e a d d i r marks for update the s t _ a t i m e field of the directory each time the direc-
tory is actually read. The structure d i r e n t defined by the < d i r e n t . h > header file
describes a directory entry. It includes the filename (d _ n a m e), which is a null-
terminated string of at most { N A M E _ M A X } characters:

c h a r d _ n a m e [{ N A M E _ M A X }] ; / * n a m e o f f i l e * /

r e w i n d d i r resets the position of the named directory stream to the beginning of the
directory. It also causes the directory stream to refer to the current state of the
corresponding directory, as a call to o p e n d i r would.

c l o s e d i r closes the named directory stream and frees the D I R structure.

Errors
The following errors can occur as a result of these operations.

o p e n d i r returns N U L L on failure and sets e r r n o to one of the following values:

E N O T D I R A component of filename is not a directory.

E A C C E S A component of filename denies search permission.

E A C C E S Read permission is denied on the specified directory.

E M F I L E The maximum number of file descriptors are currently open.

E N F I L E The system file table is full.

E L O O P Too many symbolic links were encountered in translating
filename.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/directory
svid

Page: 147

directory (BA_OS) directory (BA_OS)

E N A M E T O O L O N G The length of the filename argument exceeds { P A T H _ M A X }, or the
length of a filename component exceeds { N A M E _ M A X } while
{ _ P O S I X _ N O _ T R U N C } is in effect.

E N O E N T A component of filename does not exist or is a null pathname.

r e a d d i r returns N U L L on failure and sets e r r n o to one of the following values:

E N O E N T The current file pointer for the directory is not located at a valid
entry.

E B A D F The file descriptor determined by the D I R stream is no longer
valid. This result occurs if the D I R stream has been closed.

c l o s e d i r returns –1 on failure and sets e r r n o to the following value:

E B A D F The file descriptor determined by the D I R stream is no longer
valid. This results if the D I R stream has been closed.

USAGE
Here is a sample program that prints the names of all the files in the current direc-
tory:

i n c l u d e < s t d i o . h >
i n c l u d e < d i r e n t . h >

m a i n ()
{

D I R ∗d i r p ;
s t r u c t d i r e n t ∗d i r e n t p ;

d i r p = o p e n d i r (" . ") ;
w h i l e ((d i r e n t p = r e a d d i r (d i r p)) ! = N U L L)

(v o i d) p r i n t f (" % s \ n " , d i r e n t p – > d _ n a m e) ;
c l o s e d i r (d i r p) ;
r e t u r n (0) ;

}

SEE ALSO
d i r e n t(BA_ENV), m k d i r(BA_OS), r m d i r(BA_OS)

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ba_os/directory
svid

Page: 148

dlclose (BA_OS) dlclose (BA_OS)

NAME
d l c l o s e – close a shared object

SYNOPSIS
i n c l u d e < d l f c n . h >

i n t d l c l o s e (v o i d ∗handle) ;

DESCRIPTION
d l c l o s e disassociates a shared object previously opened by d l o p e n from the
current process. Once an object has been closed using d l c l o s e, its symbols are no
longer available to d l s y m. All objects loaded automatically as a result of invoking
d l o p e n on the referenced object [see d l o p e n(BA_OS)] are also closed. handle is the
value returned by a previous invocation of d l o p e n.

Return Values
If the referenced object was successfully closed, d l c l o s e returns 0. If the object
could not be closed, or if handle does not refer to an open object, d l c l o s e returns a
non-0 value. More detailed diagnostic information is available through d l e r r o r. If
the system does not support dynamic linking of shared objects, d l c l o s e returns -1
and sets e r r n o to E N O S Y S.

SEE ALSO
d l e r r o r(BA_OS), d l o p e n(BA_OS), d l s y m(BA_OS)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/dlclose
svid

Page: 149

dlerror (BA_OS) dlerror (BA_OS)

NAME
d l e r r o r – get diagnostic information

SYNOPSIS
i n c l u d e < d l f c n . h >

c h a r ∗d l e r r o r (v o i d) ;
DESCRIPTION

d l e r r o r returns a null-terminated character string (with no trailing newline) that
describes the last error that occurred during dynamic linking processing. If no
dynamic linking errors have occurred since the last invocation of d l e r r o r, d l e r r o r
returns N U L L. Thus, invoking d l e r r o r a second time, immediately following a
prior invocation, results in N U L L being returned.

Return Values
If the system does not support dynamic linking of shared objects, d l e r r o r returns
N U L L and sets e r r n o to E N O S Y S.

SEE ALSO
d l c l o s e(BA_OS), d l o p e n(BA_OS), d l s y m(BA_OS)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/dlerror
svid

Page: 150

dlopen (BA_OS) dlopen (BA_OS)

NAME
d l o p e n – open a shared object

SYNOPSIS
i n c l u d e < d l f c n . h >

v o i d * d l o p e n (c o n s t c h a r ∗pathname, i n t mode) ;

DESCRIPTION
Some implementations support the concept of a shared object. A shared object is an
executable object file that another executable object file may load in constructing its
own process image. A shared object may be loaded at different virtual addresses
for different processes. A shared object may either be loaded when a process is
created, if it was linked with the a . o u t form which the process was derived (see
l d(SD_CMD)) or it may be loaded during the execution of the process.

d l o p e n makes a shared object available to a running process. d l o p e n returns to the
process a handle the process may use on subsequent calls to d l s y m and d l c l o s e.
This value should not be interpreted in any way by the process. pathname is the
path name of the object to be opened; it may be an absolute path or relative to the
current directory. If the value of pathname is 0, d l o p e n makes the symbols con-
tained in the original a . o u t, all of the objects that were loaded at program startup
with the a . o u t, and all objects loaded with the R T L D _ G L O B A L mode, available
through d l s y m.

A shared object may specify other objects that it ‘‘needs’’ in order to execute prop-
erly. These needed objects are specified by special entries in the object file. Each
needed object may, in turn, specify other needed objects. All such objects are
loaded along with the original object as a result of the call to d l o p e n.

When a shared object is brought into the address space of a process, it may contain
references to symbols whose addresses are not known until the object is loaded.
These references must be relocated before the symbols can be accessed. The mode
parameter governs when these relocations take place and may have the following
values:

R T L D _ L A Z Y
Under this mode, only references to data symbols are relocated when the
object is loaded. References to functions are not relocated until a given
function is invoked for the first time. This mode should result in better per-
formance, since a process may not reference all of the functions in any given
shared object.

R T L D _ N O W
Under this mode, all necessary relocations are performed when the object is
first loaded. This may result in some wasted effort, if relocations are per-
formed for functions that are never referenced, but is useful for applications
that need to know as soon as an object is loaded that all symbols referenced
during execution will be available.

Normally, a d l o p e n’d object’s exported symbols are directly available only to those
other objects that were loaded as a result of the same call to d l o p e n. If the mode
argument is logically or’d with the value R T L D _ G L O B A L, however, the exported
symbols of all objects loaded via this call to d l o p e n are directly available to all other
d l o p e n’d objects.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/dlopen
svid

Page: 151

dlopen (BA_OS) dlopen (BA_OS)

When searching for symbols to resolve a reference in one of the objects it is loading,
the dynamic linker looks in the symbol tables of the objects it has already loaded. It
uses the first occurence of the symbol that it finds. The first object searched is the
a . o u t. Then come the a . o u t’s list of needed objects, in the order specified by the
special entries in the a . o u t. Then come the second level list of needed entries, and
so on. After all entries loaded on startup have been searched, the dynamic linker
searches all objects loaded as the result of a call to d l o p e n (following the rules men-
tioned above for R T L D _ G L O B A L). For each group, the object actually specified to
d l o p e n is searched first, then that object’s needed list, in order, then the second
level needed entries, and so on. Since an object is loaded only once and may appear
in the needed list of any number of objects, an object loaded with one call to d l o p e n
or loaded on startup may be searched before the objects loaded for the current invo-
cation of d l o p e n, even if it appears on the chain of dependencies for the object
currently being d l o p e n’d.

Return Values
If pathname cannot be found, cannot be opened for reading, is not a shared object, or
if an error occurs during the process of loading pathname or relocating its symbolic
references, d l o p e n returns N U L L. More detailed diagnostic information is available
through d l e r r o r. If the system does not support dynamic linking of shared
objects, d l o p e n returns N U L L and sets e r r n o to E N O S Y S.

SEE ALSO
d l c l o s e(BA_OS), d l e r r o r(BA_OS), d l s y m(BA_OS),

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ba_os/dlopen
svid

Page: 152

dlysm (BA_OS) dlysm (BA_OS)

NAME
d l s y m – get the address of a symbol in shared object

SYNOPSIS
i n c l u d e < d l f c n . h >

v o i d * d l s y m (v o i d ∗handle, c o n s t c h a r ∗name) ;

DESCRIPTION
d l s y m allows a process to obtain the address of a symbol defined within a shared
object previously opened by d l o p e n. handle is a value returned by a call to d l o p e n;
the corresponding shared object must not have been closed using d l c l o s e. name is
the symbol’s name as a character string. d l s y m searches for the named symbol in
all shared objects loaded automatically as a result of loading the object referenced
by handle [see d l o p e n(BA_OS)].

Return Values
If handle does not refer to a valid object opened by d l o p e n, or if the named symbol
cannot be found within any of the objects associated with handle, d l s y m returns
N U L L. More detailed diagnostic information is available through d l e r r o r. If the
system does not support dynamic linking of shared objects, d l s y m returns N U L L and
sets e r r n o to E N O S Y S.

SEE ALSO
d l c l o s e(BA_OS) d l e r r o r(BA_OS), d l o p e n(BA_OS),

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/dlsym
svid

Page: 153

dup (BA_OS) dup (BA_OS)

NAME
d u p – duplicate an open file descriptor

SYNOPSIS
i n c l u d e < u n i s t d . h >

i n t d u p (i n t fildes) ;
d u p , d u p 2 – d u p l i c a t e a n o p e n f i l e d e s c r i p t o r

DESCRIPTION
d u p duplicates an open file descriptor. fildes is a file descriptor obtained from a
c r e a t, o p e n, d u p, f c n t l, p i p e, or i o c t l system call. d u p returns a new file
descriptor having the following in common with the original:

Same open file (or pipe).

Same file pointer (i.e., both file descriptors share one file pointer).

Same access mode (read, write or read/write).

The new file descriptor is set to remain open across e x e c system calls [see
f c n t l(BA_OS)].

The file descriptor returned is the lowest one available. The d u p 2 argument fildes2
is set to refer to the same file as the d u p 2 argument fildes. If fildes2 already refers to
an open file, not fildes, this file descriptor is first closed. If fildes2 refers to fildes, or
if fildes is not a valid open file descriptor, fildes2 will not be closed first.

Return Values
On success, d u p returns a non-negative integer, namely the file descriptor. On
failure, d u p returns –1 and sets e r r n o to identify the error.

Errors
In the following conditions, d u p fails and sets e r r n o to:

E B A D F fildes is not a valid open file descriptor.

E I N T R A signal was caught during the d u p system call.

E M F I L E The process has too many open files [see g e t r l i m i t(BA_OS)].

E N O L I N K fildes is on a remote machine and the link to that machine is no
longer active.

In addition, the function d u p 2 may return one of the following errors:
E B A D F if fildes2 is negative or greater than or equal to { O P E N _ M A X }.
E M F I L E if no file descriptors above fildes2 are available.

SEE ALSO
c l o s e(BA_OS), c r e a t(BA_OS), e x e c(BA_OS), f c n t l(BA_OS), g e t r l i m i t(BA_OS),
o p e n(BA_OS), p i p e(BA_OS)

LEVEL
Level 1.

NOTICES
Considerations for Threads Programming

Open file descriptors are a process resource and available to any sibling thread; if
used concurrently, actions by one thread can interfere with those of a sibling.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/dup
svid

Page: 154

exec (BA_OS) exec (BA_OS)

NAME
e x e c: e x e c l, e x e c v, e x e c l e, e x e c v e, e x e c l p, e x e c v p – execute a file

SYNOPSIS
i n c l u d e < u n i s t d . h >

i n t e x e c l (c o n s t c h a r ∗path, c o n s t c h a r ∗arg0, . . . ,
c o n s t c h a r ∗argn, (c h a r *) 0) ;

i n t e x e c v (c o n s t c h a r ∗path, c h a r ∗c o n s t ∗argv) ;

i n t e x e c l e (c o n s t c h a r ∗path, c o n s t c h a r ∗arg0, . . . ,
c o n s t c h a r ∗argn, (c h a r * 0) , c o n s t c h a r ∗envp[]) ;

i n t e x e c v e (c o n s t c h a r ∗path, c h a r ∗c o n s t ∗argv,
c h a r ∗c o n s t ∗envp) ;

i n t e x e c l p (c o n s t c h a r ∗file, c o n s t c h a r ∗arg0, . . . ,
c o n s t c h a r ∗argn, (c h a r *) 0) ;

i n t e x e c v p (c o n s t c h a r ∗file, c h a r ∗c o n s t ∗argv) ;

DESCRIPTION
e x e c in all its forms overlays a new process image on an old process. The new pro-
cess image is constructed from an ordinary executable file. This file is either an exe-
cutable object file or a file of data for an interpreter. There can be no return from a
successful e x e c because the calling process image is overlaid by the new process
image.

An interpreter file begins with a line of the form

! pathname [arg]

where pathname is the path of the interpreter, and arg is an optional argument.
When you e x e c an interpreter file, the system e x e cs the specified interpreter. The
pathname specified in the interpreter file is passed as arg0 to the interpreter. If arg
was specified in the interpreter file, it is passed as arg1 to the interpreter. The
remaining arguments to the interpreter are arg0 through argn of the originally exe-
cuted file.

When a C program is executed, it is called as follows:

i n t m a i n (i n t argc, c h a r ∗argv[] , c h a r ∗envp[]) ;

where argc is the argument count, argv is an array of character pointers to the argu-
ments themselves, and envp is an array of character pointers to null-terminated
strings that constitute the environment for the new process. The value of the argu-
ment argc is conventionally at least one. The initial member of the array argv points
to a string containing the name of the file.

The argument path points to a pathname that identifies the new process file. For
e x e c l p and e x e c v p, the argument file points to the new process file. If the file argu-
ment does not contain a slash character, the path prefix for this file is obtained by
searching the directories passed as the environment variable P A T H [see
e n v v a r(BA_ENV) and s y s t e m(BA_OS)]. The environment is supplied typically by
the shell [see s h(BU_CMD)].

Page 1

FINAL COPY
June 15, 1995

File: ba_os/exec
svid

Page: 155

exec (BA_OS) exec (BA_OS)

process ID
parent process ID
process group ID
supplementary group ID
semadj values

[see s e m o p(KE_OS)]
session ID

[see e x i t(BA_OS) and s i g n a l(BA_OS)]
trace flag

[see p t r a c e(KE_OS) request 0]
time left until an alarm clock signal

[see a l a r m(BA_OS)]
current directory
root directory
file mode creation mask

[see u m a s k(BA_OS)]
resource limits

[see g e t r l i m i t(BA_OS), u l i m i t(BA_OS)]
u t i m e, s t i m e, c u t i m e, and c s t i m e

[see t i m e s(BA_OS)].
file-locks

[see f c n t l(BA_OS) and l o c k f(BA_OS)]
controlling terminal
process signal mask

[see s i g p r o c m a s k(BA_OS)]
pending signals

[see sigpending(BA_OS)]

If e x e c succeeds, it marks for update the s t _ a t i m e field of the file.

If e x e c succeeds, an internal reference to the process image file is created. This
reference is removed some time later, but not later than process termination or suc-
cessful completion of a subsequent call to one of the e x e c functions.

Return Values
On success, e x e c overlays the calling process image with the new process image
and there is no return to the calling process. If e x e c fails while it can still return to
the calling process, it returns –1 and sets e r r n o to identify the error. If e x e c fails
after a point of no return to the calling process, the calling process is sent a S I G K I L L
signal.

Errors
In the following conditions, e x e c fails and sets e r r n o to:

E A C C E S Search permission is denied for a directory listed in the new
executable file’s path prefix.

E A C C E S The new executable file is not an ordinary file.

E A C C E S Execute permission on the new executable file is denied.

Page 3

FINAL COPY
June 15, 1995

File: ba_os/exec
svid

Page: 157

exec (BA_OS) exec (BA_OS)

E 2 B I G The number of bytes in the argument list of the new process
image is greater than the system-imposed limit of {A R G _ M A X}
bytes. The argument list limit is sum of the size of the argu-
ment list plus the size of the environment’s exported shell
variables.

E L O O P Too many symbolic links were encountered in translating
path or file.

E N A M E T O O L O N G The length of the file or path argument exceeds { P A T H _ M A X },
or the length of a file or path component exceeds
{ N A M E _ M A X } while _ P O S I X _ N O _ T R U N C is in effect.

E N O E N T One or more components of the pathname of the executable
file do not exist, or path or file points to an empty string.

E N O T D I R A component of the pathname of the executable file is not a
directory.

E N O E X E C The e x e c is not an e x e c l p or e x e c v p, and the new execut-
able file has the appropriate access permission but an invalid
magic number in its header.

E N O M E M The new process image requires more memory than allowed
by R L I M I T _ V M E M

USAGE
Two interfaces are available for these functions. The list (ell) versions e x e c l, e x e -
c l e, and e x e c l p are useful when a known file with known arguments is being
called. The arguments are the character strings that include the filename and the
arguments. The variable (v) versions: e x e c v, e x e c v e, and e x e c v p are useful when
the number of arguments is unknown. The arguments include a filename and a
vector of strings containing the arguments.

If possible, applications should use the s y s t e m routine, which is easier to use and
supplies more functions than the f o r k and exec routines.

SEE ALSO
a l a r m(BA_OS), e n v v a r(BA_ENV), e x i t(BA_OS), f c n t l(BA_OS), f o r k(BA_OS),
g e t r l i m i t(BA_OS), l o c k f(BA_OS), n i c e(KE_OS), p r i o c n t l(KE_OS),
p s(BU_CMD), p t r a c e(KE_OS), s e m o p(KE_OS), s h(BU_CMD), s i g n a l(BA_ENV),
s i g a c t i o n(BA_OS), s i g p e n d i n g(BA_OS), s i g p r o c m a s k(BA_OS), s y s t e m(BA_OS),
t i m e s(BA_OS), u l i m i t(BA_OS), u m a s k(BA_OS)

LEVEL
Level 1.

Page 4

FINAL COPY
June 15, 1995

File: ba_os/exec
svid

Page: 158

exit (BA_OS) exit (BA_OS)

NAME
exit, _exit – terminate process

SYNOPSIS
#include <stdlib.h>
void exit(int status);
#include <unistd.h>
void _exit(int status);

DESCRIPTION
The functions exit() and _exit() terminate the calling process. The function
exit() may cause additional processing to be done before the process exits [see
atexit(BA_OS) and fclose(BA_OS)]. All functions registered by the atexit() func-
tion are called, in the reverse order of the registration. The function _exit() does
not do additional processing before exiting.

In addition, the following consequences will occur:

All of the file descriptors, directory streams and message catalogue descriptors
are closed.

A SIGCHLD signal is sent to the calling process’s parent process.

If the calling process’s parent process is executing either wait(), waitpid(),
or waitid() [see wait(BA_OS), waitpid() in wait(BA_OS), and
waitid(BA_OS), respectively], and has not set its SA_NOCLDWAIT flag [see
sigaction(BA_OS)], it is notified of the calling process’s termination, the calling
process’s status is made available to it, and the lifetime of the calling process
ends.

If the parent process is not executing either wait(), waitpid(), or
waitid(), and has not set its SA_NOCLDWAIT flag, the calling process is
transformed into a zombie process. The status of the child process will be made
available to it when it subsequently executes a wait function. At that time, the
lifetime of the calling process will end.

If the parent process has set its SA_NOCLDWAIT flag, the status will be dis-
carded, and the lifetime of the calling process will end immediately.

The parent process ID of all of the calling process’s child processes is set to the
process ID of a special system process. That is, these processes are inherited by
a special system process.

If the process is a controlling process, a SIGHUP signal is sent to each process in
the foreground process group of the controlling terminal allocated to the calling
process and the controlling terminal is deallocated.

If the exit of the calling process causes a process group to become orphaned, and
if any member of the newly orphaned process group is stopped, then a SIGHUP
and SIGCONT signal will be sent to each member of that process group.

If the value of status is zero or EXIT_SUCCESS, an implementation defined form
of the status successful termination is returned. If the value of status is
EXIT_FAILURE, an implementation defined form of status unsuccessful
termination is returned. Otherwise the status returned is implementation
defined.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/exit
svid

Page: 159

exit (BA_OS) exit (BA_OS)

RETURN VALUE
The functions exit() and _exit() do not return values.

USAGE
Normally, applications should use exit() rather than _exit().

SEE ALSO
atexit(BA_OS), catopen(BA_LIB), fclose(BA_OS), signal(BA_ENV), termios(BA_OS),
wait(BA_OS), waitid(BA_OS).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ba_os/exit
svid

Page: 160

fclose (BA_OS) fclose (BA_OS)

NAME
fclose, fflush – close or flush a stdio-stream

SYNOPSIS
#include <stdio.h>

int fclose(FILE *strm);

int fflush(FILE *strm);

DESCRIPTION
The function fclose() causes any buffered data for strm to be written out, and the
stdio-stream to be closed. If the underlying file is not already at EOF, and the file is
one capable of seeking, the file pointer is adjusted so that the next operation on the
open file pointer deals with the byte after the last one read from or written to the
file being closed.

The function fclose() is performed automatically for all open files upon calling
the exit() routine.

If strm points to an output stdio-stream or an update stdio-stream on which the
most recent operation was not input, the function fflush() causes any buffered
data for strm to be written to that file. Any unread data buffered in strm is dis-
carded. The stdio-stream remains open. If strm is NULL, all open for writing stdio-
streams are flushed.

The functions fclose() and fflush() mark for update the st_ctime and
st_mtime fields of the underlying file, if the stream was writable, and if buffered
data had not been written to the file yet.

RETURN VALUE
Upon successful completion, the functions fclose() and fflush() return a
value of 0; otherwise, they return EOF if an error is detected.

ERRORS
Under the following conditions, the functions fclose() and fflush() fail and
set errno to:

EAGAIN if the O_NONBLOCK flag is set for the underlying file descriptor and the
process would have blocked.

EBADF if the file descriptor underlying strm is not a valid file descriptor.

EPIPE if an attempt is made to write to a FIFO that is not open for reading by
any process. A SIGPIPE signal is also sent to the process.

EFBIG if an attempt was made to write a file that exceeds the process’s file size
limit [see getrlimit(BA_OS)].

EINTR if a signal was caught during the fclose() or fflush() operation.

ENOSPC if there is no free space remaining on the device containing the file.

EIO if a physical I/O error has occurred, or if the process is a member of a
background process group attempting to write to its controlling termi-
nal, TOSTOP is set, the process is neither ignoring nor blocking
SIGTTOU and the process group of the process is orphaned.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/fclose
svid

Page: 161

fclose (BA_OS) fclose (BA_OS)

SEE ALSO
close(BA_OS), exit(BA_OS), fopen(BA_OS), setbuf(BA_LIB), write(BA_OS).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ba_os/fclose
svid

Page: 162

fcntl (BA_OS) fcntl (BA_OS)

NAME
f c n t l – file control

SYNOPSIS
i n c l u d e < s y s / t y p e s . h >
i n c l u d e < s y s / f c n t l . h >
i n c l u d e < u n i s t d . h >

i n t f c n t l (i n t fildes, i n t cmd, . . . / * a r g * /) ;

DESCRIPTION
f c n t l provides for control over open files. fildes is an open file descriptor

f c n t l may take a third argument, arg, whose data type, value and use depend
upon the value of cmd. cmd specifies the operation to be performed by f c n t l and
may be one of the following:

F _ D U P F D Return a new file descriptor with the following characteristics:

Lowest numbered available file descriptor greater than or
equal to the integer value given as the third argument.

Same open file (or pipe) as the original file.

Same file pointer as the original file (that is, both file
descriptors share one file pointer).

Same access mode (read, write, or read/write) as the origi-
nal file.

Shares any locks associated with the original file descriptor.

Same file status flags (that is, both file descriptors share the
same file status flags) as the original file.

The close-on-exec flag [see F _ G E T F D] associated with the
new file descriptor is set to remain open across
e x e c(BA_OS) system calls.

F _ G E T F D Get the close-on-exec flag associated with fildes . If the low-order bit
is 0, the file will remain open across e x e c. Otherwise, the file will
be closed upon execution of e x e c.

F _ S E T F D Set the close-on-exec flag associated with fildes to the low-order bit
of the integer value given as the third argument (0 or 1 as above).

F _ G E T F L Get fildes status flags.

F _ S E T F L Set fildes status flags to the integer value given as the third argu-
ment. Only certain flags can be set [see f c n t l(BA_ENV)].

F _ G E T O W N Get the designated owner of the file.

F _ S E T O W N Set the owner field of the file descriptor.

F _ F R E E S P Free storage space associated with a section of the ordinary file
fildes. The section is specified by a variable of data type s t r u c t
f l o c k pointed to by the third argument arg. The data type s t r u c t
f l o c k is defined in the s y s / f c n t l . h header file and contains the
following members: l _ w h e n c e is 0, 1, or 2 to indicate that the rela-
tive offset l _ s t a r t will be measured from the start of the file, the

Page 1

FINAL COPY
June 15, 1995

File: ba_os/fcntl
svid

Page: 163

fcntl (BA_OS) fcntl (BA_OS)

current position, or the end of the file, respectively. l _ s t a r t is the
offset from the position specified in l _ w h e n c e. l _ l e n is the size of
the section. An l _ l e n of 0 frees up to the end of the file; in this
case, the end of file (that is, file size) is set to the beginning of the
section freed. Any data previously written into this section is no
longer accessible.

The following commands are used for record-locking. Locks may be placed on an
entire file or on segments of a file.

F _ S E T L K Set or clear a file segment lock according to the f l o c k structure that
arg points to The cmd F _ S E T L K is used to establish read (F _ R D L C K)
and write (F _ W R L C K) locks, as well as remove either type of lock
(F _ U N L C K). If a read or write lock cannot be set, f c n t l will return
immediately with an error value of –1.

F _ S E T L K W This cmd is the same as F _ S E T L K except that if a read or write lock is
blocked by other locks, f c n t l will block until the segment is free to
be locked.

F _ G E T L K Get the first lock which blocks the lock description pointed to by the
third argument arg, taken as a pointer to the type s t r u c t f l o c k.
The information retrieved overwrites the information passed to
f c n t l in the structure f l o c k. If no lock is found that would
prevent this lock from being created, the structure is left unchanged
except for the lock type which is set to F _ U N L C K.

If the lock request described by the f l o c k structure that arg points
to could be created, then the structure is passed back unchanged
except that the lock type is set to F _ U N L C K and the l _ w h e n c e field
will be set to S E E K _ S E T.

This command never creates a lock; it tests whether a particular lock
could be created.

F _ R S E T L K Used by the network lock daemon, to communicate with the NFS
server kernel to handle locks on NFS files.

F _ R S E T L K W Used by the network lock daemon, to communicate with the NFS
server kernel to handle locks on NFS files.

F _ R G E T L K Used by the network lock daemon, to communicate with the NFS
server kernel to handle locks on NFS files.

F _ R S E T L K, F _ R S E T L K W and F _ R G E T L K are used by the f s l o c k daemon and should
not be used by regular applications.

A read lock prevents any other process from write locking the protected area. More
than one read lock may exist for a given segment of a file at a given time. The file
descriptor on which a read lock is being placed must have been opened with read
access.

A write lock prevents any other process from read locking or write locking the pro-
tected area. Only one write lock and no read locks may exist for a given segment of
a file at a given time. The file descriptor on which a write lock is being placed must
have been opened with write access.

Page 2

FINAL COPY
June 15, 1995

File: ba_os/fcntl
svid

Page: 164

fcntl (BA_OS) fcntl (BA_OS)

The f l o c k structure describes the type (l _ t y p e), starting offset (l _ w h e n c e), relative
offset (l _ s t a r t), size (l _ l e n), process ID (l _ p i d), and system ID (l _ s y s i d) of the
segment of the file to be affected. The process ID and system ID fields are used only
with the F _ G E T L K cmd to return the values for a blocking lock. Locks may start and
extend beyond the current end of a file, but may not be negative relative to the
beginning of the file. A lock may be set to always extend to the end of file by
setting l _ l e n to 0. If such a lock also has l _ w h e n c e and l _ s t a r t set to 0, the
whole file will be locked. Changing or unlocking a segment from the middle of a
larger locked segment leaves two smaller segments at either end. Locking a seg-
ment that is already locked by the calling process causes the old lock type to be
removed and the new lock type to take effect. All locks associated with a file for a
given process are removed when a file descriptor for that file is closed by that pro-
cess or the process holding that file descriptor terminates. Locks are not inherited
by a child process in a f o r k(BA_OS) system call.

When mandatory file and record locking is active on a file [see c h m o d(BA_OS)],
c r e a t(BA_OS), o p e n(BA_OS), r e a d(BA_OS) and w r i t e(BA_OS) system calls
issued on the file will be affected by the record locks in effect.

Return Values
On success, f c n t l returns a value that depends on cmd:

F _ D U P F D A new file descriptor.

F _ G E T F D Value of flag (only the low-order bit is defined). The return value
will not be negative.

F _ S E T F D Value other than –1.

F _ F R E E S P Value of 0.

F _ G E T F L Value of file status flags. The return value will not be negative.

F _ S E T F L Value other than –1.

F _ G E T O W N Value of the owner field.

F _ S E T O W N Value other than –1.

F _ G E T L K Value other than –1.

F _ S E T L K Value other than –1.

F _ S E T L K W Value other than –1.

On failure, f c n t l returns –1 and sets e r r n o to identify the error.

Errors
In the following conditions, f c n t l fails and sets e r r n o to:

E A C C E S cmd is F _ S E T L K, the type of lock (l _ t y p e) is a read lock (F _ R D L C K)
and the segment of a file to be locked is already write locked by
another process, or the type is a write lock (F _ W R L C K) and the seg-
ment of a file to be locked is already read or write locked by another
process.

Page 3

FINAL COPY
June 15, 1995

File: ba_os/fcntl
svid

Page: 165

fcntl (BA_OS) fcntl (BA_OS)

SEE ALSO
c h o w n(BA_OS), c l o s e(BA_OS), c r e a t(BA_OS), e x e c(BA_OS), o p e n(BA_OS),
p i p e(BA_OS)

LEVEL
Level 1

The enforcement mode of file and record locking has moved to Level 2 effective
September 30, 1989.

NOTICES
Considerations for Threads Programming

Open file descriptors are a process resource and available to any sibling thread; if
used concurrently, actions by one thread can interfere with those of a sibling.

File and record locks are based on process ID; consequently, all siblings share locks.
It is possible for a record lock placed by one thread to be overlaid with a lock by a
sibling. Other mechanisms should be used to coordinate concurrent access by mul-
tiple threads.

A new command, F _ D U P 2, has been added. See description above.

Page 5

FINAL COPY
June 15, 1995

File: ba_os/fcntl
svid

Page: 167

ferror(BA_OS) ferror(BA_OS)

NAME
ferror, feof, clearerr, fileno – stdio-stream status inquiries

SYNOPSIS
#include <stdio.h>

int ferror(FILE *strm);

int feof(FILE *strm);

void clearerr(FILE *strm);

int fileno(FILE *strm);

DESCRIPTION
The function ferror() determines if an I/O error has occurred when reading
from or writing to the file associated with the named stream.

The function feof() determines if EOF is detected when reading strm.

The function clearerr() resets both the error and EOF indicator on strm. The
EOF indicator is reset when the file pointer associated with strm is repositioned, e.g.,
by the fseek() or rewind() routines [see fseek(BA_OS) and rewind() in
fseek(BA_OS), respectively], or can be reset with clearerr().

The function fileno() gets the integer file descriptor associated with strm [see
open(BA_OS)].

RETURN VALUE
The function ferror() will return non-zero when an I/O error has previously
occurred reading from or writing to strm; otherwise, the function ferror() will
return zero.

The function feof() will return non-zero when EOF has previously been detected
reading strm; otherwise, the function feof() will return zero.

The function fileno() will return the integer file descriptor number associated
with strm.

USAGE
The function fileno() returns a file descriptor that can be used with non-stdio
routines, such as write() and lseek() routines, to manipulate the associated
file, but these routines are not recommended for use by application-programs.

SEE ALSO
fseek(BA_OS), fopen(BA_OS), lseek(BA_OS), open(BA_OS), write(BA_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/ferror
svid

Page: 168

fopen(BA_OS) fopen(BA_OS)

NAME
fopen, freopen, fdopen – open a stdio-stream

SYNOPSIS
#include <stdio.h>

FILE *fopen(const char *path, const char *type);

FILE *freopen(const char *path, const char *type,
FILE *strm);

FILE *fdopen(int fildes, const char *type);

DESCRIPTION
The function fopen() opens the file named by path and associates a stdio-stream
with it. The function fopen() returns a pointer to the FILE structure associated
with the stdio-stream.

The function freopen() substitutes the named file in place of the open strm. A
flush is first attempted and then the original strm is closed, regardless of whether
the open ultimately succeeds. Failure to flush or close strm successfully is ignored.
The function freopen() returns a pointer to the FILE structure associated with
strm.

The function freopen() is typically used to attach the preopened stdio-streams
associated with stdin, stdout and stderr to other files. The standard error out-
put stream stderr is by default unbuffered but use of the function freopen()
will cause it to become buffered or line-buffered.

The function fdopen() associates a stream with a file descriptor, fildes. The type of
stream given to fdopen() must agree with the mode of the already open file.
File-descriptors are obtained from routines which open files but do not return
pointers to a FILE structure [open(), for example; see open(BA_OS)]. The file
position indicator associated with the new stream is set to the position indicated by
the file offset associated with the file descriptor. The error and EOF indicators for
the stream are cleared. Streams are necessary input for many of the stdio routines.

The argument path points to a character-string that names the file to be opened.

The argument type is a character-string having one of the following values:

r open text file for reading.

w truncate to zero length or create text file for writing.

a append; open for writing at the end of the text file, or create for
writing.

rb open binary file for reading.

wb truncate to zero length or create binary file for writing.

ab append; open or create binary file for writing at end-of-file.

r+ open text file for update (reading and writing).

w+ truncate or create text file for update.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/fopen
svid

Page: 169

fopen(BA_OS) fopen(BA_OS)

a+ append; open or create text file for writing at end-of-file.

r+b or
rb+ open binary file for update (reading and writing).

w+b or
wb+ truncate or create binary file for update.

a+b or
ab+ append; open or create binary file for writing at end-of-file.

When a file is opened for update, both input and output may be done on the result-
ing stream. However, output may not be directly followed by input without an
intervening call to the fseek(), fflush(), rewind() or fsetpos() routine
[see fseek(BA_OS), fflush() in fclose(BA_OS), rewind() in fseek(BA_OS), and
fsetpos(BA_OS), respectively]; and input may not be directly followed by output
without an intervening call to the fseek(), rewind() or fsetpos() routine,
unless the input operation encountered end-of-file.

If a file is opened for writing (i.e., when type is w, wb, w+ or wb+) and the file previ-
ously existed the st_ctime and st_mtime fields of the file will be updated. If a
file is opened for writing or appending (i.e., when type is w, wb, w+ wb+, a, ab, a+
or ab+) and the file did not previously exist, the st_atime, st_ctime and
st_mtime fields of the file and the st_ctime and st_mtime fields of the parent
directory will be updated.

When a file is opened for append (i.e., when type is a, ab, a+, a+b, or ab+) it is
impossible to overwrite information already in the file. The fseek() routine may
be used to reposition the file-pointer to any position in the file, but when output is
written to the file, the current file-pointer is disregarded. All output is written at
the end of the file. For example, if two separate processes open the same file for
append, each process may write to the file without overwriting output being writ-
ten by the other, and the output from the two processes would be interleaved in the
file.

When opened, a stdio-stream is fully buffered if and only if it can be determined
not to refer to an interactive device. The error and end-of-file indicators are cleared
for the stdio-stream.

RETURN VALUE
The functions fopen() and freopen() return a null pointer if path cannot be
accessed, or if type is invalid, or if the file cannot be opened.

The function fdopen() returns a null pointer if type is invalid or if the file cannot
be opened.

The functions fopen() or fdopen() may fail and not set errno if there are no
free stdio streams.

ERRORS
Under the following conditions, the functions fopen() and freopen() fail and
set errno to:

Page 2

FINAL COPY
June 15, 1995

File: ba_os/fopen
svid

Page: 170

fopen(BA_OS) fopen(BA_OS)

ENOTDIR if a component of the path-prefix in path is not a directory.

ENOENT if the named file does not exist or a component of the pathname
should exist but does not, or path points to an empty string.

EACCES if a component of the path-prefix denies search permission, or type
permission is denied for the named file, or the file does not exist and
write permission is denied for the parent directory.

ELOOP if too many symbolic links are encountered in translating the path.

EISDIR if the named file is a directory and type is write or read/write.

ENAMETOOLONG
if the length of a pathname exceeds {PATH_MAX}, or pathname com-
ponent is longer than {NAME_MAX} while {_POSIX_NO_TRUNC} is
in effect.

EINTR if a signal was caught during the open operation.

EMFILE if {OPEN_MAX} file descriptors are currently open in the calling pro-
cess.

ENFILE if the system file table is full, meaning {SYS_OPEN} files are open in
the system.

ENOSPC if the directory that would contain the file cannot be extended, the file
does not exist, and it was to be created.

EROFS if the named file resides on a read-only file system and type requires
write access.

ENXIO if the named file is a character special or block special file and the
device associated with this special file does not exist.

USAGE
In System V, there is no difference between opening text and binary files, i.e., open-
ing a file with type "rb" is no different from opening a file with type "r".

SEE ALSO
creat(BA_OS), dup(BA_OS), fclose(BA_OS), fseek(BA_OS), open(BA_OS),
pipe(BA_OS).

LEVEL
Level 1.

Page 3

FINAL COPY
June 15, 1995

File: ba_os/fopen
svid

Page: 171

fork (BA_OS) fork (BA_OS)

NAME
f o r k – create a new process

SYNOPSIS
i n c l u d e < s y s / t y p e s . h >
i n c l u d e < u n i s t d . h >

p i d _ t f o r k (v o i d) ;

DESCRIPTION
f o r k causes creation of a new process. The new process (child process) is an exact
copy of the calling process (parent process). This means the child process inherits
the following attributes from the parent process:

real user ID, real group ID, effective user ID, effective group ID
environment
close-on-exec flag [see e x e c(BA_OS)]
signal handling settings (that is, S I G _ D F L, S I G _ I G N, S I G _ H O L D, function
address)
supplementary group IDs
set-user-ID mode bit
set-group-ID mode bit
profiling on/off status
nice value [see n i c e(AS_CMD)]
scheduler class [see p r i o c n t l(RT_OS)]
all attached shared memory segments
process group I D
session I D
current working directory
root directory
file mode creation mask [see u m a s k(BA_OS)]
resource limits
controlling terminal
working and maximum privilege sets

Scheduling priority and any per-process scheduling parameters that are specific to a
given scheduling class may or may not be inherited according to the policy of that
particular class [see p r i o c n t l(RT_OS)].

The child process differs from the parent process in the following ways:

The child process has a unique process I D which does not match any active
process group I D.

The child process has a different parent process I D (that is, the process I D of
the parent process).

The child process has its own copy of the parent’s file descriptors and direc-
tory streams. Each of the child’s file descriptors shares a common file
pointer with the corresponding file descriptor of the parent.

All s e m a d j values are cleared

Page 1

FINAL COPY
June 15, 1995

File: ba_os/fork
svid

Page: 172

fork (BA_OS) fork (BA_OS)

Process locks, text locks and data locks are not inherited by the child

The child process’s t m s structure is cleared: t m s _ u t i m e, s t i m e, c u t i m e, and
c s t i m e are set to 0

The time left until an alarm clock signal is reset to 0.

The set of signals pending for the child process is initialized to the empty
set.

Record locks set by the parent process are not inherited by the child process
[see f c n t l(BA_OS)].

Return Values
On success, f o r k returns 0 to the child process and returns the process I D of the
child process to the parent process. On failure, f o r k returns a value of (p i d _ t) – 1
to the parent process, sets e r r n o to identify the error, and no child process is
created.

Errors
In the following conditions, f o r k fails and sets e r r n o to:

E A G A I N The system-imposed limit on the total number of processes under
execution by a single user would be exceeded and the calling pro-
cess does not have the P _ S Y S O P S privilege. The system lacked the
necessary resources to create another process.

E A G A I N Total amount of system memory available when reading via raw
I/O is temporarily insufficient.

SEE ALSO
e x e c (BA_OS), f c n t l (BA_OS), n i c e (AS_CMD), p r i o c n t l (RT_OS), s i g n a l
(BA_OS), u m a s k (BA_OS), w a i t (BA_OS)

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ba_os/fork
svid

Page: 173

fpathconf (BA_OS) fpathconf (BA_OS)

4. The behavior is undefined if path or fildes does not refer to a directory.

5. If path or fildes refers to a directory, the value returned is the maximum length of
a relative pathname when the specified directory is the working directory.

6. If path or fildes refers to a pipe or FIFO, the value returned applies to the FIFO
itself. If path or fildes refers to a directory, the value returned applies to any
FIFOs that exist or can be created within the directory. If path or fildes refers to
any other type of file, the behavior is undefined.

7. If path or fildes refers to a directory, the value returned applies to any files, other
than directories, that exist or can be created within the directory.

The value of the configurable system limit or option specified by name will not
change during the lifetime of the calling process.

RETURN VALUE
If the functions fpathconf() or pathconf() are invoked with an invalid sym-
bolic constant, or if the symbolic constant corresponds to a configurable system
limit or the option that is not supported on the system, a value of –1 will be
returned to the invoking process. If the function fails because the configurable sys-
tem limit or option corresponding to name is not supported on the system the value
of errno remains unchanged.

Otherwise, the functions fpathconf() and pathconf() return the current value
for the file or directory.

ERRORS
Under the following conditions, the functions fpathconf() and pathconf() fail
and set errno to:

EINVAL if name is an invalid value.

EINVAL if the implementation does not support an association of the
variable name with the specified file.

The function pathconf() fails and sets errno to:

EACCES if search permission is denied for a component of the path
prefix

ELOOP if too many symbolic links are encountered while translating
path.

ENAMETOOLONG if the length of a pathname exceeds {PATH_MAX}, or pathname
component is longer than {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

ENOENT if path is needed for the command specified and the named file
does not exist or if the path argument points to an empty string.

ENOTDIR if a component of the path prefix is not a directory.

Page 2

FINAL COPY
June 15, 1995

File: ba_os/fpathconf
svid

Page: 175

fpathconf (BA_OS) fpathconf (BA_OS)

The function fpathconf() fails and sets errno to:

EBADF if the argument fildes is not a valid file descriptor.

SEE ALSO
sysconf(BA_OS).

LEVEL
Level 1.

Page 3

FINAL COPY
June 15, 1995

File: ba_os/fpathconf
svid

Page: 176

fread (BA_OS) fread (BA_OS)

NAME
f r e a d, f w r i t e – binary input/output

SYNOPSIS
i n c l u d e < s t d i o . h >

s i z e _ t f r e a d (v o i d ∗ptr, s i z e _ t size, s i z e _ t nitems, F I L E ∗stream) ;

s i z e _ t f w r i t e (c o n s t v o i d ∗ptr, s i z e _ t size, s i z e _ t nitems, F I L E
∗stream) ;

DESCRIPTION
f r e a d reads into an array pointed to by ptr up to nitems items of data from stream,
where an item of data is a sequence of bytes (not necessarily terminated by a null
byte) of length size. f r e a d stops reading bytes if an end-of-file or error condition is
encountered while reading stream, or if nitems items have been read. f r e a d incre-
ments the data pointer in stream to point to the byte following the last byte read if
there is one. f r e a d does not change the contents of stream. f r e a d returns the
number of items read.

f w r i t e writes to the named output stream at most nitems items of data from the
array pointed to by ptr, where an item of data is a sequence of bytes (not necessarily
terminated by a null byte) of length size. f w r i t e stops writing when it has written
nitems items of data or if an error condition is encountered on stream. f w r i t e does
not change the contents of the array pointed to by ptr. f w r i t e increments the
data-pointer in stream by the number of bytes written. f w r i t e returns the number
of items written.

If size or nitems is zero, then f r e a d and f w r i t e return a value of 0 and do not effect
the state of stream.

The f e r r o r or f e o f routines must be used to distinguish between an error condi-
tion and end-of-file condition.

Return Values
On successful completion, the functions f r e a d and f w r i t e return the number of
items read or written, respectively. If size or nitems is non-positive, no characters
are read or written, and both f r e a d and f w r i t e () return a value of 0. If an error
occurs the error indicator for strm is set and e r r n o is set to indicate the error.

Errors
If an error occurs, the error indicator for stream is set.

SEE ALSO
c l o s e (BA_OS), o p e n (BA_OS), g e t c (BA_LIB), g e t s (BA_LIB), l s e e k (BA_OS),
p r i n t f (BA_LIB), p u t c (BA_LIB), p u t s (BA_LIB), r e a d (BA_OS), s c a n f (BA_LIB),
s t d i o (BA_LIB), w r i t e (BA_OS)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/fread
svid

Page: 177

fseek(BA_OS) fseek(BA_OS)

NAME
fseek, rewind, ftell – reposition a file-pointer in a stdio-stream

SYNOPSIS
#include <stdio.h>

int fseek(FILE *strm, long int offset, int whence);

void rewind(FILE *strm);

long int ftell(FILE *strm);

DESCRIPTION
The function fseek() sets the position of the next input or output operation on
strm. The new position is at the signed distance offset bytes from the beginning,
from the current position, or from the end of the file, according to the value of
whence, which is defined in the <stdio.h> header file as follows:

Name Description

SEEK_SET set position equal to offset bytes.

SEEK_CUR set position to current location plus offset.

SEEK_END set position to EOF plus offset.

The function fseek() allows the file position indicator to be set beyond the end of
the existing data in the file. If data is later written at this point, subsequent reads of
data in the gap will return zero until data is actually written into the gap. The func-
tion fseek(), by itself, does not extend the size of the file. The behavior of
fseek() on devices incapable of seeking is implementation defined.

The call rewind(strm) is equivalent to the following:

(void)fseek(strm, 0L, SEEK_SET)

except that the function rewind() clears the error indicator on strm.

The functions fseek() and rewind() clear the end-of-file indicator for strm and
undo any effects of the ungetc() routine on the same stream. After fseek() or
rewind(), the next operation on a file opened for update may be either input or
output.

The function ftell() returns the offset of the current byte relative to the begin-
ning of the file associated with strm. The offset is always measured in bytes.

If strm is writable and buffered data had not been written to the underlying file, the
function fseek() will cause the unwritten data to be written to the file and mark
the st_ctime and st_mtime fields of the file for update.

RETURN VALUE
Upon successful completion, the function fseek() returns a value of 0. For
improper seeks, it returns a value of -1 and sets errno to indicate an error. An
improper seek is, for example, an fseek() on a file that has not been opened via
the fopen() routine or on a stream opened via the popen() routine.

Upon failure, the function ftell() returns a value of –1 and sets errno to indi-
cate an error.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/fseek
svid

Page: 178

fsync(BA_OS) fsync(BA_OS)

NAME
fsync – synchronize a file’s in-memory state with that on the physical medium

SYNOPSIS
int fsync(int fildes);

DESCRIPTION
The function fsync() moves all modified data and attributes of fildes to a storage
device; all in-memory modified copies of buffers for the associated file will have
been written to the physical medium when the call returns. Note that this is dif-
ferent from sync(), which schedules disk I/O for all files but returns before the
I/O completes. fsync() should be used by programs that require a file to be in a
known state; for example, a program that contains a simple transaction facility
might use it to ensure that all modifications to a file or files caused by a transaction
were recorded on the storage medium.

The way the data reaches the physical medium is implementation- and hardware-
dependent. fsync() returns when the device driver tells it that the write has
taken place.

RETURN VALUE
Upon successful completion, the function fsync() returns a value of 0; otherwise,
it returns a value of –1 and sets errno to indicate an error.

ERRORS
Under the following conditions, the function fsync() fails and sets errno to:

EBADF if fildes is not a valid file descriptor open for writing.

EINTR if a signal was caught during execution of the system call.

EINVAL if the fildes argument does not refer to a file on which this opera-
tion is possible.

EIO if an I/O error occurred while reading from or writing to the file
system.

SEE ALSO
sync(BA_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/fsync
svid

Page: 181

getcontext (BA_OS) getcontext (BA_OS)

NAME
g e t c o n t e x t, s e t c o n t e x t – get and set current user context

SYNOPSIS
i n c l u d e < u c o n t e x t . h >

i n t g e t c o n t e x t (u c o n t e x t _ t ∗ucp) ;

i n t s e t c o n t e x t (u c o n t e x t _ t ∗ucp) ;

DESCRIPTION
These functions, along with those defined in are useful for implementing user level
context switching between multiple threads of control within a process.

g e t c o n t e x t initializes the structure pointed to by ucp to the current user context of
the calling process. The user context is defined by and includes the contents of the
calling process’s machine registers, signal mask and execution stack.

s e t c o n t e x t restores the user context pointed to by ucp . The call to s e t c o n t e x t
does not return; program execution resumes at the point specified by the context
structure passed to s e t c o n t e x t. The context structure should have been one
created either by a prior call to g e t c o n t e x t or m a k e c o n t e x t or passed as the third
argument to a signal handler [see s i g a c t i o n(BA_OS)]. If the context structure was
one created with g e t c o n t e x t, program execution continues as if the corresponding
call of g e t c o n t e x t had just returned. If the context structure was one created with
m a k e c o n t e x t, program execution continues with the function specified to m a k e c o n -
t e x t.

Return Values
On success, s e t c o n t e x t does not return and g e t c o n t e x t returns 0. On failure,
s e t c o n t e x t and g e t c o n t e x t return –1 and set e r r n o to identify the error.

SEE ALSO
s e t j m p(BA_LIB), s i g a c t i o n(BA_OS), s i g p r o c m a s k(BA_OS)

LEVEL
Level 1.

NOTICES
When a signal handler is executed, the current user context is saved and a new con-
text is created by the kernel. If the process leaves the signal handler via l o n g j m p
[see s e t j m p(BA_LIB)] the original context will not be restored, and future calls to
g e t c o n t e x t will not be reliable. Signal handlers should use s i g l o n g j m p [see
s e t j m p(BA_LIB)] or s e t c o n t e x t instead.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/getcontext
svid

Page: 182

getcwd (BA_OS) getcwd (BA_OS)

NAME
getcwd – get pathname of current working directory

SYNOPSIS
#include <unistd.h>

char *getcwd(char *buf, size_t size);

DESCRIPTION
The function getcwd() places an absolute pathname of the current working direc-
tory in the array pointed to by buf. The value of size is the size in bytes of buf.

RETURN VALUE
Upon successful completion, the function getcwd() returns a pointer to the string
containing the absolute pathname of the current working directory. Otherwise, the
function getcwd() returns NULL if size is not large enough, or if an error occurs in
a lower-level function.

ERRORS
Under the following conditions, the function getcwd() fails and sets errno to:

EACCES if a parent directory cannot be read to get its name.

EINVAL if size is less than or equal to zero.

ERANGE if size is greater than zero and less than the length of the pathname, plus
1.

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/getcwd
svid

Page: 183

getgroups (BA_OS) getgroups (BA_OS)

NAME
getgroups, setgroups – get or set supplementary group IDs

SYNOPSIS
#include <unistd.h>
#include <sys/types.h>

int getgroups(int gidsetsize, gid_t *grouplist);

int setgroups(int ngroups, const gid_t *grouplist);

DESCRIPTION
The getgroups() function fills in the array grouplist with the current supplemen-
tary group IDs of the calling process. The gidsetsize argument specifies the number
of elements in the array grouplist and must be less than {NGROUPS_MAX}. The
actual number of supplementary group IDs is returned. If gidsetsize is zero, get-
groups() returns the number of supplementary group IDs associated with the
calling process without modifying grouplist.

The function setgroups() sets the supplementary group access list of the calling
process from the array of group IDs specified by grouplist. The number of entries is
specified by ngroups and cannot be greater than {NGROUPS_MAX}. This function
may be invoked only by a user with appropriate privileges.

RETURN VALUE
Upon successful completion, the function getgroups() returns the number of
supplementary group IDs set for the calling process; otherwise, it returns a value of
–1 and sets errno to indicate an error.

The function setgroups() returns the value 0 upon successful completion. Oth-
erwise, a value of –1 is returned and errno is set to indicate an error.

ERRORS
Under the following condition, the function getgroups() fails and sets errno to:

EINVAL if the value of gidsetsize is non-zero and is less than the number of
supplementary group IDs set for the calling process.

The function setgroups() fails and sets errno to:

EINVAL if the value of ngroups is greater than {NGROUPS_MAX}.

EPERM if the effective user ID is not that of a user with appropriate
privileges.

SEE ALSO
chmod(BA_OS), getuid(BA_OS), initgroups(BA_LIB), setuid(BA_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/getgroups
svid

Page: 184

getmsg (BA_OS) getmsg (BA_OS)

NAME
g e t m s g , g e t p m s g – get next message off a stream

SYNOPSIS
i n c l u d e < s t r o p t s . h >

i n t g e t m s g (i n t fd, s t r u c t s t r b u f *ctlptr,
s t r u c t s t r b u f *dataptr, i n t *flagsp) ;

i n t g e t p m s g (i n t fd, s t r u c t s t r b u f *ctlptr,
s t r u c t s t r b u f *dataptr, i n t *bandp, i n t *flagsp) ;

DESCRIPTION
g e t m s g retrieves the contents of a message located at the stream head read queue
from a STREAMS file, and places the contents into user specified buffer(s). The mes-
sage must contain either a data part, a control part, or both. The data and control
parts of the message are placed into separate buffers, as described below. The
semantics of each part is defined by the STREAMS module that generated the mes-
sage.

The function g e t p m s g does the same thing as g e t m s g, but provides finer control
over the priority of the messages received. Except where noted, all information per-
taining to g e t m s g also pertains to g e t p m s g.

fd specifies a file descriptor referencing an open stream. ctlptr and dataptr each
point to a s t r b u f structure, which contains the following members:

i n t m a x l e n ; / * m a x i m u m b u f f e r l e n g t h * /
i n t l e n ; / * l e n g t h o f d a t a * /
c h a r * b u f ; / * p t r t o b u f f e r * /

b u f points to a buffer in which the data or control information is to be placed, and
m a x l e n indicates the maximum number of bytes this buffer can hold. On return,
l e n contains the number of bytes of data or control information actually received,
or 0 if there is a zero-length control or data part, or -1 if no data or control informa-
tion is present in the message. flagsp should point to an integer that indicates the
type of message the user is able to receive. This is described later.

ctlptr is used to hold the control part from the message and dataptr is used to hold
the data part from the message. If ctlptr (or dataptr) is N U L L or the m a x l e n field is
–1, the control (or data) part of the message is not processed and is left on the
stream head read queue. If ctlptr (or dataptr) is not N U L L and there is no correspond-
ing control (or data) part of the messages on the stream head read queue, l e n is set
to –1. If the m a x l e n field is set to 0 and there is a zero-length control (or data) part,
that zero-length part is removed from the read queue and l e n is set to 0. If the
m a x l e n field is set to 0 and there are more than zero bytes of control (or data) infor-
mation, that information is left on the read queue and l e n is set to 0. If the m a x l e n
field in ctlptr or dataptr is less than, respectively, the control or data part of the mes-
sage, m a x l e n bytes are retrieved. In this case, the remainder of the message is left
on the stream head read queue and a non-zero return value is provided, as
described in E r r o r s.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/getmsg
svid

Page: 185

getmsg (BA_OS) getmsg (BA_OS)

By default, g e t m s g processes the first available message on the stream head read
queue. However, a user may choose to retrieve only high priority messages by set-
ting the integer pointed by flagsp to R S _ H I P R I. In this case, g e t m s g processes the
next message only if it is a high priority message. If the integer pointed by flagsp is
0, g e t m s g retrieves any message available on the stream head read queue. In this
case, on return, the integer pointed to by flagsp will be set to R S _ H I P R I if a high
priority message was retrieved, or 0 otherwise.

For g e t p m s g, the flags are different. flagsp points to a bitmask with the following
mutually-exclusive flags defined: M S G _ H I P R I , M S G _ B A N D, and M S G _ A N Y. Like
g e t m s g, g e t p m s g processes the first available message on the stream head read
queue. A user may choose to retrieve only high-priority messages by setting the
integer pointed to by flagsp to M S G _ H I P R I and the integer pointed to by bandp to 0.
In this case, g e t p m s g will only process the next message if it is a high-priority mes-
sage. In a similar manner, a user may choose to retrieve a message from a particu-
lar priority band by setting the integer pointed to by flagsp to M S G _ B A N D and the
integer pointed to by bandp to the priority band of interest. In this case, g e t p m s g
will only process the next message if it is in a priority band equal to, or greater than,
the integer pointed to by bandp, or if it is a high-priority message. If a user just
wants to get the first message off the queue, the integer pointed to by flagsp should
be set to M S G _ A N Y and the integer pointed to by bandp should be set to 0. On return,
if the message retrieved was a high-priority message, the integer pointed to by
flagsp will be set to M S G _ H I P R I and the integer pointed to by bandp will be set to 0.
Otherwise, the integer pointed to by flagsp will be set to M S G _ B A N D and the integer
pointed to by bandp will be set to the priority band of the message.

If O _ N O N B L O C K is clear, g e t m s g blocks until a message of the type specified by flagsp
is available on the stream head read queue. If O _ N O N B L O C K has been set and a mes-
sage of the specified type is not present on the read queue, g e t m s g fails and sets
e r r n o to E A G A I N.

If a hangup occurs on the stream from which messages are to be retrieved, g e t m s g
continues to operate normally, as described above, until the stream head read
queue is empty. Thereafter, it returns 0 in the l e n fields of ctlptr and dataptr.

Return Values
On success, g e t m s g and g e t p m s g return a non-negative value:

0 indicates that a full message was read successfully.

M O R E C T L indicates that more control information is waiting for retrieval.

M O R E D A T A indicates that more data is waiting for retrieval.

(M O R E C T L | M O R E D A T A) indicates that both types of information remain.

Subsequent g e t m s g calls retrieve the remainder of the message. However, if a mes-
sage of higher priority has come in on the stream head read queue, the next call to
g e t m s g will retrieve that higher priority message before retrieving the remainder of
the previously received partial message.

On failure, g e t m s g and g e t p m s g return –1 and set e r r n o to identify the error.

Page 2

FINAL COPY
June 15, 1995

File: ba_os/getmsg
svid

Page: 186

getmsg (BA_OS) getmsg (BA_OS)

Errors
In the following conditions, g e t m s g and g e t p m s g fail and set e r r n o to:

E A G A I N The O _ N D E L A Y flag is set, and no messages are available.

E B A D F fd is not a valid file descriptor open for reading.

E B A D M S G Queued message to be read is not valid for g e t m s g.

E F A U L T ctlptr, dataptr, bandp, or flagsp points to a location outside the allo-
cated address space.

E I N T R A signal was caught during the g e t m s g system call.

E I N V A L An illegal value was specified in flagsp, or the stream referenced by
fd is linked under a multiplexor.

E N O S T R A stream is not associated with fd.

g e t m s g can also fail if a STREAMS error message had been received at the stream
head before the call to g e t m s g. The error returned is the value contained in the
STREAMS error message.

SEE ALSO
p o l l(BA_OS), p u t m s g(BA_OS), r e a d(BA_OS), w r i t e(BA_OS)

LEVEL
Level 1.

NOTICES
Considerations for Threads Programming

Open file descriptors are a process resource and available to any sibling thread; if
used concurrently, actions by one thread can interfere with those of a sibling. In
this case, data input by one thread will not be available to others.

While one thread is blocked, siblings might still be executing.

Page 3

FINAL COPY
June 15, 1995

File: ba_os/getmsg
svid

Page: 187

getpid (BA_OS) getpid (BA_OS)

NAME
g e t p i d, g e t p g r p, g e t p p i d, g e t p g i d – get process, process group, and parent pro-
cess IDs

SYNOPSIS
i n c l u d e < s y s / t y p e s . h >
i n c l u d e < u n i s t d . h >

p i d _ t g e t p i d (v o i d) ;

p i d _ t g e t p g r p (v o i d) ;

p i d _ t g e t p p i d (v o i d) ;

p i d _ t g e t p g i d (p i d _ t pid) ;

DESCRIPTION
g e t p i d returns the process I D of the calling process.

g e t p g r p returns the process group I D of the calling process.

g e t p p i d returns the parent process I D of the calling process.

g e t p g i d returns the process group I D of the process whose process ID is equal to
p i d, or the process group I D of the calling process, if p i d is equal to zero.

Return Values
On success, g e t p g i d returns a process group I D. On failure, g e t p g i d returns
(p i d _ t) –1 and sets e r r n o to identify the error.

Errors
In the following conditions, g e t p g i d fails and sets e r r n o to:

E P E R M The process whose process I D is equal to pid is not in the same
session as the calling process, and the implementation does not
allow access to the process group I D of that process from the call-
ing process.

E S R C H There is no process with a process I D equal to pid.

NOTICES
Considerations for Threads Programming

These ID numbers are attributes of the containing process and are shared by sibling
threads.

SEE ALSO
e x e c(BA_OS), f o r k(BA_OS), g e t s i d(BA_OS), s i g n a l(BA_OS)

LEVEL
Level 1

Page 1

FINAL COPY
June 15, 1995

File: ba_os/getpid
svid

Page: 188

getrlimit (BA_OS) getrlimit (BA_OS)

NAME
getrlimit, setrlimit – control maximum system resource consumption

SYNOPSIS
#include <sys/time.h>
#include <sys/resource.h>

int getrlimit(int resource, struct rlimit *rlp);

int setrlimit(int resource, const struct rlimit *rlp);

DESCRIPTION
Limits on the consumption of a variety of system resources by a process and each
process it creates may be obtained with getrlimit() and set with setr-
limit().

Each call to either getrlimit() or setrlimit() identifies a specific resource to
be operated upon as well as a resource limit. A resource limit is a pair of values:
one specifying the current (soft) limit, the other a maximum (hard) limit. Soft limits
may be changed by a process to any value that is less than or equal to the hard
limit. A process may (irreversibly) lower its hard limit to any value that is greater
than or equal to the soft limit. Only a user with appropriate privileges can raise a
hard limit. Both hard and soft limits can be changed in a single call to setr-
limit() subject to the constraints described above. Limits may have an infinite
value of RLIM_INFINITY. rlp is a pointer to struct rlimit that includes the
following members:

rlim_t rlim_cur; /* current (soft) limit */
rlim_t rlim_max; /* hard limit */

rlim_t is an arithmetic data type to which objects of type int and off_t can be
cast without loss of value.

The possible resources, their descriptions, and the actions taken when current limit
is exceeded, are summarized in the table below:

Resources Description Action_ ___
RLIMIT_CORE The maximum size of a

core file in bytes that may
be created by a process. A
limit of 0 will prevent the
creation of a core file.

The writing of a core file
will terminate at this size.

RLIMIT_CPU The maximum amount of
CPU time in seconds used
by a process.

SIGXCPU is sent to the
process. If the process is
holding or ignoring
SIGXCPU, the behavior is
scheduling class defined.

RLIMIT_DATA The maximum size of a
process’s heap in bytes.

The malloc() function
will fail with errno set to
ENOMEM.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/getrlimit
svid

Page: 189

getrlimit (BA_OS) getrlimit (BA_OS)

Resources Description Action_ ___
RLIMIT_FSIZE The maximum size of a file

in bytes that may be
created by a process. A
limit of 0 will prevent the
creation of a file.

SIGXFSZ is sent to the
process. If the process is
holding or ignoring
SIGXFSZ, continued
attempts to increase the
size of a file beyond the
limit will fail with errno
set to EFBIG.

RLIMIT_NOFILE The maximum number of
open file descriptors that
the process can have.

Functions that create new
file descriptors will fail
with errno set to EMFILE.

RLIMIT_STACK The maximum size of a
process’s stack in bytes.
The system will not
automatically grow the
stack beyond this limit.

SIGSEGV is sent to the
process. If the process is
holding or ignoring SIG-
SEGV, or is catching SIG-
SEGV and has not made
arrangements to use an
alternate stack [see
sigaltstack(BA_OS)], the
disposition of SIGSEGV
will be set to SIG_DFL
before it is sent.

†RLIMIT_AS The maximum amount of
a process’s address space
that is defined (in bytes).

The malloc() and
mmap() functions will fail
with errno set to ENOMEM.
In addition, the automatic
stack growth will fail with
the effects outlined above.

Because limit information is stored in the per-process information, the shell builtin
ulimit must directly execute this system call if it is to affect all future processes
created by the shell.

The value of the current limit of the following resources affect these implementation
defined constants:

Limit Implementation Defined Constant_ __
RLIMIT_FSIZE FCHR_MAX
RLIMIT_NOFILE OPEN_MAX

RETURN VALUE
Upon successful completion, the function getrlimit() returns a value of 0; oth-
erwise, it returns a value of –1 and sets errno to indicate an error.

ERRORS
Under the following conditions, the functions getrlimit() and setrlimit()
fail and set errno to:

Page 2

FINAL COPY
June 15, 1995

File: ba_os/getrlimit
svid

Page: 190

getrlimit (BA_OS) getrlimit (BA_OS)

EINVAL if an invalid resource was specified; or in a setrlimit() call, the
new rlim_cur exceeds the new rlim_max.

EPERM if the limit specified to setrlimit() would have raised the max-
imum limit value, and the caller is not a user with appropriate
privileges.

SEE ALSO
malloc(BA_OS), open(BA_OS), sigaltstack(BA_OS), signal(BA_ENV).

FUTURE DIRECTIONS
The resource RLIMIT_AS is marked level 2, and should be deprecated. It is not
useful in all implementations since different implementations treat address space
and size differently.

LEVEL
Level 1.

RLIMIT_AS is marked Level 2, effective September 30, 1993. It will be removed
after the three year waiting period has expired.

Page 3

FINAL COPY
June 15, 1995

File: ba_os/getrlimit
svid

Page: 191

getsid (BA_OS) getsid (BA_OS)

NAME
getsid – get session ID

SYNOPSIS
#include <sys/types.h>

pid_t getsid(pid_t pid);

DESCRIPTION
The function getsid() returns the session ID of the process whose process ID is
equal to pid. If pid is equal to (pid_t)0, getsid() returns the session ID of the
calling process.

RETURN VALUE
Upon successful completion, the function getsid() returns the session ID of the
specified process; otherwise, it returns a value of (pid_t)–1 and sets errno to
indicate an error.

ERRORS
Under the following conditions, the function getsid() fails and sets errno to:

EPERM if the process whose process ID is equal to pid is not in the same session
as the calling process, and the implementation does not allow access to
the session ID of that process from the calling process.

ESRCH if there is no process with a process ID equal to pid.

SEE ALSO
exec(BA_OS), fork(BA_OS), getpid(BA_OS), getpgid(BA_OS), setpgid(BA_OS),
setsid(BA_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/getsid
svid

Page: 192

getuid (BA_OS) getuid (BA_OS)

NAME
g e t u i d, g e t e u i d, g e t g i d, g e t e g i d – get real user, effective user, real group, and
effective group IDs

SYNOPSIS
i n c l u d e < s y s / t y p e s . h >
i n c l u d e < u n i s t d . h >

u i d _ t g e t u i d (v o i d) ;

u i d _ t g e t e u i d (v o i d) ;

g i d _ t g e t g i d (v o i d) ;

g i d _ t g e t e g i d (v o i d) ;

DESCRIPTION
g e t u i d returns the real user ID of the calling process.

g e t e u i d returns the effective user ID of the calling process.

g e t g i d returns the real group ID of the calling process.

g e t e g i d returns the effective group ID of the calling process.

SEE ALSO
s e t u i d(BA_OS)

LEVEL
Level 1.

NOTICES
Considerations for Threads Programming

These ID numbers are attributes of the containing process and are shared by sibling
threads.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/getuid
svid

Page: 193

ioctl (BA_OS) ioctl (BA_OS)

NAME
ioctl – control device

SYNOPSIS
i n c l u d e < s y s / t y p e s . h >

i n t i o c t l (i n t f i l d e s , i n t r e q u e s t , . . . / * a r g * /) ;

DESCRIPTION
The function i o c t l () performs a variety of control functions on devices and
STREAMS. For non-STREAMS files, the functions performed by this call are
device-specific control functions. request and an optional third argument (with vary-
ing type) are passed to the file designated by fildes and are interpreted by the device
driver. This control is not frequently used on non-STREAMS devices, where the
basic input/output functions are usually performed by the r e a d () and w r i t e ()
functions.

For STREAMS files, specific functions are performed by the i o c t l call as described
in s t r e a m s (B A _ D E V).

The argument fildes is an open file descriptor that refers to a device.

The argument request selects the control function to be performed and will depend
on the device being addressed.

The argument arg represents additional information that is needed by this specific
device to perform the requested function. The data type of arg depends upon the
particular control request, but it is either an integer or a pointer to a device-specific
data structure.

In addition to device-specific and STREAMS functions, there are generic functions
that are provided by more than one device driver, for example, the general terminal
interface [see t e r m i o (B A _ D E V)].

When Mandatory Access Controls are running on the system, the invoking process
must have MAC write access on fildes to do an i o c t l ().

RETURN VALUE
Upon successful completion, the function i o c t l () returns a value other than – 1
that depends upon the device control function; otherwise, a value of – 1 is returned
and e r r n o is set to indicate an error.

ERRORS
Under the following conditions, the function i o c t l () fails and sets e r r n o to:

E B A D F if fildes is not a valid open file descriptor.

E N O T T Y if fildes is not associated with a character-special file that accepts control
functions.

E I N T R if a signal was caught during the i o c t l () operation.

The function i o c t l () will also fail if the device driver detects an error. In this case,
the error is passed through i o c t l () without change to the caller. A particular
device driver might not have all of the following error cases. Under the following
conditions, requests to standard device drivers may fail and e r r n o will be set to:

Page 1

FINAL COPY
June 15, 1995

File: ba_os/ioctl
svid

Page: 194

ioctl (BA_OS) ioctl (BA_OS)

E I N V A L if request or arg is not valid for this device.

E I O if some physical I/O error has occurred.

E N X I O if request and arg are valid for this device driver, but the service
requested can not be performed on this particular sub-device.

SEE ALSO
termio(BA_DEV), termios(BA_OS), streams(BA_DEV).

See also the specific device reference documents and generic devices such as the
general terminal interface.

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ba_os/ioctl
svid

Page: 195

kill (BA_OS) kill (BA_OS)

NAME
k i l l – send a signal to a process or a group of processes

SYNOPSIS
i n c l u d e < s y s / t y p e s . h >
i n c l u d e < s i g n a l . h >

i n t k i l l (p i d _ t pid, i n t sig) ;

DESCRIPTION
k i l l sends a signal to a process or a group of processes. The process or group of
processes to which the signal is to be sent is specified by pid . The signal that is to be
sent is specified by sig and is either one from the list given in s i g n a l [see
s i g n a l(BA_OS)], or 0. If sig is 0 (the null signal), error checking is performed but
no signal is actually sent. This can be used to check the validity of pid .

In order to send the signal to the target process (pid), the sending process must have
permission to do so, subject to the following ownership restrictions:

The real or effective user ID of the sending process must match the real or
saved [from e x e c] user ID of the receiving process, unless the sending pro-
cess has the P _ O W N E R privilege, or sig is S I G C O N T and the sending process
has the same session ID as the receiving process.

The process with I D 0 and the process with I D 1 are special processes and will be
referred to below as proc0 and proc1, respectively.

If pid is greater than 0, sig will be sent to the process whose process ID is equal to
pid , subject to the ownership restrictions, above. pid may equal 1.

If pid is negative but not (p i d _ t) – 1, sig will be sent to all processes whose process
group ID is equal to the absolute value of pid and for which the process has permis-
sion to send a signal.

If pid is 0, sig will be sent to all processes excluding proc0 and proc1 whose process
group ID is equal to the process group ID of the sender. Permission is needed to
send a signal to process groups.

If pid is (p i d _ t) – 1 and the sending process does not have the P _ O W N E R privilege,
sig will be sent to all processes excluding proc0 and proc1 whose real user ID is
equal to the effective user ID of the sender.

If pid is (p i d _ t) – 1 and the sending process has the P _ O W N E R privilege, sig will be
sent to all processes excluding proc0 and proc1.

Return Values
On success, k i l l returns 0. On failure, k i l l returns –1, sets e r r n o to identify the
error, and sends no signal.

Errors
In the following conditions, k i l l fails and sets e r r n o to:

E I N V A L sig is not a valid signal number.

E P E R M sig is S I G K I L L and pid is (p i d _ t) 1 (i.e., pid specifies proc1).

Page 1

FINAL COPY
June 15, 1995
File: ba_os/kill

svid

Page: 196

kill (BA_OS) kill (BA_OS)

E P E R M The sending process does not have the P _ O W N E R privilege, the real
or effective user ID of the sending process does not match the real
or saved user ID of the receiving process, and the calling process is
not sending S I G C O N T to a process that shares the same session ID.

E S R C H No process or process group can be found corresponding to that
specified by pid .

SEE ALSO
g e t s i d(BA_OS), s i g a c t i o n(BA_OS), s i g n a l(BA_OS) s i g s e n d(BA_OS)

LEVEL
Level 1.

NOTICES
s i g s e n d is a more versatile way to send signals to processes. The user is
encouraged to use s i g s e n d instead of k i l l.

Page 2

FINAL COPY
June 15, 1995
File: ba_os/kill

svid

Page: 197

link (BA_OS) link (BA_OS)

NAME
link – link to a file

SYNOPSIS
#include <unistd.h>

int link(const char *path1, const char *path2);

DESCRIPTION
The function link() atomically creates a new link (directory entry) for the existing
file.

The path1 argument points to a pathname naming an existing file. The path2 argu-
ment points to a pathname naming the new directory entry to be created. The
link() function will atomically create a new link for the existing file and the link
count of the file is incremented by one.

If path1 names a directory, link() will fail unless the process has appropriate
privileges and the implementation supports making links to directories.

Upon successful completion, the function link() marks for update the
st_ctime field of the file. Also, the st_ctime and st_mtime fields of the direc-
tory that contains the new entry are marked for update.

RETURN VALUE
Upon successful completion, the function link() returns a value of 0; otherwise, it
returns a value of –1, no link is created, and the link count of the file will remain
unchanged after the call. The function sets errno to indicate an error.

ERRORS
Under the following conditions, the function link() fails and sets errno to:

ENOTDIR if a component of either path prefix is not a directory.

ENOENT if a component of either pathname should exist but does not, or the
file named by path1 does not exist or path1 or path2 points to an
empty string.

EACCES if a component of either path prefix denies search permission, or if
the requested link requires writing in a directory with a mode that
denies write permission.

EEXIST if the link named by path2 exists.

ELOOP if too many symbolic links are encountered while translating either
path.

EPERM if the file named by path1 is a directory and the process does not
have appropriate privileges.

EXDEV if the link named by path2 and the file named by path1 are on dif-
ferent logical devices (file systems) and the implementation does
not permit cross-device links, or if path refers to a named stream.

EROFS if the requested link requires writing in a directory on a read-only
file system.

Page 1

FINAL COPY
June 15, 1995
File: ba_os/link

svid

Page: 198

link (BA_OS) link (BA_OS)

EMLINK if the number of links after execution would exceed {LINK_MAX},
the maximum number of links to a single file.

ENOSPC if the directory that would contain the link cannot be extended.

ENAMETOOLONG
if the length of a pathname exceeds {PATH_MAX}, or pathname
component is longer than {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

SEE ALSO
rename(BA_OS), symlink(BA_OS), unlink(BA_OS).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995
File: ba_os/link

svid

Page: 199

lockf (BA_OS) lockf (BA_OS)

NAME
l o c k f – record locking on files

SYNOPSIS
i n c l u d e < u n i s t d . h >

i n t l o c k f (i n t fildes, i n t function, l o n g size) ;

DESCRIPTION
l o c k f locks sections of a file. Advisory or mandatory write locks depend on the
mode bits of the file; see c h m o d(BA_OS). Other processes that try to lock the locked
file section either get an error or go to sleep until the resource becomes unlocked.
All the locks for a process are removed when the process terminates. See f c n t l for
more information about record locking.

fildes is an open file descriptor. The file descriptor must have O _ W R O N L Y or O _ R D W R
permission to establish locks with this function call.

function is a control value that specifies the action to be taken. The permissible
values for function are defined in u n i s t d . h as follows:

d e f i n e F _ U L O C K 0 /∗ u n l o c k p r e v i o u s l y l o c k e d s e c t i o n ∗/
d e f i n e F _ L O C K 1 /∗ l o c k s e c t i o n f o r e x c l u s i v e u s e ∗/
d e f i n e F _ T L O C K 2 /∗ t e s t & l o c k s e c t i o n f o r e x c l u s i v e u s e ∗/
d e f i n e F _ T E S T 3 /∗ t e s t s e c t i o n f o r o t h e r l o c k s ∗/

All other values of function are reserved for future extensions and will result in an
error return if not implemented.

F _ T E S T is used to detect if a lock by another process is present on the specified sec-
tion. F _ L O C K and F _ T L O C K both lock a section of a file if the section is available.
F _ U L O C K removes locks from a section of the file.

size is the number of contiguous bytes to be locked or unlocked. The resource to be
locked or unlocked starts at the current offset in the file and extends forward for a
positive size and backward for a negative size (the preceding bytes up to but not
including the current offset). If size is zero, the section from the current offset
through the largest file offset is locked (that is, from the current offset through the
present or any future end-of-file). An area need not be allocated to the file to be
locked as such locks may exist past the end-of-file.

The sections locked with F _ L O C K or F _ T L O C K may, in whole or in part, contain or be
contained by a previously locked section for the same process. Locked sections will
be unlocked starting at the the point of the offset through size bytes or to the end of
file if size is (o f f _ t) 0. When this occurs, or if this occurs in adjacent sections, the
sections are combined into a single section. If the request requires that a new ele-
ment be added to the table of active locks and this table is already full, an error is
returned, and the new section is not locked.

F _ L O C K and F _ T L O C K requests differ only by the action taken if the resource is not
available. F _ L O C K will cause the calling process to sleep until the resource is avail-
able. F _ T L O C K will cause the function to return a –1 and set e r r n o to E A C C E S if the
section is already locked by another process.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/lockf
svid

Page: 200

lockf (BA_OS) lockf (BA_OS)

F _ U L O C K requests may, in whole or in part, release one or more locked sections con-
trolled by the process. When sections are not fully released, the remaining sections
are still locked by the process. Releasing the center section of a locked section
requires an additional element in the table of active locks. If this table is full, an
e r r n o is set to E D E A D L K and the requested section is not released.

A potential for deadlock occurs if a process controlling a locked resource is put to
sleep by requesting another process’s locked resource. Thus calls to l o c k f or
f c n t l scan for a deadlock before sleeping on a locked resource. An error return is
made if sleeping on the locked resource would cause a deadlock.

Sleeping on a resource is interrupted with any signal. The a l a r m system call may
be used to provide a timeout facility in applications that require this facility.

Return Values
On success, l o c k f returns 0. On failure, l o c k f returns –1 and sets e r r n o to indi-
cate the error.

Errors
l o c k f will fail if one or more of the following are true:

E B A D F fildes is not a valid open descriptor.

E A G A I N cmd is F _ T L O C K or F _ T E S T and the section is already locked by
another process.

E D E A D L K cmd is F _ L O C K and a deadlock would occur.

E D E A D L K cmd is F _ L O C K, F _ T L O C K, or F _ U L O C K and the number of entries in the
lock table would exceed the number allocated on the system.

E A C C E S If function is F _ T L O C K or F _ T E S T and the section is already locked by
another process.

SEE ALSO
c h m o d (BA_OS), c l o s e (BA_OS), c r e a t (BA_OS), f c n t l (BA_OS), o p e n (BA_OS),
r e a d (BA_OS), w r i t e (BA_OS)

LEVEL
Level 1

NOTICES
Unexpected results may occur in processes that do buffering in the user address
space. The process may later read/write data that is/was locked. The standard I/O
package is the most common source of unexpected buffering.

Because in the future the variable e r r n o will be set to E A G A I N rather than E A C C E S
when a section of a file is already locked by another process, portable application
programs should expect and test for either value.

Page 2

FINAL COPY
June 15, 1995

File: ba_os/lockf
svid

Page: 201

lseek (BA_OS) lseek (BA_OS)

NAME
l s e e k – move read/write file pointer

SYNOPSIS
i n c l u d e < s y s / t y p e s . h >
i n c l u d e < u n i s t d . h >

o f f _ t l s e e k (i n t fildes, o f f _ t offset, i n t whence) ;

DESCRIPTION
l s e e k moves a read/write file pointer. fildes is a file descriptor returned from a
c r e a t, o p e n, d u p, f c n t l, p i p e, or i o c t l system call. l s e e k sets the file pointer
associated with fildes as follows:

If whence is S E E K _ S E T, the pointer is set to offset bytes.

If whence is S E E K _ C U R, the pointer is set to its current location plus offset .

If whence is S E E K _ E N D, the pointer is set to the size of the file plus offset .

On success, l s e e k returns the resulting pointer location, as measured in bytes from
the beginning of the file.

l s e e k allows the file pointer to be set beyond the existing data in the file. If data is
later written at this point, subsequent reads in the gap between the previous end of
data and the newly written data return bytes of value 0 until data is written into the
gap.

Return Values
On success, l s e e k returns a non-negative integer indicating the file pointer value.
On failure, l s e e k returns –1, sets e r r n o to identify the error, and the file pointer
remains unchanged.

Some devices are incapable of seeking. The value of the file pointer associated with
such a device is undefined.

Errors
In the following conditions, l s e e k fails and sets e r r n o to:

E B A D F fildes is not an open file descriptor.

E S P I P E fildes is associated with a pipe or fifo.

E I N V A L The resulting file pointer would be negative.

fildes is a remote file descriptor accessed using NFS, the Network
File System, and the resulting file pointer would be negative.

E N O S Y S The device for f s t y p e does not support l s e e k.

USAGE
Normally, applications should use the stdio routines to open, close, read, write, and
manipulate files. Therefore, an application using the f o p e n stdio routine to open a
file would use the f s e e k stdio routine rather than the function l s e e k. The function
l s e e k allows the file pointer to be set beyond the existing data in the file. If data
are later written at this point, subsequent reads in the gap between the previous end
of data and the newly written data will return bytes of value 0 until data are written
into the gap.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/lseek
svid

Page: 202

lseek (BA_OS) lseek (BA_OS)

SEE ALSO
c r e a t (BA_OS), f c n t l (BA_OS), o p e n (BA_OS)

LEVEL
Level 1.

NOTICES
On systems that support Remote File Sharing (RFS), the behavior of l s e e k is dif-
ferent for files accessed using RFS. For other files, the file pointer can be positioned
to negative values where attempts to w r i t e will fail. For FIFOs, l s e e k returns suc-
cessfully, for both positive and negative offsets, instead of failing with E S P I P E.
These semantics can be used to identify files that are being accessed using RFS.

Considerations for Threads Programming
Open file descriptors are a process resource and available to any sibling thread; if
used concurrently, actions by one thread can interfere with those of a sibling. For
example, the position of the file pointer is maintained per file descriptor, not per
thread.

Page 2

FINAL COPY
June 15, 1995

File: ba_os/lseek
svid

Page: 203

malloc (BA_OS) malloc (BA_OS)

NAME
m a l l o c, f r e e, r e a l l o c, c a l l o c, – memory allocator

SYNOPSIS
i n c l u d e < s t d l i b . h >

v o i d ∗m a l l o c (s i z e _ t size) ;

v o i d f r e e (v o i d ∗ptr) ;

v o i d ∗r e a l l o c (v o i d ∗ptr, s i z e _ t size) ;

v o i d ∗c a l l o c (s i z e _ t nelem, s i z e _ t elsize) ;

‡ i n t m a l l o p t (i n t cmd, i n t value) ;

‡ s t r u c t m a l l i n f o m a l l i n f o (v o i d) ;

DESCRIPTION
m a l l o c and f r e e provide a simple general-purpose memory allocation package.
m a l l o c returns a pointer to a block of at least size bytes suitably aligned for any use.

The argument to f r e e is a pointer to a block previously allocated by m a l l o c, c a l -
l o c or r e a l l o c. After f r e e is performed, this space is made available for further
allocation. If ptr is N U L L, no action occurs.

Undefined results will occur if the space assigned by m a l l o c is overrun or if some
random pointer is handed to f r e e.

r e a l l o c changes the size of the block pointed to by ptr to size bytes and returns a
pointer to the (possibly moved) block. The contents will be unchanged up to the
lesser of the new and old sizes. If ptr is N U L L, r e a l l o c behaves like m a l l o c for the
specified size. If size is zero and ptr is not a null pointer, the object pointed to is
freed.

c a l l o c allocates space for an array of nelem elements of size elsize . The space is ini-
tialized to zeros.

The functions m a l l o p t and m a l l i n f o are marked Level 2 in this issue of SVID. The
use of these functions should be discouraged.

The function m a l l o p t plus the function m a l l i n f o allow tuning the allocation algo-
rithm at execution time.

The function m a l l o p t initiates a mechanism that can be used to allocate small
blocks of memory quickly. Using this scheme, a large-group (called a holding-block)
of these small-blocks is allocated at one time. Then, each time a program requests a
small amount of memory from m a l l o c, a pointer to one of the pre-allocated small-
blocks is returned. Different holding-blocks are created for different sizes of small-
blocks and are created when needed.

The function m a l l o p t allows the programmer to set three parameters to maximize
efficient small-block allocation for a particular application.

The function m a l l o p t may be called repeatedly, but the parameters may not be
changed after the first small-block is allocated from a holding-block. If m a l l o p t is
called again after the first small-block is allocated using the small-block algorithm,
it will return an error.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/malloc
svid

Page: 204

malloc (BA_OS) malloc (BA_OS)

The function m a l l i n f o can be used during program development to determine the
best settings of these parameters for a particular application. The function m a l -
l i n f o should not be called until after some storage has been allocated using m a l -
l o c. The function m a l l i n f o provides information describing space usage. It
returns a m a l l i n f o structure.

Errors
If there is no available memory, m a l l o c, r e a l l o c, and c a l l o c return a null
pointer. When r e a l l o c returns N U L L, the block pointed to by ptr is left intact. If
size, nelem, or elsize is 0, a unique pointer to the arena is returned. If m a l l o p t is
called after any allocation from a holding-block or if the arguments cmd or value are
invalid, m a l l o p t returns a non-zero value; otherwise, it returns a value of 0.

USAGE
You can control whether the contents of the freed space are destroyed or left undis-
turbed [see m a l l o p t].

FUTURE DIRECTIONS
The functions m a l l o p t and m a l l i n f o are marked Level 2 effective September 30,
1993. The use of these functions is deprecated; they will be removed from the next
issue of SVID.

LEVEL
Level 1.

The functions m a l l o p t and m a l l i n f o are marked Level 2 effective, September 30,
1993.

Page 2

FINAL COPY
June 15, 1995

File: ba_os/malloc
svid

Page: 205

mkdir (BA_OS) mkdir (BA_OS)

NAME
m k d i r – make a directory

SYNOPSIS
i n c l u d e < s y s / t y p e s . h >
i n c l u d e < s y s / s t a t . h >

i n t m k d i r (c o n s t c h a r ∗path, m o d e _ t mode) ;

DESCRIPTION
m k d i r creates a new directory named by the pathname pointed to by path. The
mode of the new directory is initialized from mode [see c h m o d(BA_OS) for the
values of mode.]

The protection part of the mode argument is modified by the process’s file create
mask.

The directory’s owner ID is set to the process’s effective user ID. The directory’s
group ID is set to the process’s effective group ID, or if the S _ I S G I D bit is set in the
parent directory, then the group ID of the directory is inherited from the parent.
The S _ I S G I D bit of the new directory is inherited from the parent directory.

If path is a symbolic link, it is not followed.

The newly created directory is empty with the exception of entries for itself (.) and
its parent directory (. .).

Return Values
On success, m k d i r returns 0 and marks for update the s t _ a t i m e, s t _ c t i m e and
s t _ m t i m e fields of the directory. Also, the s t _ c t i m e and s t _ m t i m e fields of the
directory that contains the new entry are marked for update.

On failure, m k d i r returns –1 and sets e r r n o to identify the error.

Errors
In the following conditions, m k d i r fails and sets e r r n o to:

E A C C E S Search permission is denied on a component of the path prefix.

E A C C E S Write permission is denied on the parent directory in which the direc-
tory is to be created.

E E X I S T The named file already exists.

E I O An I/O error has occurred while accessing the file system.

E L O O P Too many symbolic links were encountered in translating path.

E M L I N K The maximum number of links to the parent directory would be
exceeded.

E N A M E T O O L O N G
The length of the path argument exceeds {P A T H _ M A X}, or the length of a
path component exceeds {N A M E _ M A X} while _ P O S I X _ N O _ T R U N C is in
effect.

E N O E N T A component of the path prefix does not exist or is a null pathname.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/mkdir
svid

Page: 206

mkdir (BA_OS) mkdir (BA_OS)

E N O S P C No free space is available on the device containing the directory.

E N O T D I R A component of the path prefix is not a directory.

E R O F S The path prefix resides on a read-only file system.

SEE ALSO
c h m o d(BA_OS), d i r e c t o r y(BA_OS) r m d i r(BA_OS) u m a s k(BA_OS).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ba_os/mkdir
svid

Page: 207

mkfifo (BA_OS) mkfifo (BA_OS)

NAME
mkfifo – create a new FIFO

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>

int mkfifo(const char *path, mode_t mode);

DESCRIPTION
The mkfifo() routine creates a new FIFO special file named by the pathname
pointed to by path. The mode of the new FIFO is initialized from mode. The file per-
mission bits of the mode argument are modified by the process’s file creation mask.

The FIFO’s owner ID is set to the process’s effective user ID. The FIFO’s group ID is
set to the process’s effective group ID unless the set-group-ID flag of the FIFO’s
parent directory is set; in that case it is initialised to the group ID of the parent
directory.

Bits other than the file permission bits in mode are ignored.

Upon successful completion, the function mkfifo() marks for update the
st_atime, st_ctime and st_mtime field of the file. Also, the st_ctime and
st_mtime fields of the directory that contains the new entry are marked for
update.

RETURN VALUE
Upon successful completion, a value of zero is returned; otherwise, a value of -1 is
returned and errno is set to indicate an error.

ERRORS
EACESS A component of the path prefix denies search permission, or write

permission is denied on the parent directory.
EEXIST The named file already exists.
EIO An I/O error occurred while accessing the file system.
ELOOP if too many symbolic links are encountered in translating path.
ENOENT A component of the path prefix does not exist, or path points to an

empty string.
ENOSPC if the directory that would contain the FIFO cannot be extended or

the file system is out of file allocation resources.
ENOTDIR A component of the path prefix is not a directory.
EROFS The directory in which the file is to be created is located on a read-

only file system.
ENAMETOOLONG

if the length of a pathname exceeds {PATH_MAX}, or pathname
component is longer than {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

SEE ALSO
chmod(BA_OS), exec(BA_OS), mkdir(BA_OS), mknod(BA_OS), umask(BA_OS)

Page 1

FINAL COPY
June 15, 1995

File: ba_os/mkfifo
svid

Page: 208

mkfifo (BA_OS) mkfifo (BA_OS)

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ba_os/mkfifo
svid

Page: 209

mknod (BA_OS) mknod (BA_OS)

NAME
m k n o d – make a directory, or a special or ordinary file

SYNOPSIS
i n c l u d e < s y s / t y p e s . h >
i n c l u d e < s y s / s t a t . h >

i n t m k n o d (c o n s t c h a r ∗path, m o d e _ t mode, d e v _ t dev) ;

DESCRIPTION
m k n o d creates a new file named by the path name pointed to by path . The file type
and permissions of the new file are initialized from mode .

The file type is specified in mode by the S _ I F M T bits, which must be set to one of the
following values:

S _ I F I F O fifo special
S _ I F C H R character special
S _ I F D I R directory
S _ I F B L K block special
S _ I F R E G ordinary file

The file access permissions are specified in mode by the 0007777 bits, and may be
constructed by an OR of the following values:

S _ I S U I D Set user ID on execution.
S _ I S G I D Set group ID on execution if # is 7, 5, 3, or 1

Enable mandatory file/record locking if # is 6, 4, 2, or 0
S _ I S V T X Save text image after execution.
S _ I R W X U Read, write, execute by owner.
S _ I R U S R Read by owner.
S _ I W U S R Write by owner.
S _ I X U S R Execute (search if a directory) by owner.
S _ I R W X G Read, write, execute by group.
S _ I R G R P Read by group.
S _ I W G R P Write by group.
S _ I X G R P Execute by group.
S _ I R W X O Read, write, execute (search) by others.
S _ I R O T H Read by others.
S _ I W O T H Write by others
S _ I X O T H Execute by others.

The owner ID of the file is set to the effective user ID of the process. The group ID of
the file is set to the effective group ID of the process. However, if the S _ I S G I D bit is
set in the parent directory, then the group ID of the file is inherited from the parent.
If the group ID of the new file does not match the effective group ID or one of the
supplementary group IDs, the S _ I S G I D bit is cleared.

The access permission bits of mode are modified by the process’s file mode creation
mask: all bits set in the process’s file mode creation mask are cleared [see
u m a s k(BA_OS)]. If mode indicates a block or character special file, dev is a
configuration-dependent specification of a character or block I/O device. If mode
does not indicate a block special or character special device, dev is ignored.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/mknod
svid

Page: 210

mknod (BA_OS) mknod (BA_OS)

m k n o d checks to see if the driver has been installed and whether or not it is an old-
style driver. If the driver is installed and it is an old-style driver, the minor number
is limited to 255. If it’s not an old-style driver, then it must be a new-style driver or
uninstalled, and the minor number is limited to the current value of the M A X M I N O R
tunable. Of course, this tunable is set to 255 by default. If the range check fails,
m k n o d fails with E I N V A L.

m k n o d may be invoked only by a privileged user for file types other than FIFO spe-
cial.

If path is a symbolic link, it is not followed.

Return Values
If m k n o d succeeds, it returns 0. If m k n o d fails, it returns –1 and sets e r r n o to iden-
tify the error.

Errors
m k n o d fails and creates no new file if one or more of the following are true:

E E X I S T The named file exists.

E I N V A L dev is invalid.

E F A U L T path points outside the allocated address space of the process.

E L O O P Too many symbolic links were encountered in translating path.

E M U L T I H O P Components of path require hopping to multiple remote machines and
the file system type does not allow it.

E N A M E T O O L O N G
The length of the path argument exceeds {P A T H _ M A X}, or the length of a
path component exceeds {N A M E _ M A X} while _ P O S I X _ N O _ T R U N C is in
effect.

E N O T D I R A component of the path prefix is not a directory.

E N O E N T A component of the path prefix does not exist or is a null pathname.

E P E R M The effective user ID of the process is not super-user.

E R O F S The directory in which the file is to be created is located on a read-
only file system.

E N O S P C No space is available.

E I N T R A signal was caught during the m k n o d system call.

E N O L I N K path points to a remote machine and the link to that machine is no
longer active.

SEE ALSO
c h m o d(BA_OS), e x e c(BA_OS), m k d i r(BU_CMD), s t a t(BA_OS), u m a s k(BA_OS)

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ba_os/mknod
svid

Page: 211

mount (BA_OS) mount (BA_OS)

NAME
m o u n t – mount a file system

SYNOPSIS
i n c l u d e < s y s / t y p e s . h >
i n c l u d e < s y s / m o u n t . h >

i n t m o u n t (c o n s t c h a r ∗spec, c o n s t c h a r ∗dir, i n t mflag,

DESCRIPTION
m o u n t requests that a removable file system contained on the block special file
identified by spec be mounted on the directory identified by dir. spec and dir are
pointers to path names. fstyp is the file system type number. If both the M S _ D A T A
and M S _ F S S flag bits of mflag are off, the file system type defaults to the root file sys-
tem type. Only if either flag is on is fstyp used to indicate the file system type.

If the M S _ D A T A flag is set in mflag the system expects the dataptr and datalen argu-
ments to be present. Together they describe a block of file-system specific data at
address dataptr of length datalen. This is interpreted by file-system specific code
within the operating system and its format depends on the file system type. If a
particular file system type does not require this data, dataptr and datalen should
both be zero. Note that M S _ F S S is obsolete and is ignored if M S _ D A T A is also set, but
if M S _ F S S is set and M S _ D A T A is not, dataptr and datalen are both assumed to be zero.

After a successful call to m o u n t, all references to the file dir refer to the root direc-
tory on the mounted file system.

The low-order bit of mflag is used to control write permission on the mounted file
system: if 1, writing is forbidden; otherwise writing is permitted according to indi-
vidual file accessibility.

m o u n t may be invoked only by a process with the P _ M O U N T privilege. It is intended
for use only by the m o u n t utility.

Return Values
On success, m o u n t returns 0. On failure, m o u n t returns –1 and sets e r r n o to iden-
tify the error.

Errors
In the following conditions, m o u n t fails and sets e r r n o to:

E P E R M The calling process does not have the appropriate privilege.

E B U S Y dir is currently mounted on, is someone’s current working
directory, or is otherwise busy.

E B U S Y The device associated with spec is currently mounted.

E B U S Y There are no more mount table entries.

E I N V A L The super block has an invalid magic number or the fstyp is
invalid.

E L O O P Too many symbolic links were encountered in translating
spec or dir.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/mount
svid

Page: 212

mount (BA_OS) mount (BA_OS)

E N A M E T O O L O N G The length of the path argument exceeds {P A T H _ M A X}, or the
length of a path component exceeds {N A M E _ M A X} while
_ P O S I X _ N O _ T R U N C is in effect.

E N O E N T None of the named files exists or is a null pathname.

E N O T D I R A component of a path prefix is not a directory.

E N O T B L K spec is not a block special device.

E N X I O The device associated with spec does not exist.

E N O T D I R dir is not a directory.

E R O F S spec is write protected and mflag requests write permission.

E N O S P C The file system state in the super-block is not F s O K A Y and
there is no space left on the device.

USAGE
m o u n t is not recommended for use by application programs.

SEE ALSO
m o u n t(AS_CMD), u m o u n t(BA_OS)

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ba_os/mount
svid

Page: 213

open (BA_OS) open (BA_OS)

the group ID of the new file does not match the effective group ID
or one of the supplementary groups IDs, the S _ I S G I D bit is
cleared. The access permission bits of the file mode are set to the
value of mode, modified as follows [see c r e a t(BA_OS)]:

All bits set in the file mode creation mask of the process are
cleared [see u m a s k(BA_OS)].

The ‘‘save text image after execution bit’’ of the mode is cleared
[see c h m o d(BA_OS)].

O _ T R U N C If the file exists, its length is truncated to 0 and the mode and
owner are unchanged. O _ T R U N C has no effect on special files or
directories.

O _ E X C L If O _ E X C L and O _ C R E A T are set, o p e n will fail if the file exists. The
check for the existence of the file and the creation of the file if it
does not exist is atomic with respect to other processes executing
o p e n naming the same filename in the same directory with O _ E X C L
and O _ C R E A T set.

When opening a STREAMS file, oflag may be constructed from O _ N O N B L O C K OR-ed
with either O _ R D O N L Y, O _ W R O N L Y , or O _ R D W R. Other flag values are not applicable
to STREAMS devices and have no effect on them. The value of O _ N O N B L O C K affects
the operation of STREAMS drivers and certain system calls [see r e a d(BA_OS),
g e t m s g(BA_OS), p u t m s g(BA_OS), and w r i t e(BA_OS)]. For drivers, the implemen-
tation of O _ N O N B L O C K is device specific. Each STREAMS device driver may treat
these options differently.

When o p e n is invoked to open a named stream, and the c o n n l d module [see
c o n n l d] has been pushed on the pipe, o p e n blocks until the server process has
issued an I _ R E C V F D i o c t l [see s t r e a m s(BA_DEV)] to receive the file descriptor.

If path is a symbolic link and O _ C R E A T and O _ E X C L are set, the link is not followed.

The file pointer used to mark the current position within the file is set to the begin-
ning of the file.

The new file descriptor is the lowest numbered file descriptor available and is set to
remain open across e x e c system calls [see f c n t l(BA_OS)].

Certain flag values can be set following o p e n as described in f c n t l.

Using o p e n on a file adds a reference to the file. This guarantees that the file will
continue to be visible to the process until it closes it, even if the file is removed from
the directory by u n l i n k.

Return Values
On success, o p e n returns the file descriptor of the open file and:

If O _ C R E A T is set and the file did not previously exist, o p e n marks for update
the s t _ a t i m e, s t _ c t i m e and s t _ m t i m e fields of the file and the s t _ c t i m e
and s t _ m t i m e fields of the parent directory.

If O _ T R U N C is set and the file did previously exist, o p e n marks for update the
s t _ c t i m e and s t _ m t i m e fields of the file.

Page 2

FINAL COPY
June 15, 1995

File: ba_os/open
svid

Page: 215

open (BA_OS) open (BA_OS)

On failure, o p e n returns –1 and sets e r r n o to identify the error.

Errors
In the following conditions, o p e n fails and sets e r r n o to:

E A C C E S The file does not exist and write permission is denied by the parent
directory of the file to be created.

E A C C E S O _ C R E A T or O _ T R U N C is specified and write permission is denied.

E A C C E S A component of the path prefix denies search permission.

E A C C E S oflag permission is denied for an existing file.

E A G A I N The file exists, mandatory file/record locking is set, and there are out-
standing record locks on the file [see c h m o d(BA_OS)].

E E X I S T O _ C R E A T and O _ E X C L are set, and the named file exists.

E I N T R A signal was caught during the o p e n system call.

E I O A hangup or error occurred during the open of the STREAMS-based
device.

E I S D I R The named file is a directory and oflag is write or read/write.

E L O O P Too many symbolic links were encountered in translating path.

E M F I L E The process has too many open files

E N A M E T O O L O N G
The length of the path argument exceeds {P A T H _ M A X}, or the length of a
path component exceeds {N A M E _ M A X} while {_ P O S I X _ N O _ T R U N C} is in
effect.

E N F I L E The system file table is full.

E N O E N T O _ C R E A T is not set and the named file does not exist.

E N O E N T O _ C R E A T is set and a component of the path prefix does not exist or is
the null pathname.

E N O S P C O _ C R E A T and O _ E X C L are set, and the file system is out of inodes.

E N O S P C O _ C R E A T is set and the directory that would contain the file cannot be
extended.

E N O S R Unable to allocate a stream.

E N O T D I R A component of the path prefix is not a directory.

E N X I O The named file is a character special or block special file, and the
device associated with this special file does not exist.

E N X I O O _ N O N B L O C K is set, the named file is a FIFO, O _ W R O N L Y is set, and no
process has the file open for reading.

E N X I O A STREAMS module or driver open routine failed.

E R O F S The named file resides on a read-only file system and either
O _ W R O N L Y, O _ R D W R, O _ C R E A T, or O _ T R U N C is set in oflag (if the file does
not exist).

Page 3

FINAL COPY
June 15, 1995

File: ba_os/open
svid

Page: 216

open (BA_OS) open (BA_OS)

E T X T B S Y The file is a pure procedure (shared text) file that is being executed
and oflag is write or read/write.

USAGE
The O _ E X C L flag is only a modifier to the O _ C R E A T flag and has no other meaning.
The concept of e x c l u s i v e o p e n is not supported by the operating system.
Cooperating processes can coordinate their access to a file by file and record locking
or by other mechanisms.

SEE ALSO
c h m o d(BA_OS), c l o s e(BA_OS), c r e a t(BA_OS), f c n t l(BA_OS), f o p e n(BA_OS),
l s e e k(BA_OS), r e a d(BA_OS), s t r e a m s(BA_DEV), u m a s k(BA_OS), w r i t e(BA_OS).

LEVEL
Level 1.

The enforcement mode of file and record locking has moved to Level 2 effective
September 30, 1989.

NOTICES
Considerations for Threads Programming

Open file descriptors are a process resource and available to any sibling thread; if
used concurrently, actions by one thread can interfere with those of a sibling.

While one thread is blocked, siblings might still be executing.

Access rights are an attribute of the containing process and are shared by sibling
threads.

Page 4

FINAL COPY
June 15, 1995

File: ba_os/open
svid

Page: 217

pause (BA_OS) pause (BA_OS)

NAME
p a u s e – suspend process until signal

SYNOPSIS
i n c l u d e < u n i s t d . h >

i n t p a u s e (v o i d) ;

DESCRIPTION
p a u s e suspends the calling process until it receives a signal of any type. The signal
must be one that is not currently set to be ignored.

If the signal causes termination of the process, p a u s e does not return.

Return Values
If the signal is caught by the calling process and control is returned from the
signal-catching function [see s i g n a l(BA_OS)], the calling process resumes execu-
tion from the point of suspension with a return value of –1 from p a u s e and e r r n o
set to E I N T R.

Errors
In the following conditions, the calling process resumes from the point of suspen-
sion with e r r n o set to:

E I N T R A signal was caught by the calling process.

SEE ALSO
a l a r m(BA_OS), k i l l(BA_OS), s i g n a l(BA_OS), w a i t(BA_OS)

LEVEL
Level 1.

NOTICES
Considerations for Threads Programming

While one thread is blocked, siblings might still be executing. See s i g n a l(BA_OS)
for further details of signal delivery.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/pause
svid

Page: 218

pipe (BA_OS) pipe (BA_OS)

NAME
p i p e – create an interprocess channel

SYNOPSIS
i n c l u d e < u n i s t d . h >

i n t p i p e (i n t fildes[2]) ;

DESCRIPTION
p i p e creates an I/O mechanism called a pipe and returns two file descriptors,
fildes[0] and fildes[1]. The files associated with fildes[0] and fildes[1] are streams
and are both opened for reading and writing. The O _ N O N B L O C K flag is cleared.

A read from fildes[0] accesses the data written to fildes[1] on a first-in-first-out
(FIFO) basis and a read from fildes[1] accesses the data written to fildes[0] also on a
FIFO basis.

The F D _ C L O E X E C flag will be clear on both file descriptors.

If p i p e succeeds, it marks for update the s t _ a t i m e, s t _ c t i m e, and s t _ m t i m e fields
of the pipe.

Return Values
On success, p i p e returns 0. On failure, p i p e returns –1 and sets e r r n o to identify
the error.

Errors
In the following conditions, p i p e fails and sets e r r n o to:

E M F I L E The maximum number of file descriptors are currently open.

E N F I L E A file table entry could not be allocated.

SEE ALSO
f c n t l(BA_OS), r e a d(BA_OS), s t r e a m s(BA_DEV), w r i t e(BA_OS)

LEVEL
Level 1.

NOTICES
Since a pipe is bi-directional, there are two separate flows of data. Therefore, the
size (s t _ s i z e) returned by a call to f s t a t with argument fildes[0] or fildes[1] is
the number of bytes available for reading from fildes[0] or fildes[1] respectively.
Previously, the size (s t _ s i z e) returned by a call to f s t a t with argument fildes[1]
(the write-end) was the number of bytes available for reading from fildes[0] (the
read-end). See s t a t(2).

Page 1

FINAL COPY
June 15, 1995

File: ba_os/pipe
svid

Page: 219

poll (BA_OS) poll (BA_OS)

POLLRDBAND, or POLLPRI are not mutually exclusive. This flag is
only valid in the revents bitmask; it is not used in the events
field.

POLLNVAL The specified fd value is invalid. This flag is only valid in the
revents field; it is not used in the events field.

For each element of the array pointed to by fds, poll() examines the given file
descriptor for the event(s) specified in events. The number of file descriptors to be
examined is specified by nfds.

If the value of fd is less than zero, events is ignored and revents is set to zero in
that entry on return from poll().

The results of the poll() query are stored in the revents field in the pollfd
structure. Bits are set in the revents bitmask to indicate which of the requested
events are true. If none of the requested events are true, none of the specified bits is
set in revents when the poll() call returns. The event flags POLLHUP, POLLERR,
and POLLNVAL are always set in revents if the conditions they indicate are true;
this occurs even though these flags were not present in events.

If none of the defined events have occurred on any selected file descriptor, poll()
waits at least timeout milliseconds for an event to occur on any of the selected file
descriptors. On a computer where millisecond timing accuracy is not available,
timeout is rounded up to the nearest legal value available on that system. If the
value of timeout is 0, poll() returns immediately. If the value of timeout is –1,
poll() blocks until a requested event occurs or until the call is interrupted.
poll() is not affected by the O_NDELAY and O_NONBLOCK flags.

RETURN VALUE
Upon successful completion, the function poll() returns a non-negative value. A
positive value indicates the total number of file descriptors that have been selected
(i.e., file descriptors for which the revents field is non-zero). A value of 0 indi-
cates that the call timed out and no file descriptors have been selected. Upon
failure, the function poll() returns a value of –1 and sets errno to indicate an
error.

ERRORS
Under the following conditions, the function poll() fails and sets errno to:

EAGAIN if the allocation of internal data structures failed but request should be
attempted again.

EINTR if a signal was caught during the poll() system call.

EINVAL if the argument nfds is less than zero or greater than {OPEN_MAX}.

SEE ALSO
getmsg(BA_OS), putmsg(BA_OS), read(BA_OS), streams(BA_DEV), write(BA_OS).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ba_os/poll
svid

Page: 221

popen (BA_OS) popen (BA_OS)

NAME
popen, pclose – initiate pipe to/from a process

SYNOPSIS
#include <stdio.h>

FILE *popen(const char *command, const char *type);

int pclose(FILE *strm);

DESCRIPTION
The function popen() creates a pipe between the calling program and the com-
mand to be executed.

The arguments to popen() are pointers to null-terminated strings containing,
respectively, a command line [see system(BA_OS)] and an I/O mode, either "r" for
reading or "w" for writing.

The function popen() returns a stdio-stream pointer such that one can write to the
standard input of the command if the I/O mode is "w" by writing to the file strm;
and one can read from the standard output of the command if the I/O mode is "r"
by reading from the file strm. If command cannot be executed, the read or write will
fail.

A stdio-stream opened by the function popen() should be closed by the function
pclose(), which waits for the associated process to terminate and returns the exit
status of the command.

Because open files are shared, a type "r" command may be used as an input filter
and a type "w" command as an output filter.

RETURN VALUE
If files or processes cannot be created the function popen() returns NULL.

If strm is not associated with a popen() command, the function pclose() returns
a value of –1.

ERRORS
Under the following conditions, the function pclose() fails and sets errno to:

ECHILD if the status of the child process could not be obtained.

USAGE
The fseek() routine should not be used with a stdio-stream opened by the func-
tion popen().

SEE ALSO
fclose(BA_OS), fopen(BA_OS), fseek(BA_OS), pipe(BA_OS), system(BA_OS),
wait(BA_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/popen
svid

Page: 222

pread (BA_OS) pread (BA_OS)

NAME
p r e a d – atomic position and read

SYNOPSIS
i n t p r e a d (i n t fd, c h a r *buf, i n t nbytes, o f f _ t offset) ;

DESCRIPTION
The p r e a d system call does an atomic position-and-read, eliminating the necessity
of using a locking mechanism when both operations are desired and file descriptors
are shared. p r e a d is analogous to r e a d but takes a fourth argument, offset. The
read is done as if an l s e e k to offset (from the beginning of the file) were done first.
Note that (though the semantics are analogous) an l s e e k is not actually performed;
the file pointer is not affected by p r e a d. The read of nbytes then starts at the
specified offset.

The atomicity of p r e a d enables processes or threads that share file descriptors to
read from a shared file at a particular offset without using a locking mechanism that
would be necessary to achieve the same result in separate l s e e k and r e a d system
calls. Atomicity is required as the file pointer is shared and one thread might move
the pointer using lseek after another process completes an l s e e k but prior to the
r e a d.

Return Values
Upon successful completion, p r e a d returns the number of bytes actually read and
placed in buf. A value of 0 is returned when an end-of-file has been reached. Other-
wise a -1 and an error is returned.

Errors
In the following conditions, p r e a d fails and set e r r n o to:

E A C C E S fildes is open to a dynamic device and read permission is denied.

E A G A I N Mandatory file/record locking was set, O _ N D E L A Y or O _ N O N B L O C K
was set, and there was a blocking record lock.

E A G A I N Total amount of system memory available when reading via raw
I/O is temporarily insufficient.

E A G A I N No data is waiting to be read on a file associated with a tty device
and O _ N O N B L O C K was set.

E A G A I N No message is waiting to be read on a stream and O _ N D E L A Y or
O _ N O N B L O C K was set.

E B A D F fildes is not a valid file descriptor open for reading.

E B A D M S G Message waiting to be read on a stream is not a data message.

E D E A D L K The p r e a d was going to go to sleep and cause a deadlock to occur.

E F A U L T buf points outside the allocated address space.

E I N T R A signal was caught during the p r e a d system call.

E I N V A L Attempted to read from a stream linked to a multiplexor.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/pread
svid

Page: 223

pread (BA_OS) pread (BA_OS)

E I N V A L The resulting file pointer would be negative.

E I N V A L fildes is a remote file descriptor accessed using NFS, the Network
File System, and the resulting file pointer would be negative.

E I O A physical I/O error has occurred, or the process is in a back-
ground process group and is attempting to read from its control-
ling terminal, and either the process is ignoring or blocking the
S I G T T I N signal or the process group of the process is orphaned.

E I O fildes is open to a device that is in the process of closing.

E N O L C K The system record lock table was full, so the p r e a d could not go to
sleep until the blocking record lock was removed.

E N O L I N K fildes is on a remote machine and the link to that machine is no
longer active.

E S P I P E fildes is associated with a pipe or fifo.

E N O S Y S The device for fstype does not support seek operations.

SEE ALSO
l s e e k(BA_OS), p w r i t e(BA_OS), r e a d(BA_OS)

LEVEL
Level 1

NOTICES
p r e a d updates the time of last access [see s t a t(BA_OS)] of the file.

Considerations for Threads Programming
Open file descriptors are a process resource and available to any sibling thread; if
used concurrently, actions by one thread can interfere with those of a sibling.

While one thread is blocked, siblings might still be executing.

Page 2

FINAL COPY
June 15, 1995

File: ba_os/pread
svid

Page: 224

putmsg (BA_OS) putmsg (BA_OS)

and sets e r r n o to E I N V A L. If flags is set to M S G _ B A N D, then a message is sent in the
priority band specified by band. If a control part and data part are not specified and
flags is set to M S G _ B A N D, no message is sent and 0 is returned.

Normally, p u t m s g will block if the stream write queue is full due to internal flow
control conditions. For high-priority messages, p u t m s g does not block on this con-
dition. For other messages, p u t m s g does not block when the write queue is full and
O _ N O N B L O C K is set. Instead, it fails and sets e r r n o to E A G A I N.

p u t m s g or p u t p m s g also blocks, unless prevented by lack of internal resources,
waiting for the availability of message blocks in the stream, regardless of priority or
whether O _ N O N B L O C K has been specified. No partial message is sent.

Return Values
On success, p u t m s g returns 0. On failure, p u t m s g returns –1 and sets e r r n o to
identify the error.

Errors
In the following conditions, p u t m s g fails and sets e r r n o to:

E A G A I N A non-priority message was specified, the O _ N O N B L O C K flag is set and
the stream write queue is full due to internal flow control conditions.

E B A D F fd is not a valid file descriptor open for writing.

E I N T R A signal was caught during the p u t m s g system call.

E I N V A L An undefined value was specified in flags, or flags is set to R S _ H I P R I
and no control part was supplied.

E I N V A L The stream referenced by fd is linked below a multiplexor.

E I N V A L For p u t p m s g, if flags is set to M S G _ H I P R I and band is nonzero.

E N O S R Buffers could not be allocated for the message that was to be created
due to insufficient STREAMS memory resources.

E N O S T R A stream is not associated with fd.

E I O A hangup condition was generated downstream for the specified
stream, or the other end of the pipe is closed.

E R A N G E The size of the data part of the message does not fall within the range
specified by the maximum and minimum packet sizes of the topmost
stream module. This value is also returned if the control part of the
message is larger than the maximum configured size of the control
part of a message, or if the data part of a message is larger than the
maximum configured size of the data part of a message.

p u t m s g also fails if a STREAMS error message had been processed by the stream
head before the call to p u t m s g. The error returned is the value contained in the
STREAMS error message.

SEE ALSO
g e t m s g (BA_OS), p o l l (BA_OS), p u t m s g (BA_OS), r e a d (BA_OS), w r i t e (BA_OS)

Page 2

FINAL COPY
June 15, 1995

File: ba_os/putmsg
svid

Page: 226

putmsg (BA_OS) putmsg (BA_OS)

LEVEL
Level 1.

NOTICES
Considerations for Threads Programming

Open file descriptors are a process resource and available to any sibling thread; if
used concurrently, actions by one thread can interfere with those of a sibling.

While one thread is blocked, siblings might still be executing.

Page 3

FINAL COPY
June 15, 1995

File: ba_os/putmsg
svid

Page: 227

pwrite (BA_OS) pwrite (BA_OS)

NAME
p w r i t e – atomic position and write

SYNOPSIS
i n t p w r i t e (i n t fd, c h a r *buf, i n t nbytes, o f f _ t offset) ;

DESCRIPTION
The p w r i t e system call does an atomic position-and-write, eliminating the neces-
sity of using a locking mechanism when both operations are desired and file
descriptors are shared. p w r i t e is analogous to w r i t e but takes a fourth argument,
offset. The write is done as if an l s e e k to offset (from the beginning of the file) were
done first. Note that (though the semantics are analogous) an l s e e k is not actually
performed; the file pointer is not affected by p w r i t e. The write of nbytes then starts
at the specified offset.

The atomicity of p w r i t e enables processes or threads that share file descriptors to
write to the shared file at a particular offset without using a locking mechanism that
would be necessary to achieve the same result in separate l s e e k and w r i t e system
calls. Atomicity is required as the file pointer is shared and one thread might move
the pointer using lseek after another process completes an l s e e k but prior to the
w r i t e.

Return Values
Upon successful completion, p w r i t e returns the number of bytes actually written
from buf. Otherwise a -1 and an error is returned.

Errors
In the following conditions, p w r i t e fail and set e r r n o to:

E A G A I N Mandatory file/record locking is set, O _ N D E L A Y or O _ N O N B L O C K is
set, and there is a blocking record lock.

E A G A I N Total amount of system memory available when reading via raw
I/O is temporarily insufficient.

E A G A I N An attempt is made to write to a stream that can not accept data
with the O _ N D E L A Y or O _ N O N B L O C K flag set.

E B A D F fildes is not a valid file descriptor open for writing.

E D E A D L K The p w r i t e was going to go to sleep and cause a deadlock to
occur.

E F A U L T buf points outside the process’s allocated address space.

E F B I G An attempt is made to write a file that exceeds the process’s file
size limit or the maximum file size [see u l i m i t(BA_OS)].

E I N T R A signal was caught during the p w r i t e system call.

E I N V A L An attempt is made to write to a stream linked below a multi-
plexor.

E I N V A L The resulting file pointer would be negative.

fildes is a remote file descriptor accessed using NFS, the Network
File System, and the resulting file pointer would be negative.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/pwrite
svid

Page: 228

pwrite (BA_OS) pwrite (BA_OS)

E I O The process is in the background and is attempting to write to its
controlling terminal whose T O S T O P flag is set; the process is neither
ignoring nor blocking S I G T T O U signals, and the process group of
the process is orphaned.

E I O fildes points to a device special file that is in the closing state.

E N O L C K The system record lock table was full, so the p w r i t e could not go
to sleep until the blocking record lock was removed.

E N O L I N K fildes is on a remote machine and the link to that machine is no
longer active.

E N O S R An attempt is made to write to a stream with insufficient STREAMS
memory resources available in the system.

E N O S P C During a p w r i t e to an ordinary file, there is no free space left on
the device.

E N X I O The device associated with the file descriptor is a block-special or
character-special file and the file-pointer value is out of range.

E R A N G E An attempt is made to write to a stream with nbyte outside
specified minimum and maximum write range, and the minimum
value is non-zero.

E N O L C K Enforced record locking was enabled and { L O C K _ M A X } regions are
already locked in the system.

E S P I P E fildes is associated with a pipe or fifo.

E N O S Y S The device for fstype does not support l s e e k.

SEE ALSO
c r e a t(BA_OS), f c n t l(BA_OS), l s e e k(BA_OS), o p e n(BA_OS), p r e a d(BA_OS),
w r i t e(BA_OS)

LEVEL
Level 1.

NOTICES
Considerations for Threads Programming

Open file descriptors are a process resource and available to any sibling thread; if
used concurrently, actions by one thread can interfere with those of a sibling.

While one thread is blocked, siblings might still be executing.

Page 2

FINAL COPY
June 15, 1995

File: ba_os/pwrite
svid

Page: 229

raise(BA_OS) raise(BA_OS)

NAME
raise – send signal to program

SYNOPSIS
#include <signal.h>

int raise(int sig);

DESCRIPTION
raise() sends the signal sig to the executing program.

raise() returns zero if the operation succeeds. Otherwise, raise() returns –1
and errno is set to indicate an error. raise() uses kill() to send the signal to
the executing program:

kill(getpid(), sig);

[See kill(BA_OS) for a detailed list of failure conditions.]

ERRORS
Under the following conditions, the function raise() fails and sets errno to indi-
cate an error.

EINVAL if sig is not a valid signal number.

SEE ALSO
getpid(BA_OS), kill(BA_OS), signal(BA_ENV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/raise
svid

Page: 230

read (BA_OS) read (BA_OS)

In STREAMS message-nondiscard mode, r e a d and r e a d v retrieve data until they
have read nbyte bytes, or until they reach a message boundary. If r e a d or r e a d v
does not retrieve all the data in a message, the remaining data is replaced on the
stream and can be retrieved by the next r e a d or r e a d v call. Message-discard mode
also retrieves data until it has retrieved nbyte bytes, or it reaches a message boun-
dary. However, unread data remaining in a message after the r e a d or r e a d v
returns is discarded, and is not available for a later r e a d, r e a d v, or g e t m s g [see
g e t m s g(BA_OS)].

When attempting to read from a regular file with mandatory file/record locking set
[see c h m o d(BA_OS)], and there is a write lock owned by another process on the seg-
ment of the file to be read:

If O _ N O N B L O C K is set, r e a d returns –1 and sets e r r n o to E A G A I N.

If O _ N O N B L O C K is clear, r e a d sleeps until the blocking record lock is
removed.

When attempting to read from an empty pipe (or FIFO):

If no process has the pipe open for writing, r e a d returns 0 to indicate end-
of-file.

If some process has the pipe open for writing r e a d returns 0.

If some process has the pipe open for writing and O _ N O N B L O C K is set, r e a d
returns –1 and sets e r r n o to E A G A I N.

If O _ N O N B L O C K is clear, r e a d blocks until data is written to the pipe or the
pipe is closed by all processes that had opened the pipe for writing.

When attempting to read a file associated with a terminal that has no data currently
available:

If O _ N O N B L O C K is set, r e a d returns –1 and sets e r r n o to E A G A I N.

If O _ N O N B L O C K is clear, r e a d blocks until data becomes available.

When attempting to read a file associated with a stream that is not a pipe or FIFO, or
terminal, and that has no data currently available:

If O _ N O N B L O C K is set, r e a d returns –1 and sets e r r n o to E A G A I N.

If O _ N O N B L O C K is clear, r e a d blocks until data becomes available.

When reading from a STREAMS file, handling of zero-byte messages is determined
by the current read mode setting. In byte-stream mode, r e a d accepts data until it
has read nbyte bytes, or until there is no more data to read, or until a zero-byte mes-
sage block is encountered. r e a d then returns the number of bytes read, and places
the zero-byte message back on the stream to be retrieved by the next r e a d or
g e t m s g [see g e t m s g(BA_OS)]. In the two other modes, a zero-byte message returns
a value of 0 and the message is removed from the stream. When a zero-byte mes-
sage is read as the first message on a stream, a value of 0 is returned regardless of
the r e a d mode.

A r e a d or r e a d v from a STREAMS file returns the data in the message at the front of
the stream head read queue, regardless of the priority band of the message.

Page 2

FINAL COPY
June 15, 1995

File: ba_os/read
svid

Page: 232

read (BA_OS) read (BA_OS)

Normally, a r e a d from a STREAMS file can only process messages with data and
without control information. The r e a d fails if a message containing control infor-
mation is encountered at the stream head. This default action can be changed by
placing the stream in either control-data mode or control-discard mode with the
I _ S R D O P T i o c t l(BA_OS). In control-data mode, control messages are converted
to data messages by r e a d. In control-discard mode, control messages are discarded
by r e a d, but any data associated with the control messages is returned to the user.

Return Values
On success, r e a d and r e a d v return a non-negative integer indicating the number of
bytes actually read. On failure, r e a d and r e a d v return –1 and set e r r n o to identify
the error.

A r e a d from a STREAMS file also fails if an error message is received at the stream
head. In this case, e r r n o is set to the value returned in the error message. If a
hangup occurs on the stream being read, r e a d continues to operate normally until
the stream head read queue is empty. Thereafter, it returns 0.

Errors
In the following conditions, r e a d and r e a d v fail and set e r r n o to:

E A G A I N
Mandatory file/record locking was set, O _ N O N B L O C K was set, and there was
a blocking record lock.

E A G A I N
Total amount of system memory available when reading via raw I/O is tem-
porarily insufficient.

E A G A I N
No data is waiting to be read on a file associated with a tty device and
O _ N O N B L O C K was set.

E A G A I N
No message is waiting to be read on a stream and O _ N O N B L O C K was set.

E B A D F fildes is not a valid file descriptor open for reading.

E B A D M S G
Message waiting to be read on a stream is not a data message.

E D E A D L K
The r e a d was going to go to sleep and cause a deadlock to occur.

E I N T R A signal was caught during the r e a d or r e a d v system call.

E I N V A L
Attempted to read from a stream linked to a multiplexor.

E I O A physical I/O error has occurred, or the process is in a background process
group and is attempting to read from its controlling terminal, and either the
process is ignoring or blocking the S I G T T I N signal or the process group of
the process is orphaned.

E I O fildes is open to a device that is in the process of closing.

Page 3

FINAL COPY
June 15, 1995

File: ba_os/read
svid

Page: 233

read (BA_OS) read (BA_OS)

In addition, r e a d v may return one of the following errors:

E I N V A L
iovcnt was less than or equal to 0 or greater than 16.

E I N V A L
The sum of the i o v _ l e n values in the iov array overflowed a 32-bit integer.

SEE ALSO
c r e a t(BA_OS), f c n t l(BA_OS), g e t m s g(BA_OS), o p e n(BA_OS), p r e a d(BA_OS),
s t r e a m s(BA_DEV), t y p e s(BA_ENV), w r i t e(BA_OS)

LEVEL
Level 1.

The enforcement mode of file and record locking has moved to Level 2 effective
September 30, 1989.

NOTICES
r e a d updates the time of last access [see s t a t(BA_OS)] of the file.

Considerations for Threads Programming
Open file descriptors are a process resource and available to any sibling thread; if
used concurrently, actions by one thread can interfere with those of a sibling.

While one thread is blocked, siblings might still be executing.

Page 4

FINAL COPY
June 15, 1995

File: ba_os/read
svid

Page: 234

readlink(BA_OS) readlink(BA_OS)

NAME
readlink – read value of a symbolic link

SYNOPSIS
#include <unistd.h>

int readlink(const char *path, void *buf, size_t bufsiz);

DESCRIPTION
The function readlink() places the contents of the symbolic link referred to by
path in the buffer buf which has size bufsiz. The contents of the link are not null-
terminated when returned.

RETURN VALUE
Upon successful completion, the function readlink() returns the count of char-
acters placed in the buffer; otherwise, it returns a value of –1 and sets errno to
indicate an error.

ERRORS
Under the following conditions, the function readlink() fails, the buffer remains
unchanged, and errno is set to:

EACCES if search permission is denied for a component of the path prefix of
path.

EINVAL if path is not a symbolic link.

EIO if an I/O error occurred while reading from or writing to the file
system.

ENOENT if the path does not exist.

ELOOP if too many symbolic links are encountered in translating path.

ENAMETOOLONG
if the length of a path exceeds {PATH_MAX}, or pathname com-
ponent is longer than {NAME_MAX} while {_POSIX_NO_TRUNC}
is in effect.

ENOSYS if this operation is not applicable for this file system type.

SEE ALSO
stat(BA_OS), symlink(BA_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/readlink
svid

Page: 235

remove(BA_OS) remove(BA_OS)

NAME
remove – remove file

SYNOPSIS
#include <stdio.h>

int remove(const char *path);

DESCRIPTION
The function remove() causes the file or empty directory whose name is the string
pointed to by path to be no longer accessible by that name. A subsequent attempt to
open that file using that name will fail, unless the file is created anew.

For files, remove() is identical to unlink(). For directories, remove() is identi-
cal to rmdir().

RETURN VALUE
Upon successful completion, the function remove() returns a value of 0; other-
wise, it returns a value of –1 and sets errno to indicate an error.

ERRORS
Under the following conditions, the function remove() fails and sets errno to:

EEXIST if the directory to be removed contains directory entries other than .
(the directory itself) and .. (the parent directory).

ENOTDIR if a component of the path-prefix is not a directory.

EACCES if a component of the path-prefix denies search permission, or if write
permission is denied on the parent directory of the directory or file to
be removed.

EBUSY if the directory to be removed is currently in use by the system.

EROFS if the directory or file to be removed is located on a read-only file sys-
tem.

ELOOP if too many symbolic names are encountered in translating path.

ENAMETOOLONG
if the length of a pathname exceeds {PATH_MAX}, or pathname com-
ponent is longer than {NAME_MAX} while {_POSIX_NO_TRUNC} is in
effect.

ENOENT if the path argument names a non-existent directory or points to an
empty string.

EPERM if the named file is a directory and the effective user ID of the process
does not have appropriate privileges.

SEE ALSO
rmdir(BA_OS), unlink(BA_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/remove
svid

Page: 236

rename (BA_OS) rename (BA_OS)

NAME
rename – change the name of a file

SYNOPSIS
#include <unistd.h>

int rename(const char *old, const char *new);

DESCRIPTION
The function rename() changes the name of a file. The old argument points to the
pathname of the file to be renamed. The new argument points to the new pathname
of the file.

If the old argument and the new argument both refer to and link to the same existing
file, the rename() function returns successfully and performs no other action.

If the old argument points to the pathname of a file that is not a directory, the new
argument must not point to the pathname of a directory. If the link named by the
new argument exists, it will be removed and old will be renamed to new. In this
case, a link named new must remain visible to other processes throughout the
renaming operation and will refer either to the file referred to by new or old before
the operation began. Write access permission is required for both the directory con-
taining old and the directory containing new.

If the old argument points to the pathname of a directory, the new argument must
not point to the pathname of a file that is not a directory. If the directory named by
the new argument exists, it will be removed and old will be renamed to new. In this
case, a link named new will exist throughout the renaming operation and will refer
either to the file referred to by new or old before the operation began. Thus, if new
names an existing directory, it will be required to be an empty directory.

The new pathname must not contain a path prefix that names old. Write access per-
mission is required for the directory containing old and the directory containing
new. If the old argument points to the pathname of a directory, write access permis-
sion may be required for the directory named by old, and, if it exists, the directory
named by new.

If the link named by the new argument exists and the file’s link count becomes zero
when it is removed and no process has the file open, the space occupied by the file
will be freed and the file will no longer be accessible. If one or more processes have
the file open when the last link is removed, the link will be removed before
rename() returns, but the removal of the file contents will be postponed until all
references to the file have been closed.

Upon successful completion, the rename() function will mark for update the
st_ctime and st_mtime fields of the parent directory of each file.

RETURN VALUE
Upon successful completion, the function rename() returns a value of 0; other-
wise, it returns a value of –1 and sets errno to indicate an error.

ERRORS
Under the following conditions, the function rename() fails and sets errno to:

Page 1

FINAL COPY
June 15, 1995

File: ba_os/rename
svid

Page: 237

rename (BA_OS) rename (BA_OS)

EACCES if a component of either path prefix denies search permission; or
one of the directories containing old or new denies write permis-
sions; or write permission is denied by a directory pointed to by
the old or new parameters.

EBUSY if the new is a directory and the mount point for a mounted file
system.

EEXIST if the link named by new is a directory containing entries other
than . (the directory itself) and .. (the parent directory).

EINVAL if old is a parent directory of new, or an attempt is made to rename
. (the directory itself) or .. (the parent directory).

EISDIR if the new parameter points to a directory but the old parameter
points to a file that is not a directory.

ELOOP if too many symbolic links were encountered in translating the
pathname.

ENAMETOOLONG
if the length of a pathname exceeds {PATH_MAX}, or pathname
component is longer than {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

ENOENT if a component of either old or new does not exist, or the file
referred to by either old or new does not exist, or either old or new
point to an empty string.

ENOSPC if the directory that would contain new cannot be extended.

ENOTDIR if a component of either path prefix is not a directory; or the old
parameter names a directory and the new parameter names a non-
directory file.

EROFS if the requested operation requires writing in a directory on a
read-only file system.

EXDEV if the links named by old and new are on different file systems.

SEE ALSO
link(BA_OS), unlink(BA_OS).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ba_os/rename
svid

Page: 238

rmdir (BA_OS) rmdir (BA_OS)

NAME
rmdir – remove a directory

SYNOPSIS
#include <unistd.h>

int rmdir(const char *path);

DESCRIPTION
The function rmdir() removes a directory.

The argument path specifies the path-name of the directory to be removed.

The directory must be empty, that is, not have any directory entries other than, .
(the directory itself) and .. (the parent directory).

If the directory’s link count becomes zero and no process has the directory open,
the space occupied by the directory is freed and the directory is no longer accessi-
ble. If one or more processes have the directory open when the last link is removed,
the . and .. entries, if present, are removed before rmdir() returns and no new
entries may be created in the directory, but the directory is not removed until all
references to the directory have been closed.

If path is a symbolic link, it is not followed.

Upon successful completion the function rmdir() marks for update the
st_ctime and st_mtime fields of the parent directory.

RETURN VALUE
Upon successful completion, the function rmdir() returns a value of 0; otherwise,
it returns a value of –1 and sets errno to indicate an error.

ERRORS
Under the following conditions, the function rmdir() fails and sets errno to:

EEXIST if the directory to be removed contains directory entries other than
. (the directory itself) and .. (the parent directory).

ENOTDIR if a component of the path-prefix is not a directory.

EACCES if a component of the path-prefix denies search permission, or if
write permission is denied on the parent directory of the directory
to be removed.

EBUSY if the directory to be removed is currently in use by the system.

EROFS if the directory to be removed is located on a read-only file system.

EIO if a physical I/O error has occurred.

ELOOP if too many symbolic links were encountered in translating path.

ENAMETOOLONG
if the length of a pathname exceeds {PATH_MAX}, or pathname
component is longer than {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

ENOENT if the path argument names a non-existent directory or points to an
empty string.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/rmdir
svid

Page: 239

rmdir (BA_OS) rmdir (BA_OS)

SEE ALSO
directory(BA_OS) mkdir(BA_OS)

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ba_os/rmdir
svid

Page: 240

seekdir (BA_OS) seekdir (BA_OS)

NAME
seekdir – set position of directory stream

SYNOPSIS
#include <sys/types.h>

#include <dirent.h>

void seekdir(DIR *dirp, long loc);

DESCRIPTION
The function seekdir() sets the position of the next readdir() operation on the
directory stream specified by the dirp to the position specified by loc. The value of
loc should have been returned from an earlier call to telldir(). The position
reverts to the one associated with directory stream when the telldir() operation
was performed.

SEE ALSO
directory(BA_OS), telldir(BA_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/seekdir
svid

Page: 241

setlocale (BA_OS) setlocale (BA_OS)

NAME
setlocale – modifies and queries a program’s locale

SYNOPSIS
#include <locale.h>

char *setlocale(int category, const char ∗locale);

DESCRIPTION
setlocale() selects the appropriate piece of the program’s locale as specified by
the category and locale arguments. The category argument may have the following
values (defined in <locale.h>):

LC_CTYPE affects the behavior of the character handling functions (isdi-
git(), tolower(), etc.) and the multibyte character functions,
mbtowc() and wctomb().

LC_NUMERIC affects the decimal-point character for the formatted input/output
functions and the string conversion functions, as well as the non-
monetary formatted information returned by localeconv().

LC_TIME affects the behavior of time related functions, such as getdate()
and strftime().

LC_COLLATE affects the behavior of collating functions, such as strcoll() and
strxfrm().

LC_MONETARY
affects the monetary formatted information returned by
localeconv().

LC_MESSAGES
affects the behavior of message functions, such as gettxt().

LC_ALL names the program’s entire locale.

Each category corresponds to a set of databases which contain the relevant informa-
tion for each defined locale. The location of a database is given by a path ending in
/usr/lib/locale/category, where locale and category are the names of locale and
category, respectively.

A value of "C" for the locale argument specifies the default environment.

A value of "" for the locale argument specifies that the locale should be taken from
environment variables. The order in which the environment variables are checked
for the various categories is given below:

Category 1st Env. Var. 2nd_ ______________________________________
LC_CTYPE: LC_CTYPE LANG
LC_COLLATE: LC_COLLATE LANG
LC_TIME: LC_TIME LANG
LC_NUMERIC: LC_NUMERIC LANG
LC_MONETARY: LC_MONETARY LANG
LC_MESSAGES: LC_MESSAGES LANG

Page 1

FINAL COPY
June 15, 1995

File: ba_os/setlocale
svid

Page: 242

setlocale (BA_OS) setlocale (BA_OS)

At program startup, the equivalent of

setlocale(LC_ALL, "C");

is executed. This has the effect of initializing each category to the locale described
by the environment "C".

If a pointer to a string is given for locale, setlocale() attempts to set the locale for
the given category to locale. If setlocale() succeeds, locale is returned. If setlo-
cale() fails, a null pointer is returned and the program’s locale is not changed.

For category LC_ALL, the behavior is slightly different. If a pointer to a string is
given for locale and LC_ALL is given for category, setlocale() attempts to set the
locale for all the categories to locale. The locale may be a simple locale, consisting of
a single locale, or a composite locale. A composite locale is a string beginning with
a / followed by the locale of each category separated by a /. If the locales for all the
categories are the same after all the attempted locale changes, then setlocale()
will return a pointer to the common simple locale. If there is a mixture of locales
among the categories, then setlocale() will return a composite locale.

A null pointer for locale causes setlocale() to return the current locale associated
with the category. The program’s locale is not changed. If LC_ALL is given as the
category and all the other categories do not have the same locale, then a composite
locale is returned as above. If category is LC_ALL and the specified locale does not
have files for all the categories (see table, above), setlocale() returns null.

SEE ALSO
conv(BA_LIB), ctime(BA_LIB), ctype(BA_LIB), getdate(BA_LIB), gettxt(BA_LIB),
localeconv(BA_LIB), mbchar(BA_LIB), printf(BA_LIB), strcoll(BA_LIB),
strftime(BA_LIB), strtod(BA_LIB), strxfrm(BA_LIB).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ba_os/setlocale
svid

Page: 243

setpgid(BA_OS) setpgid(BA_OS)

NAME
setpgid – set process group ID

SYNOPSIS
#include <unistd.h>
#include <sys/types.h>

int setpgid(pid_t pid, pid_t pgid);

DESCRIPTION
The function setpgid() is used to join an existing process group or create a new
process group within the session of the calling process. The process group ID of a
session leader will not change. Upon successful completion, the process group ID
of the process with a process ID that matches pid will be set to pgid. As a special
case, if pid is zero, the process ID of the calling process will be used. If pgid is zero
the process ID of the indicated process will be used.

RETURN VALUE
Upon successful completion, the function setpgid() returns a value of 0; other-
wise, it returns a value of –1 and sets errno to indicate an error.

ERRORS
Under the following conditions, the function setpgid() fails and sets errno to:

EACCES if the value of the pid argument matches the process ID of a child process
of the calling process and the child process has successfully executed an
exec routine.

EINVAL if pgid is less than (pid_t)0, or greater than or equal to {PID_MAX}.

EPERM if the process indicated by the pid argument is a session leader.

EPERM if the value of the pid argument matches the process ID of a child process
of the calling process and the child process is not in the same session as
the calling process.

EPERM if the value of the pgid argument does not match the process ID of the
process indicated by the pid argument and there is no process with a
process group ID that matches the value of the pgid argument in the
same session as the calling process.

ESRCH if the value of the pid argument does not match the process ID of the cal-
ling process or of a child process of the calling process.

SEE ALSO
exec(BA_OS), exit(BA_OS), fork(BA_OS), getpid(BA_OS), getpgid(BA_OS),
setsid(BA_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/setpgid
svid

Page: 244

setsid(BA_OS) setsid(BA_OS)

NAME
setsid – set session ID

SYNOPSIS
#include <unistd.h>
#include <sys/types.h>

pid_t setsid (void);

DESCRIPTION
The function setsid() sets the process group ID and session ID of the calling pro-
cess to the process ID of the calling process, and releases the calling process’s con-
trolling terminal.

Upon returning, the calling process will be the session leader of a new session, will
be the process group leader of a new process group, and will have no controlling
terminal. The calling process will be the only process in the new process group and
the only process in the new session.

RETURN VALUE
Upon successful completion, the function setsid() returns the calling process’s
session ID; otherwise, it returns a value of (pid_t)–1 and sets errno to indicate
an error.

ERRORS
Under the following condition, setsid() fails and sets errno to:

EPERM if the calling process is already a process group leader, or the process
group ID of a process other than the calling process matches the process
ID of the calling process.

USAGE
If the calling process is the last member of a pipeline started by a job-control shell,
the shell may make the calling process a process group leader and the other
processes of the pipeline members of that process group. In this case, the call to
setsid() will fail. For this reason, a process that calls setsid() and expects to
be part of a pipeline should always first fork; the parent should exit and the child
should call setsid(). This will insure that the process will work reliably when
started by both job-control shells and non-job control shells.

SEE ALSO
exec(BA_OS), exit(BA_OS), fork(BA_OS), getpid(BA_OS), getpgid(BA_OS),
getsid(BA_OS), setpgid(BA_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/setsid
svid

Page: 245

setuid (BA_OS) setuid (BA_OS)

NAME
s e t u i d, s e t g i d – set user and group IDs

SYNOPSIS
i n c l u d e < s y s / t y p e s . h >
i n c l u d e < u n i s t d . h >

i n t s e t u i d (u i d _ t uid) ;

i n t s e t g i d (g i d _ t gid) ;

DESCRIPTION
The s e t u i d system call sets the real user ID, effective user ID, and saved user I D of
the calling process. The s e t g i d system call sets the real group ID, effective group
ID, and saved group ID of the calling process.

At login time, the real user ID, effective user ID, and saved user ID of the login pro-
cess are set to the login ID of the user responsible for the creation of the process.
The same is true for the real, effective, and saved group IDs; they are set to the
group ID of the user responsible for the creation of the process.

When a process calls e x e c (B A _ O S) to execute a file (program), the user and/or
group identifiers associated with the process can change:

The real user and group IDs are always set to the real user and group IDs of
the process calling e x e c.

The saved user and group IDs of the new process are always set to the effec-
tive user and group IDs of the process calling e x e c.

If the file executed is not a set-user-ID or set-group-ID file, the effective user
and group IDs of the new process are set to the effective user and group IDs
of the process calling e x e c.

If the file executed is a set-user-ID file, the effective user ID of the new pro-
cess is set to the owner ID of the executed file.

If the file executed is a set-group-ID file, the effective group ID of the new
process is set to the group ID of the executed file.

If the calling process has appropriate privileges, the real group ID, effective group
ID and the saved set-group-ID are set to gid.

If the calling process does not have appropriate privileges, but its real group ID or
saved set-group-ID is equal to gid, the effective group ID is set to gid; the real group
ID and saved set-group-ID remain unchanged.

Return Values
On success, s e t u i d and s e t g i d return 0. On failure, s e t u i d and s e t g i d return –1
and set e r r n o to identify the error.

Errors
In the following conditions, s e t u i d and s e t g i d fail and set e r r n o to:

E P E R M For s e t u i d, the calling process does not have the appropriate privilege
and the uid parameter does not match either the real or saved user IDs.
For s e t g i d, the calling process does not have the appropriate privilege
and the gid parameter does not match either the real or saved group IDs.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/setuid
svid

Page: 246

setuid (BA_OS) setuid (BA_OS)

E I N V A L The uid or gid is out of range.

SEE ALSO
e x e c (BA_OS), g e t g r o u p s(BA_OS), g e t u i d (BA_OS), s t a t(BA_OS)

LEVEL
Level 1.

NOTICES
Considerations for Threads Programming

This ID number is an attribute of the containing process and is shared by sibling
threads.

Page 2

FINAL COPY
June 15, 1995

File: ba_os/setuid
svid

Page: 247

sigaction (BA_OS) sigaction (BA_OS)

S A _ R E S T A R T If set and the signal is caught, a system call that is interrupted by
the execution of this signal’s handler is transparently restarted by
the system. Otherwise, that system call returns an E I N T R error.
Not all system calls can be restarted, for example, s l e e p(2) and
p a u s e(2) cannot be restarted.

S A _ S I G I N F O If cleared and the signal is caught, sig is passed as the only argu-
ment to the signal-catching function. If set and the signal is
caught, two additional arguments are passed to the signal-
catching function. If the second argument is not equal to N U L L, it
points to a s i g i n f o _ t structure containing the reason why the
signal was generated the third argument points to a u c o n t e x t _ t
structure containing the receiving process’s context when the sig-
nal was delivered

S A _ N O C L D W A I T If set and sig equals S I G C H L D, the system will not create zombie
processes when children of the calling process exit. If the calling
process subsequently issues a w a i t(BA_OS), it blocks until all of
the calling process’s child processes terminate, and then returns a
value of – 1 with e r r n o set to E C H I L D.

S A _ N O C L D S T O P If set and sig equals S I G C H L D, sig will not be sent to the calling
process when its child processes stop or continue. underlying
execution entities kernel execution entities

Return Values
On success, s i g a c t i o n returns 0. On failure, s i g a c t i o n returns –1 and sets e r r n o
to identify the error.

Errors
In the following conditions, s i g a c t i o n fails and sets e r r n o to:

E I N V A L The value of the sig argument is not a valid signal number or an
attempt is made to catch a signal that cannot be caught or ignore
a signal that cannot be ignored.

E F A U L T act or oact points outside the process’s allocated address space.

SEE ALSO
e x i t(BA_OS), k i l l(BU_CMD), k i l l(BA_OS), p a u s e(BA_OS),
s i g a l t s t a c k(BA_OS), s i g n a l(BA_OS), s i g n a l(BA_ENV), s i g p r o c m a s k(BA_OS),
s i g s e n d(BA_OS), s i g s e t o p s(BA_OS), s i g s u s p e n d(BA_OS), w a i t(BA_OS)

LEVEL
Level 1.

NOTICES
If the system call is reading from or writing to a terminal and the terminal’s N O F L S H
bit is cleared, data may be flushed.

Considerations for Threads Programming
The handler defined by act is common to all threads in a process.

Page 2

FINAL COPY
June 15, 1995

File: ba_os/sigaction
svid

Page: 249

sigaction (BA_OS) sigaction (BA_OS)

The Threads Library does not support alternate signal handling stacks for threads.

The S A _ W A I T S I G flag (see description above) can be used in support of threads
libraries.

Further details can be found in s i g n a l(BA_ENV).

Page 3

FINAL COPY
June 15, 1995

File: ba_os/sigaction
svid

Page: 250

sigaltstack (BA_OS) sigaltstack (BA_OS)

NAME
s i g a l t s t a c k – set or get signal alternate stack context

SYNOPSIS
i n c l u d e < s i g n a l . h >

i n t s i g a l t s t a c k (c o n s t s t a c k _ t *ss, s t a c k _ t *oss) ;

DESCRIPTION
s i g a l t s t a c k allows users to define an alternate stack area on which signals are to
be processed. If ss is non-zero, it specifies a pointer to, and the size of a stack area
on which to deliver signals, and tells the system if the process is currently executing
on that stack. When a signal’s action indicates its handler should execute on the
alternate signal stack [specified with a s i g a c t i o n(2) call], the system checks to see
if the process is currently executing on that stack. If the process is not currently
executing on the signal stack, the system arranges a switch to the alternate signal
stack for the duration of the signal handler’s execution.

The structure s i g a l t s t a c k includes the following members.

c h a r * s s _ s p
i n t s s _ s i z e
i n t s s _ f l a g s

If ss is not N U L L, it points to a structure specifying the alternate signal stack that will
take effect upon return from s i g a l t s t a c k. The s s _ s p and s s _ s i z e fields specify
the new base and size of the stack, which is automatically adjusted for direction of
growth and alignment. The s s _ f l a g s field specifies the new stack state and may
be set to the following:

S S _ D I S A B L E The stack is to be disabled and s s _ s p and s s _ s i z e are ignored. If
S S _ D I S A B L E is not set, the stack will be enabled. S S _ D I S A B L E is the
only way users can disable the alternate signal stack.

If oss is not N U L L, it points to a structure specifying the alternate signal stack that
was in effect prior to the call to s i g a l t s t a c k. The s s _ s p and s s _ s i z e fields
specify the base and size of that stack. The s s _ f l a g s field specifies the stack’s
state, and may contain the following values:

S S _ O N S T A C K The process is currently executing on the alternate signal stack.
Attempts to modify the alternate signal stack while the process is
executing on it will fail. S S _ O N S T A C K cannot be modified by users.

S S _ D I S A B L E The alternate signal stack is currently disabled.

Return Values
On success, s i g a l t s t a c k returns 0. On failure, s i g a l t s t a c k returns –1 and sets
e r r n o to identify the error.

Errors
In the following conditions, s i g a l t s t a c k fails and sets e r r n o to:

E F A U L T Either ss or oss points outside the process’s allocated address space.

E I N V A L ss is non-null and the s s _ f l a g s field pointed to by ss contains
invalid flags. The only flag considered valid is S S _ D I S A B L E.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/sigaltstack
svid

Page: 251

sigaltstack (BA_OS) sigaltstack (BA_OS)

E P E R M An attempt was made to modify an active stack.

E N O M E M The size of the alternate stack area is less than M I N S I G S T K S Z.

USAGE
The value S I G S T K S Z is defined to be the number of bytes that would be used to
cover the usual case when allocating an alternate stack area. The value
M I N S I G S T K S Z is defined to be the minimum stack size for a signal handler. In com-
puting an alternate stack size, a program should add that amount to its stack
requirements to allow for the operating system overhead.

The following code fragment is typically used to allocate an alternate stack.

i f ((s i g s t k . s s _ s p = (c h a r *) m a l l o c (S I G S T K S Z)) = = N U L L)
/ * e r r o r r e t u r n * / ;

s i g s t k . s s _ s i z e = S I G S T K S Z ;
s i g s t k . s s _ f l a g s = 0 ;
i f (s i g a l t s t a c k (& s i g s t k , (s t a c k _ t *) 0) < 0)

p e r r o r (" s i g a l t s t a c k ") ;

SEE ALSO
g e t c o n t e x t(BA_OS), s i g a c t i o n(BA_OS),

LEVEL
Level 1.

NOTICES
Considerations for Threads Programming

The Threads Library does not support alternate signal handling stacks for threads.
See s i g n a l(BA_OS) for further details.

Page 2

FINAL COPY
June 15, 1995

File: ba_os/sigaltstack
svid

Page: 252

signal (BA_OS) signal (BA_OS)

NAME
s i g n a l, s i g s e t, s i g h o l d, s i g r e l s e, s i g i g n o r e, s i g p a u s e – simplified signal
management

SYNOPSIS
i n c l u d e < s i g n a l . h >

v o i d (∗s i g n a l (i n t sig, v o i d (∗disp) (i n t))) (i n t) ;

v o i d (∗s i g s e t (i n t sig, v o i d (∗disp) (i n t))) (i n t) ;

i n t s i g h o l d (i n t sig) ;

i n t s i g r e l s e (i n t sig) ;

i n t s i g i g n o r e (i n t sig) ;

i n t s i g p a u s e (i n t sig) ;

DESCRIPTION
These functions provide simplified signal management for application processes.
See s i g n a l(BA_OS) for an explanation of general signal concepts.

s i g n a l and s i g s e t are used to modify signal dispositions. sig specifies the signal,
which may be any signal except S I G K I L L and S I G S T O P. disp specifies the signal’s
disposition, which may be S I G _ D F L, S I G _ I G N, or the address of a signal handler. If
s i g n a l is used, disp is the address of a signal handler, and sig is not S I G I L L,
S I G T R A P, or S I G P W R, the system first sets the signal’s disposition to S I G _ D F L before
executing the signal handler. If s i g s e t is used and disp is the address of a signal
handler, the system adds sig to the calling process’s signal mask before executing
the signal handler; when the signal handler returns, the system restores the calling
process’s signal mask to its state prior to the delivery of the signal. In addition, if
s i g s e t is used and disp is equal to S I G _ H O L D, sig is added to the calling process’s
signal mask and the signal’s disposition remains unchanged. However, if s i g s e t is
used and disp is not equal to S I G _ H O L D, sig will be removed from the calling
process’s signal mask.

s i g h o l d adds sig to the calling process’s signal mask.

s i g r e l s e removes sig from the calling process’s signal mask.

s i g i g n o r e sets the disposition of sig to S I G _ I G N.

s i g p a u s e removes sig from the calling process’s signal mask and suspends the cal-
ling process until a signal is received.

Return Values
On success, s i g n a l returns the signal’s previous disposition. On failure, s i g n a l
returns S I G _ E R R and sets e r r n o to identify the error.

Errors
In the following conditions, this function fails and set e r r n o to:

E I N V A L The value of the sig argument is not a valid signal or is equal to
S I G K I L L or S I G S T O P.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/signal
svid

Page: 253

signal (BA_OS) signal (BA_OS)

E I N T R A signal was caught during the system call s i g p a u s e.

USAGE
If s i g n a l is used to set S I G C H L D’s disposition to a signal handler, S I G C H L D will not
be sent when the calling process’s children are stopped or continued.

If any of the above functions are used to set S I G C H L D’s disposition to S I G _ I G N, the
calling process’s child processes will not create zombie processes when they ter-
minate. If the calling process subsequently waits for its children, it blocks until all
of its children terminate; it then returns a value of –1 with e r r n o set to E C H I L D.
[see w a i t(BA_OS), w a i t i d(BA_OS)].

SEE ALSO
k i l l(BA_OS), p a u s e(BA_OS), s i g a c t i o n(BA_OS), s i g n a l(BA_ENV),
s i g s e n d(BA_OS), w a i t(BA_OS), w a i t i d(BA_OS)

LEVEL
Level 1.

NOTICES
Considerations for Threads Programming

Signal dispositions (that is, default/ignore/handler) are a process attribute and are
shared by all threads. Signal masks, on the other hand, are maintained indepen-
dently per thread.

Page 2

FINAL COPY
June 15, 1995

File: ba_os/signal
svid

Page: 254

sigpending (BA_OS) sigpending (BA_OS)

NAME
s i g p e n d i n g – examine signals that are blocked and pending

SYNOPSIS
i n c l u d e < s i g n a l . h >

i n t s i g p e n d i n g (s i g s e t _ t *set) ;

DESCRIPTION
The s i g p e n d i n g function retrieves those signals that have been sent to the calling
process but are being blocked from delivery by the calling process’s signal mask.
The signals are stored in the space pointed to by the argument set.

Return Values
On success, s i g p e n d i n g returns 0. On failure, s i g p e n d i n g returns –1 and sets
e r r n o to identify the error.

SEE ALSO
s i g a c t i o n(BA_OS), s i g p r o c m a s k(BA_OS)

LEVEL
Level 1.

NOTICES
Considerations for Threads Programming

The set returned is the union of

Signals pending to the calling thread but blocked by that thread’s signal
mask.

Signals pending to the process but blocked by every currently running
thread in the process.

In general, the status from s i g p e n d i n g is only advisory. A signal pending to the
containing process might be delivered to a sibling thread (if any become eligible)
after the return of this system call. See s i g n a l(BA_ENV) for further details.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/sigpending
svid

Page: 255

sigprocmask (BA_OS) sigprocmask (BA_OS)

NAME
s i g p r o c m a s k – change or examine signal mask

SYNOPSIS
i n c l u d e < s i g n a l . h >

i n t s i g p r o c m a s k (i n t how, c o n s t s i g s e t _ t *set, s i g s e t _ t *oset) ;

DESCRIPTION
The s i g p r o c m a s k function is used to examine and/or change the calling process’s
signal mask. If the value is S I G _ B L O C K, the set pointed to by the argument set is
added to the current signal mask. If the value is S I G _ U N B L O C K, the set pointed by
the argument set is removed from the current signal mask. If the value is
S I G _ S E T M A S K, the current signal mask is replaced by the set pointed to by the argu-
ment set. If the argument oset is not N U L L, the previous mask is stored in the space
pointed to by oset. If the value of the argument set is N U L L, the value how is not
significant and the process’s signal mask is unchanged; thus, the call can be used to
enquire about currently blocked signals.

If there are any pending unblocked signals after the call to s i g p r o c m a s k, at least
one of those signals will be delivered before the call to s i g p r o c m a s k returns.

It is not possible to block those signals that cannot be ignored [see
s i g a c t i o n(BA_OS)]. This restriction is silently imposed by the system.

If s i g p r o c m a s k fails, the process’s signal mask is not changed.

Return Values
On success, s i g p r o c m a s k returns 0. On failure, s i g p r o c m a s k returns –1 and sets
e r r n o to identify the error.

Errors
In the following conditions, s i g p r o c m a s k fails and sets e r r n o to:

E I N V A L The value of the how argument is not equal to one of the defined
values.

E F A U L T The value of set or oset points outside the process’s allocated
address space.

SEE ALSO
s i g a c t i o n(BA_OS), s i g n a l(BA_OS), s i g s e t o p s(BA_OS)

LEVEL
Level 1.

NOTICES
Considerations for Threads Programming

Signal masks are maintained per thread. See s i g n a l(BA_OS) for further details.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/sigprocmask
svid

Page: 256

sigsend (BA_OS) sigsend (BA_OS)

NAME
s i g s e n d, s i g s e n d s e t – send a signal to a process or a group of processes

SYNOPSIS
i n c l u d e < s y s / t y p e s . h >
i n c l u d e < s i g n a l . h >
i n c l u d e < s y s / p r o c s e t . h >

i n t s i g s e n d (i d t y p e _ t idtype, i d _ t id, i n t sig) ;

i n t s i g s e n d s e t (c o n s t p r o c s e t _ t *psp, i n t sig) ;

DESCRIPTION
s i g s e n d sends a signal to the process or group of processes specified by id and
idtype. The signal to be sent is specified by sig and is either zero or one of the values
listed in s i g n a l(BA_OS). If sig is zero (the null signal), error checking is performed
but no signal is actually sent. This value can be used to check the validity of id and
idtype.

In order to send the signal to the target process (pid), the sending process must have
permission to do so, subject to the following ownership restrictions:

The real or effective user ID of the sending process must match the real or
saved [from exec(BA_OS)] user ID of the receiving process, unless the send-
ing process has the P _ O W N E R privilege, or sig is S I G C O N T and the sending
process has the same session ID as the receiving process.

If idtype is P _ P I D, sig is sent to the process with process ID id.

If idtype is P _ P G I D, sig is sent to any process with process group ID id.

If idtype is P _ S I D, sig is sent to any process with session ID id.

If idtype is P _ U I D, sig is sent to any process with effective user ID id.

If idtype is P _ G I D, sig is sent to any process with effective group ID id.

If idtype is P _ C I D, sig is sent to any process with scheduler class ID id [see
p r i o c n t l(KE_OS)].

If idtype is P _ A L L, sig is sent to all processes and id is ignored.

If id is P _ M Y I D, the value of id is taken from the calling process.

The process with a process ID of 0 is always excluded. The process with a process
ID of 1 is excluded unless idtype is equal to P _ P I D.

s i g s e n d s e t provides an alternate interface for sending signals to sets of processes.
This function sends signals to the set of processes specified by psp. psp is a pointer
to a structure of type p r o c s e t _ t, defined in s y s / p r o c s e t . h, which includes the
following members:

i d o p _ t p _ o p ;
i d t y p e _ t p _ l i d t y p e ;
i d _ t p _ l i d ;
i d t y p e _ t p _ r i d t y p e ;
i d _ t p _ r i d ;

Page 1

FINAL COPY
June 15, 1995

File: ba_os/sigsend
svid

Page: 257

sigsend (BA_OS) sigsend (BA_OS)

p _ l i d t y p e and p _ l i d specify the ID type and ID of one (‘‘left’’) set of processes;
p _ r i d t y p e and p _ r i d specify the ID type and ID of a second (‘‘right’’) set of
processes. ID types and IDs are specified just as for the idtype and id arguments to
s i g s e n d. p _ o p specifies the operation to be performed on the two sets of processes
to get the set of processes the system call is to apply to. The valid values for p _ o p
and the processes they specify are:

P O P _ D I F F set difference: processes in left set and not in right set

P O P _ A N D set intersection: processes in both left and right sets

P O P _ O R set union: processes in either left or right set or both

P O P _ X O R set exclusive-or: processes in left or right set but not in both

Return Values
On success, s i g s e n d and s i g s e n d s e t return 0. On failure, s i g s e n d and s i g -
s e n d s e t return –1 and set e r r n o to identify the error.

Errors
In the following conditions, s i g s e n d and s i g s e n d s e t fail and set e r r n o to:

E I N V A L sig is not a valid signal number.

E I N V A L idtype is not a valid idtype field.

E P E R M The calling process does not have the appropriate privilege, the real or
effective user ID of the sending process does not match the real or
effective user ID of the receiving process, and the calling process is not
sending S I G C O N T to a process that shares the same session.

E S R C H No process can be found corresponding to that specified by id and
idtype.

In addition, s i g s e n d s e t fails if:

E F A U L T p s p points outside the process’s allocated address space.

SEE ALSO
k i l l(BA_OS), p r i o c n t l(KE_OS), s i g n a l(BA_OS),

LEVEL
Level 1.

NOTICES
Considerations for Threads Programming

Signals can be posted from one process to the designated processes via the s i g s e n d
system call but not to specific threads within those processes. See s i g n a l(BA_OS)
for further details. See t h r _ k i l l(MT_LIB) for details of intra-process signaling
between threads.

Page 2

FINAL COPY
June 15, 1995

File: ba_os/sigsend
svid

Page: 258

sigsetops (BA_OS) sigsetops (BA_OS)

NAME
sigsetops: sigemptyset, sigfillset, sigaddset, sigdelset, sigismember – manipulate
sets of signals.

SYNOPSIS
#include <signal.h>

int sigemptyset(sigset_t *set);

int sigfillset(sigset_t *set);

int sigaddset(sigset_t *set, int signo);

int sigdelset(sigset_t *set, int signo);

int sigismember(const sigset_t *set, int signo);

DESCRIPTION
The above primitives manipulate the sigset_t data types, representing the sets of
signals supported by the implementation. Examples of sets of signals known to the
system are the set blocked from delivery to a process and the set pending a process.

The sigemptyset() function excludes all signals from the set pointed to by the
argument set. The sigfillset() function initializes the set pointed to by the
argument set so that all signals are included. The sigaddset() and
sigdelset() functions respectively add and delete the individual signal specified
by the value of the argument signo from the set pointed to by the argument set. The
sigismember() function checks whether the signal specified by the value of the
argument signo is a member of the set pointed to by the argument set.

Any object of type sigset_t must be initialized by applying either
sigemptyset() or sigfillset() before applying any other operation.

RETURN VALUE
Upon successful completion, the function sigismember() returns a value of 1 if
the specified signal is a member of the specified set, or a value of 0 if it is not. Upon
successful completion, the other functions return a value of 0; otherwise, they
return a value of –1 and sets errno to indicate an error.

ERRORS
Under the following condition, the functions sigsetops(), sigaddset(), sig-
delset(), and sigismember() fail and set errno to:

EINVAL if the value of the signo argument is not a valid signal.

SEE ALSO
sigaction(BA_OS), signal(BA_ENV), sigprocmask(BA_OS), sigpending(BA_OS),
sigsuspend(BA_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/sigsetops
svid

Page: 259

sigsuspend (BA_OS) sigsuspend (BA_OS)

NAME
s i g s u s p e n d – install a signal mask and suspend process until signal

SYNOPSIS
i n c l u d e < s i g n a l . h >

i n t s i g s u s p e n d (c o n s t s i g s e t _ t *set) ;

DESCRIPTION
s i g s u s p e n d replaces the process’s signal mask with the set of signals pointed to by
the argument set and then suspends the process until delivery of a signal whose
action is either to execute a signal catching function or to terminate the process.

If the action is to terminate the process, s i g s u s p e n d does not return. If the action is
to execute a signal catching function, s i g s u s p e n d returns after the signal catching
function returns. On return, the signal mask is restored to the set that existed
before the call to s i g s u s p e n d.

It is not possible to block those signals that cannot be ignored [see s i g n a l(BA_OS)];
this restriction is silently imposed by the system.

Return Values
Because s i g s u s p e n d suspends process execution indefinitely, there is no successful
return value. On failure, s i g s u s p e n d returns –1 and sets e r r n o to identify the
error.

Errors
In the following conditions, s i g s u s p e n d fails and sets e r r n o to:

E I N T R A signal is caught by the calling process and control is returned
from the signal catching function.

SEE ALSO
s i g n a l(BA_OS), s i g p r o c m a s k(BA_OS), s i g s e t o p s(BA_OS),

LEVEL
Level 1.

NOTICES
Considerations for Threads Programming

In multithreaded programs, signal masks are defined per thread. See
s i g n a l(BA_OS) for further details.

While one thread is blocked, siblings might still be executing.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/sigsuspend
svid

Page: 260

sigwait (BA_OS) sigwait (BA_OS)

NAME
s i g w a i t – wait for a signal to be posted

SYNOPSIS
i n c l u d e < s i g n a l . h >

i n t s i g w a i t (s i g s e t _ t *set) ;

DESCRIPTION
This function atomically chooses and clears a pending masked signal from set and
returns the number of the signal chosen. If no signal in set is pending at the time of
the call, the calling function shall be suspended until one or more signals become
pending. This suspension is indefinite in extent.

The set of signals remains blocked after return.

An application should not mix use of s i g w a i t and s i g a c t i o n for a given signal
number because the results may be unpredictable.

Return Values
Upon successful completion, s i g w a i t returns the signal number of the received sig-
nal. Otherwise, a negative value is returned and e r r n o is set to indicate the error.

Errors
If any of the following conditions occurs, s i g w a i t returns a negative value and sets
e r r n o to the corresponding value:

E I N V A L set contains an invalid or unsupported signal number

E F A U L T set points to an illegal address.

SEE ALSO
kill(BA_OS), sigaction(BA_OS), signal(BA_ENV), sigpending(BA_OS),
sigsend(BA_OS), sigsuspend(BA_OS)

NOTICES
Considerations for Threads Programming

The s i g w a i t system call allows a multithreaded application to use a synchronous
organization for signal handling.

Usage
The semantics of s i g w a i t make it ideal for a thread that will be dedicated to han-
dling certain signal types for a process. The functionality that might have been
placed in a separate handler function could be placed after the return from s i g w a i t
to be executed once a signal arrives. Once handling is complete, the thread could
call s i g w a i t again to block itself until arrival of the next signal.

To be sure that signals are delivered to the intended thread:

All threads in the process (including the thread that will be using s i g w a i t)
should mask the relevant signal numbers.

Multiple s i g w a i t system calls for a given signal number compete for each
single delivery of that signal number.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/sigwait
svid

Page: 261

sigwait (BA_OS) sigwait (BA_OS)

No thread should define a handler function for those signal numbers.

See s i g n a l(BA_ENV) for further details.

Code to handle a signal type on return from s i g w a i t is not considered a handler in
the containing process’ disposition for that signal type. It is important that signal
types handled by a thread using s i g w a i t(BA_OS) be included in the signal mask of
every thread, otherwise, the default response for the process will be triggered. Even
the thread calling s i g w a i t must mask that signal type because a signal of that type
may arrive while the thread is between calls to s i g w a i t(BA_OS).

While one thread is blocked, siblings might still be executing.

s i g w a i t for signals that are normally synchronously generated (e.g. S I G F P E) will
not return because the waiting thread cannot execute code that will generate that
fault. However, an externally and/or asynchronously, generated S I G F P E would
cause a waiting thread to return.

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ba_os/sigwait
svid

Page: 262

sleep(BA_OS) sleep(BA_OS)

NAME
sleep – suspend execution for interval

SYNOPSIS
#include <unistd.h>

unsigned sleep(unsigned seconds);

DESCRIPTION
The function sleep() suspends the current process from execution for the number
of seconds specified by the argument seconds. The actual suspension time may be
less than that requested for two reasons: (1) Because scheduled wakeups occur at
fixed 1-second intervals (on the second, according to an internal clock) and (2)
because any signal caught will terminate the sleep() following execution of that
signal-catching routine. Also, the suspension time may be longer than requested by
an arbitrary amount due to the scheduling of other activity in the system.

The current process is suspended by calling the alarm() function [see
alarm(BA_OS)] and pausing until the SIGALRM signal (or some other signal) is
delivered. The previous disposition of the SIGALRM signal is saved before calling
alarm(), and restored before returning from sleep(). If the calling process had
set up an alarm before calling sleep(), and if the argument seconds exceeds the
time left until that alarm would expire, the process sleeps only until the original
alarm expires.

RETURN VALUE
The function sleep() returns the unslept amount (the requested time minus the
time actually slept) in case the caller had an alarm set to go off earlier than the end
of the requested suspension time or premature arousal due to another caught sig-
nal. The function sleep() is always successful.

SEE ALSO
alarm(BA_OS), pause(BA_OS), sigaction(BA_OS), signal(BA_OS), signal(BA_ENV),
sigsetjmp(BA_LIB), sigsuspend(BA_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/sleep
svid

Page: 263

stat (BA_OS) stat (BA_OS)

NAME
s t a t, l s t a t, f s t a t – get file status

SYNOPSIS
i n c l u d e < s y s / t y p e s . h >
i n c l u d e < s y s / s t a t . h >

i n t s t a t (c o n s t c h a r ∗path, s t r u c t s t a t ∗buf) ;

i n t l s t a t (c o n s t c h a r ∗path, s t r u c t s t a t ∗buf) ;

i n t f s t a t (i n t fildes, s t r u c t s t a t ∗buf) ;

DESCRIPTION
The s t a t system calls get information about a file. path points to a pathname nam-
ing a file. Read, write, or execute permission of the named file is not required, but
all directories listed in the pathname leading to the file must be searchable.

Note that in a Remote File Sharing environment, the information returned by s t a t
depends on the user/group mapping set up between the local and remote comput-
ers. [See i d l o a d(RS_CMD)]

l s t a t obtains file attributes similar to s t a t, except when the named file is a sym-
bolic link; in that case l s t a t returns information about the link, while s t a t returns
information about the file the link references.

f s t a t obtains information about an open file known by the file descriptor fildes,
obtained from a successful c r e a t, o p e n, d u p, f c n t l, p i p e, or i o c t l system call.

buf is a pointer to a s t a t structure into which information is placed concerning the
file.

The contents of the structure pointed to by buf includes the following members:

m o d e _ t s t _ m o d e ; /∗ F i l e m o d e [s e e m k n o d)] ∗/
i n o _ t s t _ i n o ; /∗ I n o d e n u m b e r ∗/
d e v _ t s t _ d e v ; /∗ I D o f d e v i c e c o n t a i n i n g ∗/

/∗ a d i r e c t o r y e n t r y f o r t h i s f i l e ∗/
d e v _ t s t _ r d e v ; /∗ I D o f d e v i c e ∗/

/∗ T h i s e n t r y i s d e f i n e d o n l y f o r ∗/
/∗ c h a r s p e c i a l o r b l o c k s p e c i a l f i l e s ∗/

n l i n k _ t s t _ n l i n k ; /∗ N u m b e r o f l i n k s ∗/
u i d _ t s t _ u i d ; /∗ U s e r I D o f t h e f i l e ’ s o w n e r ∗/
g i d _ t s t _ g i d ; /∗ G r o u p I D o f t h e f i l e ’ s g r o u p ∗/
o f f _ t s t _ s i z e ; /∗ F i l e s i z e i n b y t e s ∗/
t i m e _ t s t _ a t i m e ; /∗ T i m e o f l a s t a c c e s s ∗/
t i m e _ t s t _ m t i m e ; /∗ T i m e o f l a s t d a t a m o d i f i c a t i o n ∗/
t i m e _ t s t _ c t i m e ; /∗ T i m e o f l a s t f i l e s t a t u s c h a n g e ∗/

/∗ T i m e s m e a s u r e d i n s e c o n d s s i n c e ∗/
/∗ 0 0 : 0 0 : 0 0 U T C , J a n . 1 , 1 9 7 0 ∗/

l o n g s t _ b l k s i z e ; /∗ P r e f e r r e d I / O b l o c k s i z e ∗/
l o n g s t _ b l o c k s ; /∗ N u m b e r o f 5 1 2 b l o c k s a l l o c a t e d ∗/

/∗A f i l e s r e s i d i n g o n a n s 5∗/
/∗f i l e s y s t e m r e p o r t s n u m b e r o f∗/
/∗b l o c k s a l l o c a t e d a s s u m i n g n o∗/
/∗h o l e s i n t h e f i l e∗/

Page 1

FINAL COPY
June 15, 1995

File: ba_os/stat
svid

Page: 264

stat (BA_OS) stat (BA_OS)

s t _ m o d e The mode of the file as described in m k n o d(1M). In addition to
the modes described in m k n o d(1M), the mode of a file may also be
S _ I F L N K if the file is a symbolic link. (Note that S _ I F L N K may
only be returned by l s t a t.)

s t _ i n o This field uniquely identifies the file in a given file system. The
pair s t _ i n o and s t _ d e v uniquely identifies regular files.

s t _ d e v This field uniquely identifies the file system that contains the file.
Its value may be used as input to the u s t a t system call to deter-
mine more information about this file system. No other meaning
is associated with this value.

s t _ r d e v This field should be used only by administrative commands. It is
valid only for block special or character special files and only has
meaning on the system where the file was configured.

s t _ n l i n k This field should be used only by administrative commands.

s t _ u i d The user ID of the file’s owner.

s t _ g i d The group ID of the file’s group.

s t _ s i z e For regular files, this is the address of the end of the file. Defined
for block devices, although the size may be zero if the device size
is unknown. See also p i p e(BA_OS).

s t _ a t i m e Time when file data was last accessed. Changed by the following
system calls: c r e a t, m k n o d, p i p e, u t i m e, and r e a d.

s t _ m t i m e Time when data was last modified. Changed by the following
system calls: c r e a t, m k n o d, p i p e, u t i m e, and w r i t e.

s t _ c t i m e Time when file status was last changed. Changed by the follow-
ing system calls: c h m o d, c h o w n, c r e a t, l i n k, m k n o d, p i p e,
u n l i n k, u t i m e, and w r i t e.

s t _ b l k s i z e A hint as to the ‘‘best’’ unit size for I/O operations. This field is
not defined for block-special or character-special files.

s t _ b l o c k s The total number of physical blocks of size 512 bytes actually allo-
cated on disk. This field is not defined for block-special or
character-special files. A file residing on an s5 filesystem reports
number of blocks allocated assuming no holes in the file.

Return Values
On success, s t a t, l s t a t, and f s t a t return 0. On failure, s t a t, l s t a t, and f s t a t
return –1 and set e r r n o to identify the error.

Errors
In the following conditions, s t a t and l s t a t fail and set e r r n o to:

E A C C E S Search permission is denied for a component of the path prefix.

E A C C E S Read permission is denied on the named file.

Page 2

FINAL COPY
June 15, 1995

File: ba_os/stat
svid

Page: 265

stat (BA_OS) stat (BA_OS)

E L O O P Too many symbolic links were encountered in translating path.

E N A M E T O O L O N G The length of the path argument exceeds {P A T H _ M A X}, or the
length of a path component exceeds {N A M E _ M A X} while
_ P O S I X _ N O _ T R U N C is in effect.

E N O E N T The named file does not exist or is the null pathname.

E N O T D I R A component of the path prefix is not a directory.

In the following conditions, f s t a t fails and sets e r r n o to:

E B A D F fildes is not a valid open file descriptor.

SEE ALSO
c h m o d (BA_OS), c h o w n (BA_OS), c r e a t (BA_OS), f a t t a c h (BA_LIB), l i n k
(BA_OS), m k n o d (BA_OS), p i p e (BA_OS), r e a d (BA_OS), s t a t (BA_OS), t i m e
(SD_CMD), u n l i n k (BA_OS), u t i m e (BA_OS), w r i t e (BA_OS)

LEVEL
Level 1.

Page 3

FINAL COPY
June 15, 1995

File: ba_os/stat
svid

Page: 266

statvfs (BA_OS) statvfs (BA_OS)

NAME
statvfs, fstatvfs – get file system information

SYNOPSIS
#include <sys/types.h>
#include <sys/statvfs.h>

int statvfs(const char *path, struct statvfs *buf);

int fstatvfs(int fildes, struct statvfs *buf);

DESCRIPTION
The function statvfs() returns descriptive information about a mounted file sys-
tem containing the file referenced by path. buf is a pointer to a structure (described
below) which will be filled by the system call.

path must name a file which resides on the file system. The file system type must be
known to the operating system. Read, write, or execute permission of the named
file is not required, but all directories listed in the pathname leading to the file must
be searchable.

The statvfs() structure pointed to by buf includes the following members:

ulong f_bsize; /* preferred file system block size */
ulong f_frsize; /* fundamental file system block size

(if supported) */
ulong f_blocks; /* total # of blocks of f_frsize

on file system */
ulong f_bfree; /* total # of free blocks */
ulong f_bavail; /* # of free blocks avail to non-super-user */
ulong f_files; /* total # of file nodes (inodes) */
ulong f_ffree; /* total # of free file nodes */
ulong f_favail; /* # of file nodes (inodes) avail to

non-super-user */
ulong f_fsid; /* file system id */
char f_basetype[FSTYPSZ]; /* target fs type name,

null-terminated */
ulong f_flag; /* bit mask of flags */
ulong f_namemax; /* maximum filenamelength */
char f_fstr[32]; /* file system specific string */

f_basetype contains a null-terminated file system type name. The constant
FSTYPSZ is defined in the header file <statvfs.h>.

The following flags can be returned in the f_flag field:

ST_RDONLY /* read-only file system */
ST_NOSUID /* does not support setuid/setgid semantics */

Similarly, the function fstatvfs() obtains information about a mounted file sys-
tem containing the file referenced by fildes.

RETURN VALUE
Upon successful completion, the function statvfs() returns a value of 0; other-
wise, it returns a value of –1 and sets errno to indicate an error.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/statvfs
svid

Page: 267

statvfs (BA_OS) statvfs (BA_OS)

ERRORS
Under the following conditions, the function statvfs() fails and sets errno to:

EACCES if search permission is denied on a component of the path prefix.

ELOOP if too many symbolic links were encountered in translating path .

ENAMETOOLONG
if the length of a pathname exceeds {PATH_MAX}, or pathname
component is longer than {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

ENOENT if the file referred to by path does not exist.

ENOTDIR if a component of the path prefix of path is not a directory.

The function fstatvfs() fails and sets errno to:

EBADF if fildes is not an open file descriptor.

SEE ALSO
chmod(BA_OS), chown(BA_OS), creat(BA_OS), dup(BA_OS), fcntl(BA_OS),
link(BA_OS), mknod(BA_OS), open(BA_OS), pipe(BA_OS), read(BA_OS),
time(BA_OS), unlink(BA_OS), ustat(BA_OS), utime(BA_OS), write(BA_OS).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ba_os/statvfs
svid

Page: 268

stime (BA_OS) stime (BA_OS)

NAME
s t i m e – set time

SYNOPSIS
i n c l u d e < s y s / t y p e s . h >
i n c l u d e < t i m e . h >
i n c l u d e < u n i s t d . h >

i n t s t i m e (c o n s t t i m e _ t ∗tp) ;

DESCRIPTION
s t i m e sets the system’s idea of the time and date. tp points to the value of time as
measured in seconds from 00:00:00 UTC January 1, 1970.

Return Values
On success, s t i m e returns 0. On failure, s t i m e returns –1 and sets e r r n o to iden-
tify the error.

Errors
In the following conditions, s t i m e fails and sets e r r n o to:

E P E R M The calling process does not have the appropriate privilege

SEE ALSO
t i m e (SD_CMD)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/stime
svid

Page: 269

symlink (BA_OS) symlink (BA_OS)

NAME
symlink – make symbolic link to a file

SYNOPSIS
int symlink(const char *path1, const char *path2);

DESCRIPTION
A symbolic link path2 is created to path1 (path2 is the name of the file created, path1
is the pathname used to create the symbolic link). Either name may be an arbitrary
pathname and path1 need not exist; the files need not be on the same file system.

The file to which the symbolic link points is used when an open() [see
open(BA_OS)] operation is performed on the link.

RETURN VALUE
Upon successful completion, the function symlink() returns a value of zero; oth-
erwise, it returns a value of -1 and sets errno to indicate an error.

ERRORS
Under the following conditions, the function symlink() fails and sets errno to:

EACCESS if write permission is denied in the directory where the symbolic
link is being created.

ENOTDIR if a component of the path prefix of path2 is not a directory.

ENAMETOOLONG
if the length of a pathname exceeds {PATH_MAX}, or pathname
component is longer than {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

ENOENT if a component of the path prefix of path2 does not exist.

EACCES if search permission is denied for a component of the path prefix of
path2.

ELOOP if too many symbolic links are encountered in translating path2.

EEXIST if the file referred to by path2 already exists.

EROFS if the file path2 would reside on a read-only file system.

ENOSPC if the directory in which the entry for the new symbolic link is
being placed cannot be extended because no space is left on the file
system containing the directory.

ENOSPC if the new symbolic link cannot be created because no space is left
on the file system which will contain the link.

ENOSPC if no free inodes are on the file system on which the file is being
created.

ENOSYS if this operation is not applicable for this file system type.

USAGE
A stat() on a symbolic link returns the linked-to file, while an lstat() returns
information about the link itself [see stat(BA_OS)]. This can lead to unexpected
results when a symbolic link is made to a directory. To avoid confusion in pro-
grams, the readlink() call can be used to read the contents of a symbolic link
[see readlink(BA_OS)].

Page 1

FINAL COPY
June 15, 1995

File: ba_os/symlink
svid

Page: 270

symlink (BA_OS) symlink (BA_OS)

SEE ALSO
link(BA_OS), readlink(BA_OS), stat(BA_OS), unlink(BA_OS).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ba_os/symlink
svid

Page: 271

sync (BA_OS) sync (BA_OS)

NAME
sync – update super-block

SYNOPSIS
void sync(void);

DESCRIPTION
The function sync() causes all information in transient memory that updates a file
system to be written out to the file system. This includes modified super-blocks,
modified i-nodes, and delayed block I/O.

The function sync() should be used by programs which examine a file system.

The writing, although scheduled, is not necessarily complete upon return from the
function sync().

USAGE
The function sync() is not recommended for use by application-programs.

SEE ALSO
fsync(BA_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/sync
svid

Page: 272

sysconf (BA_OS) sysconf (BA_OS)

NAME
sysconf – get configurable system variables

SYNOPSIS
#include <unistd.h>

long sysconf(int name);

DESCRIPTION
The sysconf() function provides a method for the application to determine the
current value of a configurable system limit or option (variable).

The name argument represents the system variable to be queried. The following
table lists the minimal set of system variables from <limits.h>, <unistd.h> or
<time.h> (for CLK_TCK) that can be returned by sysconf(), and the symbolic
constants, defined in <unistd.h> that are the corresponding values used for name.

Variable Value of name

ARG_MAX _SC_ARG_MAX
CHILD_MAX _SC_CHILD_MAX
CLK_TCK _SC_CLK_TCK
NGROUPS_MAX _SC_NGROUPS_MAX
OPEN_MAX _SC_OPEN_MAX
PASS_MAX _SC_PASS_MAX
PAGESIZE _SC_PAGESIZE
_POSIX_JOB_CONTROL _SC_JOB_CONTROL
_POSIX_SAVED_IDS _SC_SAVED_IDS
_POSIX_VERSION _SC_VERSION
_XOPEN_VERSION _SC_XOPEN_VERSION

The value of CLK_TCK may be variable and it should not be assumed that CLK_TCK
is a compile-time constant. The value of CLK_TCK is the same as the value of
sysconf(_SC_CLK_TCK).

sysconf can also return the following values:

_ __

Name Return Value
_ __
_SC_NPROCESSORS_CONF Number of configured processors
_SC_NPROCESSORS_ONLN Number of online processors
_SC_NPROCESSES

_ __

RETURN VALUE
Upon successful completion, the function sysconf() returns the current variable
value on the system. The value returned will not be more restrictive than the
corresponding value described to the application when it was compiled with the
implementation’s <limits.h> or <unistd.h>. The value will not change during
the lifetime of the calling process. If name is an invalid value, sysconf() will
return –1 and set errno to indicate the error. If sysconf() fails due to a value of

Page 1

FINAL COPY
June 15, 1995

File: ba_os/sysconf
svid

Page: 273

sysconf (BA_OS) sysconf (BA_OS)

name that is not defined on the system, the function will return a value of –1
without changing the value of errno. Additionally, a call to setrlimit() may
cause the value of OPEN_MAX to change.

ERRORS
Under the following condition, the function sysconf() fails and sets errno to:

EINVAL if the value of the argument name is invalid.

SEE ALSO
fpathconf(BA_OS).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ba_os/sysconf
svid

Page: 274

system(BA_OS) system(BA_OS)

Comments
A word beginning with the character # causes that word and all the following char-
acters up to a newline to be ignored.

Command Substitution
The standard output from a command enclosed within grave-accents (‘ ‘) may be
used as part or all of a word; trailing newlines are removed.

Parameter Substitution
The character $ is used to introduce substitutable keyword-parameters.

${parameter} The value, if any, of the parameter is substituted. The braces are
required only when parameter is followed by a letter, digit, or
underscore that is not to be interpreted as part of its name.

Keyword-parameters (also known as variables) may be assigned values by writing:

parameter-name = value

The following parameters are automatically set:

Parameter Description

? The decimal value returned by the last synchronously executed
command in this call to system().

$ The process-number of this process.

! The process-number of the last background command invoked in
this call to system().

The following parameters are used by the command execution process:

Parameter Description

HOME The initial working (home) directory.

PATH The search path for commands (see Execution, below).

Blank Interpretation
After parameter and command substitution, the results of substitution are scanned
for internal field separator characters (space, tab and newline) and split into distinct
arguments where such characters are found. Explicit null arguments ("" or ’’) are
retained. Implicit null arguments (those resulting from parameters that have no
values) are removed.

File Name Generation
Following substitution, each word in the command is scanned for the characters *,
?, and [. If one of these characters appears the word is regarded as a pattern. The
word is replaced with alphabetically sorted file names that match the pattern. If no
filename is found that matches the pattern, the word is left unchanged. The charac-
ter . at the start of a filename or immediately following the character /, as well as
the character / itself, must be matched explicitly.

Page 2

FINAL COPY
June 15, 1995

File: ba_os/system
svid

Page: 276

system(BA_OS) system(BA_OS)

first associates file descriptor 1 with file xxx. It associates file descriptor 2 with the
file associated with file descriptor 1 (i.e., xxx). If the order of redirections were
reversed, file descriptor 2 would be associated with the terminal (assuming file
descriptor 1 had been) and file descriptor 1 would be associated with file xxx.

If a command is followed by the character & the default standard input for the com-
mand is the empty file /dev/null. Otherwise, the environment for the execution
of a command contains the file descriptors of the invoking process as modified by
input/output specifications.

Environment
The environment [see exec(BA_OS)] is a list of parameter name-value pairs passed to
an executed program in the same way as a normal argument list. On invocation,
the environment is scanned and a parameter is created for each name found, giving
it the corresponding value.

The environment for any simple-command may be augmented by prefixing it with
one or more assignments to parameters. For example:

TERM=450 cmd ;

Signals
The SIGINT and SIGQUIT signals for an invoked command are ignored if the com-
mand is followed by the character &; otherwise signals have the values inherited by
the command execution process from its parent.

Execution
The above substitutions are carried out each time a command is executed. A new
process is created and an attempt is made to execute the command via the exec rou-
tines [see exec(BA_OS)].

The parameter PATH defines the search path for the directory containing the com-
mand. The character : separates pathnames. NOTE: The current directory is
specified by a null pathname, which can appear immediately after the equal sign or
between the colon delimiters anywhere else in the path list. If the command name
contains the character / the search path is not used. Otherwise, each directory in
the path is searched for an executable file until the first such executable is found or
until the last directory in the path is searched.

RETURN VALUE
If the argument is a null pointer, system() returns non-zero only if a command
processor is available. If the argument is not a null pointer, and upon successful
completion, the function system() returns the exit status of the command
language interpreter in the format specified by waitpid()[see wait(BA_OS)].
Errors, such as syntax errors, cause a non-zero return value and execution of the
command is abandoned. Otherwise the function system() returns a value of -1
and sets errno to indicate the error.

ERRORS
Under the following conditions, the function system() fails and sets errno to:

EAGAIN if the system imposed limit on the total number of processes under
execution system wide {PROC_MAX} or by a single user ID
{CHILD_MAX} would be exceeded.

Page 4

FINAL COPY
June 15, 1995

File: ba_os/system
svid

Page: 278

system(BA_OS) system(BA_OS)

EINTR if the function system() was interrupted by a signal.

ENOMEM if the process requires more space than the system is able to supply.

FILES
/dev/null

USAGE
If possible, applications should use the the function system(), which is easier to
use and supplies more functions, rather than the fork() and exec routines.

SEE ALSO
dup(BA_OS), exec(BA_OS), fork(BA_OS), passwd(BA_ENV), pipe(BA_OS),
signal(BA_ENV), ulimit(BA_OS), umask(BA_OS), wait(BA_OS).

LEVEL
Level 1.

Page 5

FINAL COPY
June 15, 1995

File: ba_os/system
svid

Page: 279

telldir (BA_OS) telldir (BA_OS)

NAME
telldir – current location of a named directory stream

SYNOPSIS
#include <sys/types.h>
#include <dirent.h>

long telldir(DIR *dirp);

DESCRIPTION
The function telldir() returns the current location associated with the named
directory.

RETURN VALUE
Upon successful completion, the function telldir() returns the current location.

SEE ALSO
directory(BA_OS), seekdir(BA_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/telldir
svid

Page: 280

termios (BA_OS) termios (BA_OS)

NAME
termios: tcgetattr, tcsetattr, tcsendbreak, tcdrain, tcflush, tcflow, cfgetospeed,
cfgetispeed, cfsetispeed, cfsetospeed, tcgetpgrp, tcsetpgrp, tcgetsid – get and set ter-
minal attributes, line control, get and set baud rate, get and set terminal foreground
process group ID, get terminal session ID

SYNOPSIS
#include <termios.h>
#include <unistd.h>

int tcgetattr(int fildes, struct termios *termios_p);

int tcsetattr(int fildes, int optional_actions, struct termios *termios_p);

int tcsendbreak(int fildes, int duration);

int tcdrain(int fildes);

int tcflush(int fildes, int queue_selector);

int tcflow(int fildes, int action);

speed_t cfgetospeed(struct termios *termios_p);

int cfsetospeed(struct termios *termios_p, speed_t speed);

speed_t cfgetispeed(struct termios *termios_p);

int cfsetispeed(struct termios *termios_p, speed_t speed);

#include <sys/types.h>
#include <termios.h>

pid_t tcgetpgrp(int fildes);

int tcsetpgrp(int fildes, pid_t pgid);

pid_t tcgetsid(int fildes);

DESCRIPTION
The termios functions describe a general terminal interface that is provided to con-
trol asynchronous communications ports. A more detailed overview of the termi-
nal interface can be found in termio(BA_DEV). That section also describes an
ioctl() interface that can be used to access the same functionality. However, the
function interface described here is the preferred user interface.

Many of the functions described here have a termios_p argument that is a pointer to
a termios structure. This structure contains the following members:

tcflag_t c_iflag; /* input modes */
tcflag_t c_oflag; /* output modes */
tcflag_t c_cflag; /* control modes */
tcflag_t c_lflag; /* local modes */
cc_t c_cc[NCCS]; /* control chars */

These structure members are described in detail in termio(BA_DEV).

Page 1

FINAL COPY
June 15, 1995

File: ba_os/termios
svid

Page: 281

termios (BA_OS) termios (BA_OS)

The tcgetattr() function gets the parameters associated with the object referred
by fildes and stores them in the termios structure referenced by termios_p. This
function may be invoked from a background process; however, the terminal attri-
butes may be subsequently changed by a foreground process.

The tcsetattr() function sets the parameters associated with the terminal
(unless support is required from the underlying hardware that is not available)
from the termios structure referenced by termios_p as follows:

If optional_actions is TCSANOW, the change occurs immediately.

If optional_actions is TCSADRAIN, the change occurs after all output written
to fildes has been transmitted. This function should be used when changing
parameters that affect output.

If optional_actions is TCSAFLUSH, the change occurs after all output written
to the object referred by fildes has been transmitted, and all input that has
been received but not read will be discarded before the change is made.

The symbolic constants for the values of optional_actions are defined in
<termios.h>.

If the terminal is using asynchronous serial data transmission, the
tcsendbreak() function causes transmission of a continuous stream of zero-
valued bits for a specific duration. If duration is zero, it causes transmission of
zero-valued bits for at least 0.25 seconds, and not more than 0.5 seconds. If duration
is not zero, zero-valued bits are not transmitted.

If the terminal is not using asynchronous serial data transmission, the
tcsendbreak() function sends data to generate a break condition or returns
without taking any action.

The tcdrain() function waits until all output written to the object referred to by
fildes has been transmitted.

The tcflush() function discards data written to the object referred to by fildes but
not transmitted, or data received but not read, depending on the value of
queue_selector:

If queue_selector is TCIFLUSH, it flushes data received but not read.

If queue_selector is TCOFLUSH, it flushes data written but not transmitted.

If queue_selector is TCIOFLUSH, it flushes both data received but not read,
and data written but not transmitted.

The tcflow() function suspends transmission or reception of data on the object
referred to by fildes, depending on the value of action:

If action is TCOOFF, it suspends output.

If action is TCOON, it restarts suspended output.

If action if TCIOFF, the system transmits a STOP character, which is
intended to cause the terminal device to stop transmitting data to the sys-
tem.

Page 2

FINAL COPY
June 15, 1995

File: ba_os/termios
svid

Page: 282

termios (BA_OS) termios (BA_OS)

If action is TCION, the system transmits a START character, which is
intended to cause the terminal device to start transmitting data to the sys-
tem.

The baud rate functions are provided for getting and setting the values of the input
and output baud rates in the termios structure. The effects on the terminal device
described below do not become effective until the tcsetattr() function is suc-
cessfully called.

The input and output baud rates are stored in the termios structure. The values
shown in the table are supported. The names in this table are defined in
<termios.h>.

Name Description Name Description_ __
B0 Hang up B600 600 baud
B50 50 baud B1200 1200 baud
B75 75 baud B1800 1800 baud
B110 110 baud B2400 2400 baud
B134 134.5 baud B4800 4800 baud
B150 150 baud B9600 9600 baud
B200 200 baud B19200 19200 baud
B300 300 baud B38400 38400 baud

cfgetospeed() gets the output baud rate and stores it in the termios structure
pointed to by termios_p.

cfsetospeed() sets the output baud rate stored in the termios structure
pointed to by termios_p to speed. The zero baud rate, B0, is used to terminate the
connection. If B0 is specified, the modem control lines are no longer asserted. Nor-
mally, this will disconnect the line.

cfgetispeed() returns the input baud rate stored in the termios structure
pointed to by termios_p.

cfsetispeed() sets the input baud rate stored in the termios structure pointed
to by termios_p to speed. If the input baud rate is set to zero, the input baud rate will
be specified by the value of the output baud rate. Attempts to set unsupported
baud rates will be ignored. This refers both to changes to baud rates not supported
by the hardware, and to changes setting the input and output baud rates to dif-
ferent values if the hardware does not support this.

tcsetpgrp() sets the foreground process group ID of the terminal specified by
fildes to pgid. The file associated with fildes must be the controlling terminal of the
calling process and the controlling terminal must be currently associated with the
session of the calling process. The value of pgid must match a process group ID of a
process in the same session as the calling process.

tcgetpgrp() returns the foreground process group ID of the terminal specified by
fildes. The function tcgetpgrp() is allowed from a process that is a member of a
background process group; however, the information may be subsequently
changed by a process that is a member of a foreground process group.

Page 3

FINAL COPY
June 15, 1995

File: ba_os/termios
svid

Page: 283

termios (BA_OS) termios (BA_OS)

tcgetsid() returns the session ID of the terminal specified by fildes.

RETURN VALUE
Upon successful completion, the function tcgetpgrp() returns the process group
ID of the foreground process group associated with the terminal; otherwise, it
returns a value of –1 and sets errno to indicate an error.

Upon successful completion, tcgetsid() returns the session ID associated with
the terminal. Otherwise, a value of –1 is returned and errno is set to indicate an
error.

Upon successful completion, cfgetispeed() returns the input baud rate stored
in the termios structure.

Upon successful completion, cfgetospeed() returns the output baud rate stored
in the termios structure.

Upon successful completion, all other functions return a value of 0. Otherwise, a
value of –1 is returned and errno is set to indicate an error.

ERRORS
Under the following conditions, the described functions fail and set errno to:

EBADF if the fildes argument is not a valid file descriptor.

ENOTTY if the file associated with fildes is not a terminal.

Additionally, specific functions fail and set errno as follows:

Under the following conditions, the function tcsetattr() fails and sets errno to:

EINVAL if the optional_actions argument is not a proper value, or an attempt
was made to change an attribute represented in the termios
structure to an unsupported value.

Under the following conditions, the function tcsendbreak() fails and sets errno
to:

EINVAL if the device does not support the tcsendbreak() function.

Under the following conditions, the function tcdrain() fails and sets errno to:

EINTR if a signal interrupted the tcdrain() function.

EINVAL if the device does not support the tcdrain() function.

Under the following conditions, the function tcflush() fails and sets errno to:

EINVAL if the device does not support the tcflush() function, or the
queue_selector argument is not a proper value.

Under the following conditions, the function tcflow() fails and sets errno to:

EINVAL if the device does not support the tcflow() function or the action
argument is not a proper value.

Under the following conditions, the function tcgetpgrp() fails and sets errno to:

ENOTTY if the calling process does not have a controlling terminal, or the
file is not the controlling terminal.

Page 4

FINAL COPY
June 15, 1995

File: ba_os/termios
svid

Page: 284

termios (BA_OS) termios (BA_OS)

Under the following conditions, the function tcsetpgrp() fails and sets errno to:

EPERM if pgid does not match the process group of an existing process in
the same session as the calling process.

EINVAL if the value of the pgid argument is not a valid process group ID.

ENOTTY if the calling process does not have a controlling terminal, or the
file is not the controlling terminal, or the controlling terminal is no
longer associated with the session of the calling process.

Under the following conditions, the function tcgetsid() fails and sets errno to:

EACCES if fildes is a terminal that is not allocated to a session.

SEE ALSO
setsid(BA_OS), setpgid(BA_OS), termios(BA_ENV).

LEVEL
Level 1.

Page 5

FINAL COPY
June 15, 1995

File: ba_os/termios
svid

Page: 285

time(BA_OS) time(BA_OS)

NAME
time – get time

SYNOPSIS
#include <sys/types.h>
#include <time.h>

time_t time(time_t *tloc);

DESCRIPTION
The function time() returns the value of time in seconds since 00:00:00 UTC, Janu-
ary 1, 1970.

As long as the argument tloc is not a null pointer, the return value is also stored in
the location to which the argument tloc points.

The actions of the function time() are undefined if the argument tloc points to an
invalid address.

RETURN VALUE
Upon successful completion, the function time() returns the value of time; other-
wise, it returns (time_t)–1.

SEE ALSO
stime(BA_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/time
svid

Page: 286

times (BA_OS) times (BA_OS)

NAME
t i m e s – get process and child process times

SYNOPSIS
i n c l u d e < s y s / t y p e s . h >
i n c l u d e < s y s / t i m e s . h >

c l o c k _ t t i m e s (s t r u c t t m s ∗buffer) ;

DESCRIPTION
t i m e s fills the t m s structure pointed to by buffer with time-accounting information.
The t m s structure is defined in s y s / t i m e s . h and includes the following fields:

c l o c k _ t t m s _ u t i m e ;
c l o c k _ t t m s _ s t i m e ;
c l o c k _ t t m s _ c u t i m e ;
c l o c k _ t t m s _ c s t i m e ;

This information comes from the calling process and each of its terminated child
processes for which it has executed a wait routine. All times are reported in clock
ticks. The clock ticks at a system-dependent rate. The specific value of this rate for
an implementation is defined, in ticks per second, by the variable C L K _ T C K, found in
the include file l i m i t s . h.

t m s _ u t i m e is the S M time used while executing instructions in the user space of the
calling process.

t m s _ s t i m e is the S M time used by the system on behalf of the calling process.

t m s _ c u t i m e is the sum of the t m s _ u t i m e and the t m s _ c u t i m e of the child
processes.

t m s _ c s t i m e is the sum of the t m s _ s t i m e and the t m s _ c s t i m e of the child
processes.

Return Values
On success, t i m e s returns the elapsed real time in clock ticks from an arbitrary
point in the past (for example, system start-up time). This point does not change
from one invocation of t i m e s to another. On failure, t i m e s returns –1 and sets
e r r n o to identify the error.

Errors
In the following conditions, t i m e s fails and sets e r r n o to:

E F A U L T buffer points to an invalid address.

SEE ALSO
e x e c(BA_OS), f o r k(BA_OS), w a i t(BA_OS), w a i t i d(BA_OS), w a i t p i d(BA_OS),

LEVEL
Level 1.

NOTICES
Considerations for Threads Programming

Statistics are gathered at the process level and represent the combined usage of all
contained threads.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/times
svid

Page: 287

ulimit (BA_OS) ulimit (BA_OS)

NAME
ulimit – get and set user limits

SYNOPSIS
#include <ulimit.h>

long ulimit(int cmd, ... /* arg */);

DESCRIPTION
The function ulimit() provides for control over process limits.

Values available for the argument cmd are:

UL_GETFSIZE
Get the file size limit of the process. The limit is in units of 512-byte
blocks and is inherited by child processes. Files of any size can be
read.

UL_SETFSIZE
Set the file size limit of the process equal to arg, taken as a long.
Any process may decrease this limit, but only a process with
appropriate privileges may increase the limit. The new file size
limit is returned.

RETURN VALUE
Upon successful completion, the function ulimit() returns a non-negative value;
otherwise, it returns a value of –1, the limit is unchanged and errno is set to indi-
cate an error.

ERRORS
Under the following condition, the function ulimit() fails and sets errno to:

EINVAL if the cmd argument is not valid.

EPERM if a process not having appropriate privileges attempts to increase its file
size limit.

SEE ALSO
getrlimit(BA_OS), write(BA_OS).

FUTURE DIRECTIONS
To be removed in a future issue of the SVID.

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/ulimit
svid

Page: 288

ustat (BA_OS) ustat (BA_OS)

NAME
u s t a t – get file system statistics

SYNOPSIS
i n c l u d e < s y s / t y p e s . h >
i n c l u d e < u s t a t . h >

i n t u s t a t (d e v _ t dev, s t r u c t u s t a t ∗buf) ;

DESCRIPTION
u s t a t returns information about a mounted file system. dev is a device number
identifying a device containing a mounted file system [see m a k e d e v(3C)]. buf is a
pointer to a u s t a t structure that includes the following elements:

d a d d r _ t f _ t f r e e ; /∗ T o t a l f r e e b l o c k s ∗/
i n o _ t f _ t i n o d e ; /∗ N u m b e r o f f r e e i n o d e s ∗/
c h a r f _ f n a m e [6] ; /∗ F i l s y s n a m e ∗/
c h a r f _ f p a c k [6] ; /∗ F i l s y s p a c k n a m e ∗/

Return Values
On success, u s t a t returns 0. On failure, u s t a t returns –1 and sets e r r n o to iden-
tify the error.

Errors
In the following conditions, u s t a t fails and sets e r r n o to:

E I N V A L dev is not the device number of a device containing a mounted file sys-
tem.

E F A U L T buf points outside the process’s allocated address space.

E I N T R A signal was caught during a u s t a t system call.

E N O L I N K dev is on a remote machine and the link to that machine is no longer
active.

E C O M M dev is on a remote machine and the link to that machine is no longer
active.

SEE ALSO
s t a t(BA_OS)

LEVEL
Level 2.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/ustat
svid

Page: 289

umask (BA_OS) umask (BA_OS)

NAME
u m a s k – set and get file creation mask

SYNOPSIS
i n c l u d e < s y s / t y p e s . h >
i n c l u d e < s y s / s t a t . h >

m o d e _ t u m a s k (m o d e _ t cmask) ;

DESCRIPTION
u m a s k sets the process’s file mode creation mask to cmask and returns the previous
value of the mask. Only the access permission bits of cmask and the file mode crea-
tion mask are used.

Return Values
u m a s k returns the previous value of the file mode creation mask.

SEE ALSO
c h m o d (BA_OS), c r e a t (BA_OS), m k d i r (BA_OS), m k n o d (BA_OS), o p e n (BA_OS),
s h (BU_CMD), s t a t (BA_OS)

LEVEL
Level 1.

NOTICES
Considerations for Threads Programming

The file creation mask is an attribute of the containing process and is shared by
sibling threads.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/umask
svid

Page: 290

umount (BA_OS) umount (BA_OS)

NAME
u m o u n t – unmount a file system

SYNOPSIS
i n c l u d e < s y s / m o u n t . h >

i n t u m o u n t (c o n s t c h a r ∗file) ;

DESCRIPTION
u m o u n t requests that a previously mounted file system contained on the block spe-
cial device or directory identified by file be unmounted. file is a pointer to a path
name. After unmounting the file system, the directory upon which the file system
was mounted reverts to its ordinary interpretation.

u m o u n t may be invoked only by a process with appropriate privileges.

Return Values
On success, u m o u n t returns 0. On failure, u m o u n t returns –1 and sets e r r n o to
identify the error.

Errors
In the following conditions, u m o u n t fails and sets e r r n o to:

E B U S Y A file on file is busy.

E I N V A L file does not exist.

E I N V A L file is not mounted.

E L O O P Too many symbolic links were encountered in translating the
path pointed to by file.

E N A M E T O O L O N G The length of the file argument exceeds {P A T H _ M A X}, or the
length of a file component exceeds {N A M E _ M A X} while
_ P O S I X _ N O _ T R U N C is in effect.

E N O T D I R file does not point to a directory.

E N O E N T A component of the path prefix does not exist or is a null
pathname.

E N O T B L K file is not a block special device.

E P E R M The calling process does not have the appropriate privilege.

NOTICES
u m o u n t will now resolve the m o u n t _ p o i n t argument using r e a l p a t h(3C) before
any processing is performed.

USAGE
The function u m o u n t is not recommended for use by application programs.

SEE ALSO
m o u n t(BA_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/umount
svid

Page: 291

uname(BA_OS) uname(BA_OS)

NAME
uname – get name of current operating system

SYNOPSIS
#include <sys/utsname.h>

int uname(struct utsname *name);

DESCRIPTION
The function uname() stores information identifying the current operating system
in the structure pointed to by the argument name.

The function uname() uses the utsname structure defined by the
<sys/utsname.h> header file whose members include:

char sysname[{SYS_NMLN}];
char nodename[{SYS_NMLN}];
char release[{SYS_NMLN}];
char version[{SYS_NMLN}];
char machine[{SYS_NMLN}];

The function uname() returns a null-terminated character string naming the
current operating system in the character array sysname.

Similarly, the character array nodename contains the name that the system is
known by on a communications network.

The members release and version further identify the operating system.

The member machine contains a standard name that identifies the hardware on
which the operating system is running.

RETURN VALUE
Upon successful completion, the function uname() returns a non-negative value;
otherwise, it returns a value of –1 and sets errno to indicate an error.

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/uname
svid

Page: 292

unlink (BA_OS) unlink (BA_OS)

NAME
unlink – remove directory entry

SYNOPSIS
#include <unistd.h>

int unlink(const char *path);

DESCRIPTION
The function unlink() removes the directory entry named by the pathname
pointed to by the argument path and decrements the link count of the file referenced
by the directory entry. When all links to a file have been removed and no process
has an outstanding reference to the file, the space occupied by the file is freed and
the file ceases to exist. If one or more processes have outstanding references to the
file when the last link is removed, space occupied by the file is not released until all
references to the file have been removed. If path is a symbolic link, the symbolic
link is removed. The path argument should not name a directory unless the process
has appropriate privileges and the implementation supports unlink() on direc-
tories. Applications should use rmdir() to remove directories.

Upon successful completion the function unlink() marks for update the
st_ctime and st_mtime fields of the parent directory. Also, if the file’s link count
is not zero, the st_ctime field of the file is marked for update.

RETURN VALUE
Upon successful completion, the function unlink() returns 0; otherwise, it
returns –1, the named file is not changed and errno is set to indicate an error.

ERRORS
Under the following conditions, the function unlink() fails and sets errno to:

ENOTDIR if a component of the path prefix is not a directory.

ENOENT if the named file does not exist, or path points to an empty string.

EACCES if a component of the path prefix denies search permission.

EACCES if the directory containing the link to be removed denies write
permission.

EPERM if the named file is a directory and the process does not have
appropriate privileges.

EBUSY if the entry to be unlinked is the mount point for a mounted file
system.

EROFS if the directory entry to be unlinked is part of a read-only file sys-
tem.

ENAMETOOLONG if the length of a pathname exceeds {PATH_MAX}, or pathname
component is longer than {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

ELOOP if too many symbolic links are encountered in translating the
path.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/unlink
svid

Page: 293

unlink (BA_OS) unlink (BA_OS)

SEE ALSO
close(BA_OS), open(BA_OS), remove(BA_OS), rmdir(BA_OS) unlink(BA_OS).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ba_os/unlink
svid

Page: 294

utime (BA_OS) utime (BA_OS)

NAME
utime – set file access and modification times

SYNOPSIS
#include <sys/types.h>
#include <utime.h>

int utime(const char *path, const struct utimbuf *times);

DESCRIPTION
The function utime() sets the access and modification times of the named file.

The argument path points to a pathname naming a file.

If the argument times is null, the access and modification times of the file are set to
the current time. A process must be the owner of the file or have appropriate
privileges to use the function utime() in this manner.

If the argument times is not null, times is interpreted as a pointer to a structure
utimbuf (see below), and the access and modification times are set to the values
contained in the designated structure. Only the owner of the file or a process with
appropriate privileges may use the function utime() this way.

The times in the structure utimbuf are measured in seconds since 00:00:00 UTC
Jan. 1, 1970.

The structure utimbuf contains the following members:
time_t actime; /* access time */
time_t modtime; /* modification time */

The function utime() also causes the time of the last file status change
(st_ctime) to be updated [see stat(BA_OS)].

RETURN VALUE
Upon successful completion, the function utime() returns a value of 0; otherwise,
it returns a value of –1, the file times are not affected and errno is set to indicate
an error.

ERRORS
Under the following conditions, the function utime() fails and sets errno to:

ENOENT if the named file does not exist, or path points to an empty string.

ENOTDIR if a component of the path prefix is not a directory.

EACCES if a component of the path prefix denies search permission.

EPERM if the effective user ID does not match the owner of the file or does
not have the appropriate privileges and the argument times is not
null.

EACCES if the effective user ID does not match the owner of the file, or does
not have the appropriate privileges and the argument times is null
and write access is denied.

EROFS if the file system containing the file is mounted read-only.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/utime
svid

Page: 295

utime (BA_OS) utime (BA_OS)

ENAMETOOLONG
if the length of a pathname exceeds {PATH_MAX}, or pathname
component is longer than {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

ELOOP if too many symbolic links are encountered in translating the path.

SEE ALSO
stat(BA_OS), utime(BA_ENV).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ba_os/utime
svid

Page: 296

wait (BA_OS) wait (BA_OS)

NAME
w a i t – wait for child process to stop or terminate

SYNOPSIS
i n c l u d e < s y s / t y p e s . h >
i n c l u d e < s y s / w a i t . h >

p i d _ t w a i t (i n t *stat_loc) ;

DESCRIPTION
w a i t suspends the calling process until one of its immediate children terminates or
until a child that is being traced stops because it has received a signal. The w a i t
system call will return prematurely if a signal is received. If all child processes
stopped or terminated prior to the call on w a i t, return is immediate.

If w a i t returns because the status of a child process is available, it returns the pro-
cess ID of the child process. If the calling process had specified a non-zero value for
stat_loc, the status of the child process will be stored in the location pointed to by
stat_loc. It may be evaluated with the macros described on w s t a t. In the following,
status is the object pointed to by stat_loc:

If the child process stopped, the high order 8 bits of status will contain the
number of the signal that caused the process to stop and the low order 8 bits
will be set equal to W S T O P F L G.

If the child process terminated due to an e x i t call, the low order 8 bits of
status will be 0 and the high order 8 bits will contain the low order 8 bits of
the argument that the child process passed to e x i t. [see e x i t(BA_OS)].

If the child process terminated due to a signal, the high order 8 bits of status
will be 0 and the low order 8 bits will contain the number of the signal that
caused the termination. In addition, if W C O R E F L G is set, a ‘‘core image’’ will
have been produced. [see s i g n a l(BA_OS)].

If w a i t returns because the status of a child process is available, then that status
may be evaluated with the macros defined by w s t a t.

If a parent process terminates without waiting for its child processes to terminate,
the parent process I D of each child process is set to 1. This means the initialization
process inherits the child processes.

Return Values
If w a i t returns due to a stopped or terminated child process, the process I D of the
child is returned to the calling process. Otherwise, w a i t returns –1 and sets e r r n o
to identify the error.

Errors
In the following conditions, w a i t fails and sets e r r n o to:

E C H I L D The calling process has no existing unwaited-for child processes.

E I N T R The function was interrupted by a signal.

SEE ALSO
e x e c(BA_OS), f o r k(BA_OS), p a u s e(BA_OS), p t r a c e(KE_OS), s i g n a l(BA_OS),

Page 1

FINAL COPY
June 15, 1995

File: ba_os/wait
svid

Page: 297

wait (BA_OS) wait (BA_OS)

LEVEL
Level 1.

NOTICES
See NOTICES in s i g n a l(BA_OS).

If S I G C L D is held, then w a i t does not recognize death of children.

Considerations for Threads Programming
While one thread is blocked, siblings might still be executing.

Page 2

FINAL COPY
June 15, 1995

File: ba_os/wait
svid

Page: 298

waitid (BA_OS) waitid (BA_OS)

NAME
w a i t i d – wait for child process to change state

SYNOPSIS
i n c l u d e < s y s / t y p e s . h >
i n c l u d e < w a i t . h >

i n t w a i t i d (i d t y p e _ t idtype, i d _ t id, s i g i n f o _ t *infop,
i n t options) ;

DESCRIPTION
w a i t i d suspends the calling process until one of its children changes state. It
records the current state of a child in the structure pointed to by infop. If a child
process changed state prior to the call to w a i t i d, w a i t i d returns immediately.

The idtype and id arguments specify which children w a i t i d is to wait for.

If idtype is P _ P I D, w a i t i d waits for the child with a process ID equal to
(p i d _ t) id.

If idtype is P _ P G I D, w a i t i d waits for any child with a process group ID equal
to (p i d _ t) id.

If idtype is P _ A L L, w a i t i d waits for any children and id is ignored.

The options argument is used to specify which state changes waitid is to wait for. It
is formed by an OR of any of the following flags:

W E X I T E D Wait for process(es) to exit.

W T R A P P E D Wait for traced process(es) to become trapped or reach a break-
point [see p t r a c e(KE_OS)].

W S T O P P E D Wait for and return the process status of any child that has
stopped upon receipt of a signal.

W C O N T I N U E D Return the status for any child that was stopped and has been con-
tinued.

W N O H A N G Return immediately.

W N O W A I T Keep the process in a waitable state. This will not affect the state
of the process on subsequent waits.

infop must point to a s i g i n f o _ t structure, as defined in s i g i n f o. s i g i n f o _ t is
filled in by the system with the status of the process being waited for.

Return Values
If w a i t i d returns due to a change of state of one of its children, it returns 0. Other-
wise, w a i t i d returns –1 and sets e r r n o to identify the error.

Errors
In the following conditions, w a i t i d fails and sets e r r n o to:

E F A U L T infop points to an invalid address.

E I N T R w a i t i d was interrupted due to the receipt of a signal by the calling
process.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/waitid
svid

Page: 299

waitid (BA_OS) waitid (BA_OS)

E I N V A L 0 or another invalid value was specified for options.

E I N V A L idtype and id specify an invalid set of processes.

E C H I L D The set of processes specified by idtype and id does not contain any
unwaited-for processes.

SEE ALSO
e x e c(2), e x i t(2), f o r k(2),

LEVEL
Level 1.

NOTICES
Considerations for Threads Programming

While one thread is blocked, siblings might still be executing.

Page 2

FINAL COPY
June 15, 1995

File: ba_os/waitid
svid

Page: 300

waitpid (BA_OS) waitpid (BA_OS)

NAME
w a i t p i d – wait for child process to change state

SYNOPSIS
i n c l u d e < s y s / t y p e s . h >
i n c l u d e < s y s / w a i t . h >

p i d _ t w a i t p i d (p i d _ t pid, i n t ∗stat_loc, i n t options) ;

DESCRIPTION
w a i t p i d suspends the calling process until one of its children changes state; if a
child process changed state prior to the call to w a i t p i d, return is immediate. pid
specifies a set of child processes for which status is requested.

If pid is equal to (p i d _ t) – 1, status is requested for any child process.

If pid is greater than (p i d _ t) 0, it specifies the process ID of the child process
for which status is requested.

If pid is equal to (p i d _ t) 0 status is requested for any child process whose
process group ID is equal to that of the calling process.

If pid is less than (p i d _ t) – 1, status is requested for any child process whose
process group ID is equal to the absolute value of pid .

If w a i t p i d returns because the status of a child process is available, then that status
may be evaluated with the macros defined by If the calling process had specified a
non-zero value of stat_loc, the status of the child process will be stored in the loca-
tion pointed to by stat_loc.

The options argument is constructed from the bitwise inclusive O R of zero or more of
the following flags, defined in the header file s y s / w a i t . h:

W C O N T I N U E D the status of any continued child process specified by pid, whose
status has not been reported since it continued (from a job control
stop), shall also be reported to the calling process.

W N O H A N G w a i t p i d will not suspend execution of the calling process if status
is not immediately available for one of the child processes
specified by pid .

W N O W A I T keep the process whose status is returned in stat_loc in a waitable
state. The process may be waited for again with identical results.

W U N T R A C E D the status of any child processes specified by pidˆ that are stopped,
and whose status has not yet been reported since they stopped,
shall also be reported to the calling process.

w a i t p i d with options equal to W U N T R A C E D and pidˆ equal to (p i d _ t)–1 is identical to
a call to w a i t(BA_OS).

Return Values
If w a i t p i d returns because the status of a child process is available, it returns the
process ID of the child process for which status is reported. If w a i t p i d was
invoked with W N O H A N G set in options, it has at least one child process specified by pid
for which status is not available, and status is not available for any process specified
by pid, w a i t p i d returns 0. Otherwise, w a i t p i d returns –1 and sets e r r n o to iden-
tify the error.

Page 1

FINAL COPY
June 15, 1995

File: ba_os/waitpid
svid

Page: 301

waitpid (BA_OS) waitpid (BA_OS)

Errors
In the following conditions, w a i t p i d fails and sets e r r n o to:

E I N T R w a i t p i d was interrupted due to the receipt of a signal sent by the
calling process.

E I N V A L An invalid value was specified for options.

E C H I L D The process or process group specified by pid does not exist or is
not a child of the calling process or can never be in the states
specified by options.

SEE ALSO
e x e c(BA_OS), e x i t(BA_OS), f o r k(BA_OS), p a u s e(BA_OS), p t r a c e(KE_OS),
s i g a c t i o n(BA_OS)

LEVEL
Level 1.

NOTICES
Considerations for Threads Programming

While one thread is blocked, siblings might still be executing.

Page 2

FINAL COPY
June 15, 1995

File: ba_os/waitpid
svid

Page: 302

write (BA_OS) write (BA_OS)

If O _ N O N B L O C K is set, w r i t e returns - 1 and sets e r r n o to E A G A I N.

If O _ N O N B L O C K is clear, w r i t e sleeps until all blocking locks are removed or
the w r i t e is terminated by a signal.

If a w r i t e requests that more bytes be written than there is room for—for example,
if the write would exceed the process file size limit [see g e t r l i m i t(BA_OS) and
u l i m i t(BA_OS)], the system file size limit, or the free space on the device—only as
many bytes as there is room for will be written. For example, suppose there is
space for 20 bytes more in a file before reaching a limit. A w r i t e of 512-bytes
returns 20. The next w r i t e of a non-zero number of bytes gives a failure return
(except as noted for pipes and FIFO below).

Write requests to a pipe or FIFO are handled the same as a regular file with the fol-
lowing exceptions:

There is no file offset associated with a pipe, hence each write request
appends to the end of the pipe.

Write requests of { P I P E _ B U F } bytes or less are guaranteed not to be inter-
leaved with data from other processes doing writes on the same pipe.
Writes of greater than { P I P E _ B U F } bytes may have data interleaved, on
arbitrary boundaries, with writes by other processes, whether the
O _ N O N B L O C K flag is are set.

If O _ N O N B L O C K and O _ N D E L A Y are clear, a write request may cause the pro-
cess to block, but on normal completion it returns nbyte.

If O _ N O N B L O C K is set, w r i t e requests are handled in the following way: the
w r i t e does not block the process; write requests for { P I P E _ B U F } or fewer
bytes either succeed completely and return nbyte, or return - 1 and set e r r n o
to E A G A I N. A w r i t e request for greater than { P I P E _ B U F } bytes either
transfers what it can and returns the number of bytes written, or transfers
no data and returns - 1 with e r r n o set to E A G A I N. Also, if a request is
greater than { P I P E _ B U F } bytes and all data previously written to the pipe
has been read, w r i t e transfers at least { P I P E _ B U F } bytes.

When attempting to write to a file descriptor (other than a pipe or FIFO) that sup-
ports nonblocking writes and cannot accept the data immediately:

If O _ N O N B L O C K is clear, w r i t e blocks until the data can be accepted.

If O _ N O N B L O C K is set, w r i t e does not block the process. If some data can be
written without blocking the process, w r i t e writes what it can and returns
the number of bytes written. Otherwise, if O _ N O N B L O C K is set, it returns – 1
and sets e r r n o to E A G A I N.

For STREAMS files the operation of w r i t e is determined by the values of the
minimum and maximum nbyte range (‘‘packet size’’) accepted by the stream. These
values are contained in the topmost stream module. Unless the user pushes the
topmost module [see I _ P U S H in s t r e a m s(BA_DEV)], these values can not be set or
tested from user level. If nbyte falls within the packet size range, nbyte bytes are
written. If nbyte does not fall within the range and the minimum packet size value
is 0, w r i t e breaks the buffer into maximum packet size segments prior to sending
the data downstream (the last segment may be smaller than the maximum packet
size). If nbyte does not fall within the range and the minimum value is non-zero,

Page 2

FINAL COPY
June 15, 1995

File: ba_os/write
svid

Page: 304

write (BA_OS) write (BA_OS)

w r i t e fails and sets e r r n o to E R A N G E. Writing a zero-length buffer (nbyte is 0) to a
STREAMS device sends a zero-length message with 0 returned. However, writing a
zero-length buffer to a pipe or FIFO sends no message and 0 is returned. The user
program may issue the I _ S W R O P T i o c t l(BA_OS) to enable zero-length messages to
be sent across the pipe or FIFO [see s t r e a m s(BA_DEV)].

When writing to a stream, data messages are created with a priority band of 0.
When writing to a stream that is not a pipe or FIFO:

If O _ N O N B L O C K is not set, and the stream cannot accept data (the stream
write queue is full because of internal flow control conditions), w r i t e blocks
until data can be accepted.

If O _ N O N B L O C K is not set, and the and the stream cannot accept data, w r i t e
returns - 1 and sets e r r n o to E A G A I N.

If O _ N O N B L O C K is not set, and the part of the buffer has already been written
when a condition occurs in which the stream cannot accept additional data,
w r i t e terminates and returns the number of bytes written.

Return Values
On success, w r i t e and w r i t e v return the number of bytes actually written and
mark for update the s t _ c t i m e and s t _ m t i m e fields of the file. On failure, w r i t e
and w r i t e v return –1 and set e r r n o to identify the error.

Errors
In the following conditions, w r i t e and w r i t e v fail and set e r r n o to:

E A G A I N Mandatory file/record locking is set, O _ N O N B L O C K is set, and there
is a blocking record lock.

E A G A I N Total amount of system memory available when reading via raw
I/O is temporarily insufficient.

E A G A I N An attempt is made to write to a stream that can not accept data
with the or O _ N O N B L O C K flag set.

E B A D F fildes is not a valid file descriptor open for writing.

E D E A D L K The w r i t e was going to go to sleep and cause a deadlock to occur.

E F A U L T buf points outside the process’s allocated address space.

E F B I G An attempt is made to write a file that exceeds the process’s file
size limit or the maximum file size [see u l i m i t(BA_OS)].

E I N T R A signal was caught during the w r i t e system call.

E I N V A L An attempt is made to write to a stream linked below a multi-
plexor.

E I O The process is in the background and is attempting to write to its
controlling terminal whose T O S T O P flag is set; the process is neither
ignoring nor blocking S I G T T O U signals, and the process group of
the process is orphaned.

Page 3

FINAL COPY
June 15, 1995

File: ba_os/write
svid

Page: 305

write (BA_OS) write (BA_OS)

E I O fildes points to a device special file that is in the closing state.

E N O L I N K fildes is on a remote machine and the link to that machine is no
longer active.

E N O S R An attempt is made to write to a stream with insufficient STREAMS
memory resources available in the system.

E N O S P C During a w r i t e to an ordinary file, there is no free space left on the
device.

E N X I O The device associated with the file descriptor is a block-special or
character-special file and the file-pointer value is out of range.

E P I P E and S I G P I P E signal
An attempt is made to write to a pipe that is not open for reading
by any process.

E P I P E An attempt is made to write to a FIFO that is not open for reading
by any process.

E R A N G E An attempt is made to write to a stream with nbyte outside
specified minimum and maximum write range, and the minimum
value is non-zero.

E N O L C K Enforced record locking was enabled and { L O C K _ M A X } regions are
already locked in the system.

In addition, in the following conditions w r i t e v fails and sets e r r n o to:

E I N V A L iovcnt was less than or equal to 0, or greater than 16.

E I N V A L An i o v _ l e n value in the iov array was negative.

E I N V A L The sum of the i o v _ l e n values in the iov array overflowed a 32-bit
integer.

A w r i t e to a STREAMS file can fail if an error message has been received at the
stream head. In this case, e r r n o is set to the value included in the error message.

After carrier loss, M _ H A N G U P is set, and a subsequent write will return –1 with e r r n o
set to E I O. To write after disconnecting and reconnecting the line, set the C L O C A L
flag to tell the driver to ignore the state of the line and the driver will not send
M _ H A N G U P to the stream head. If C L O C A L is not set, and hangup occurs, the applica-
tion is responsible for re-establishing the connection.

SEE ALSO
c r e a t(BA_OS), f c n t l(BA_OS), l s e e k(BA_OS), o p e n(BA_OS), p i p e(BA_OS),
p w r i t e(BA_OS), r e a d(BA_OS), u l i m i t(BA_OS)

LEVEL
Level 1.

The enforcement mode of file and record locking has moved to Level 2 effective
September 30, 1989.

Page 4

FINAL COPY
June 15, 1995

File: ba_os/write
svid

Page: 306

write (BA_OS) write (BA_OS)

NOTICES
Considerations for Threads Programming

Open file descriptors are a process resource and available to any sibling thread; if
used concurrently, actions by one thread can interfere with those of a sibling.

While one thread is blocked, siblings might still be executing.

Page 5

FINAL COPY
June 15, 1995

File: ba_os/write
svid

Page: 307

FINAL COPY
June 15, 1995

File:

Page: 308

Base OS Library Routines

The following section contains the manual pages for the BA_LIB library routines.

Base OS Library Routines 6-1

FINAL COPY
June 15, 1995
File: ba_lib.cov

svid

Page: 309

FINAL COPY
June 15, 1995

File:

Page: 310

abs (BA_LIB) abs (BA_LIB)

NAME
abs, labs – return integer absolute value

SYNOPSIS
#include <stdlib.h>

int abs(int i);

long labs(long l);

DESCRIPTION
The function abs() returns the absolute value of its integer operand. The function
labs() returns the absolute value of its long operand.

USAGE
In two’s complement representation, the absolute value of the negative integer with
largest magnitude {INT_MIN} or {LONG_MIN} is undefined. Some implementa-
tions may catch this as an error, but others may ignore it.

SEE ALSO
floor(BA_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/abs
svid

Page: 311

addsev (BA_LIB) addsev (BA_LIB)

NAME
addsev – define additional severities

SYNOPSIS
int addsev(int int_val, const char *string);

DESCRIPTION
The function addsev() defines additional severities for use in subsequent calls to
pfmt() or lfmt(). addsev() associates an integer value int_val in the range
[5-255] with a character string. It overwrites any previous string association
between int_val and string.

If int_val is ORed with the flags passed to subsequent calls pfmt() or lfmt(),
string will be used as severity.

Passing a NULL string removes the severity.

Add-on severities are only effective within the applications defining them.

RETURN VALUE
addsev() returns 0 in case of success, -1 otherwise.

USAGE
Only the standard severities are automatically displayed per the locale in effect at
runtime. An application must provide the means for displaying locale-specific ver-
sions of add-on severities.

EXAMPLE
d e f i n e P A N I C 5
s e t l a b e l (" A P P L ") ;
s e t c a t (" m y _ a p p l ") ;
a d d s e v (P A N I C , g e t t x t (" : 2 6 " , " P a n i c ")) ;
/ * . . . * /
l f m t (s t d e r r , M M _ S O F T | M M _ A P P L | P A N I C , " : 1 2 : C a n n o t l o c a t e d a t a b a s e \ n ") ;

will display the message to stderr and forward to the logging service:

A P P L : P a n i c : C a n n o t l o c a t e d a t a b a s e

SEE ALSO
gettxt(BA_LIB), lfmt(BA_LIB), pfmt(BA_LIB).

FUTURE DIRECTIONS
This interface is to be removed when the three-year waiting period has expired.

LEVEL
Level 2, April 1991.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/addsev
svid

Page: 312

assert (BA_LIB) assert (BA_LIB)

NAME
assert – verify program assertion

SYNOPSIS
#include <assert.h>

void assert(int expression);

DESCRIPTION
The assert() macro is useful for putting diagnostics into programs. When it is
executed, if expression is false (zero), assert() prints:

assertion failed: expression, file xyz, line nnn

on the standard error output and aborts. In the error message, xyz is the name of
the source file and nnn the source line number of the assert() statement, the
latter are respectively the values of the preprocessor macros _ _FILE_ _ and
_ _LINE_ _.

USAGE
Compiling with the preprocessor option –DNDEBUG or with the preprocessor con-
trol statement #define NDEBUG ahead of the #include <assert.h> state-
ment will stop assertions from being compiled into the program.

SEE ALSO
abort(BA_OS), assert(BA_ENV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/assert
svid

Page: 313

Bessel (BA_LIB) Bessel (BA_LIB)

NAME
Bessel: j0, j1, jn, y0, y1, yn – Bessel functions

SYNOPSIS
#include <math.h>

double j0(double x);

double j1(double x);

double jn(int n, double x);

double y0(double x);

double y1(double x);

double yn(int n, double x);

DESCRIPTION
The functions j0() and j1() return Bessel functions of x of the first kind of orders
0 and 1, respectively. The function jn() returns the Bessel function of x of the first
kind of order n.

The functions y0() and y1() return Bessel functions of x of the second kind of
orders 0 and 1, respectively. The function yn() returns the Bessel function of x of
the second kind of order n.

For the functions y0(), y1(), and yn(), the argument x must be positive.

RETURN VALUE
A macro HUGE_VAL will be defined by the <math.h> header file. This macro
expands to a positive double expression, not necessarily representable as a float.
On implementations that support the IEEE 754 standard, HUGE_VAL evalutates to
+∞.

If an input parameter is NaN, then the function will return NaN and set errno to
EDOM.

The functions y0(), y1(), and yn() will return −HUGE_VAL when x is zero, and
set errno to EDOM.

The functions y0(), y1(), and yn(), when x is negative, will return IEEE NaN (Not
a Number) if available, or −HUGE_VAL otherwise. Errno will be set to EDOM.

Values of x too large in magnitude cause the functions j0(), j1(), jn(), y0(),
y1(), and yn() to return zero and to set errno to ERANGE.

LEVEL
Level 1

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/bessel
svid

Page: 314

bsearch (BA_LIB) bsearch (BA_LIB)

NAME
bsearch – binary search on a sorted table

SYNOPSIS
#include <stdlib.h>

void *bsearch(const void *key, const void *base,
size_t nel, size_t width,
int (*compar)(const void *, const void *));

DESCRIPTION
The function bsearch() is a binary search routine. It returns a pointer into a table
indicating where a datum may be found. The table must be previously sorted in
increasing order according to a user-provided comparison function, compar() [see
qsort(BA_LIB)].

The argument key points to an object to be sought in the table.

The argument base points to the element at the base of the table.

The argument nel is the number of elements in the table.

The argument width is the size of an element in bytes.

The argument compar is the name of the comparison function, which is called with
two arguments of type const void * that point to the elements being compared.
The compar() function must return an integer less than, equal to or greater than zero,
as the first argument is to be considered less than, equal to or greater than the
second.

RETURN VALUE
Upon succesful completion, the function bsearch() returns a pointer to a match-
ing member of the table. A null pointer is returned if the key cannot be found in the
table. If two members compare as equal, the member that is matched is
unspecified.

USAGE
The pointers to the key and the element at the base of the table, key and base, respec-
tively, should be of type pointer-to-element and cast to type (const void *),
respectively.

The comparison function need not compare every byte, so arbitrary data may be
contained in the elements in addition to the values being compared.

Although declared as type void *, the value returned should be cast into type
pointer-to-element.

EXAMPLE
The following example searches a table containing pointers to nodes consisting of a
string and its length. The table is ordered alphabetically on the string in the node
pointed to by each entry. This code fragment reads in strings; it either finds the
corresponding node and prints out the string and its length or it prints an error
message.

#include <stdio.h>
#include <stdlib.h>

#define TABSIZE 1000

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/bsearch
svid

Page: 315

bsearch (BA_LIB) bsearch (BA_LIB)

struct node { /* these are in the table */
char *string;
int length;

};
struct node table[TABSIZE]; /* table to be searched */

. . .
{

struct node *node_ptr, node;
int node_compare(); /* routine to compare 2 nodes */
char str_space[20]; /* space to read string into */

. . .
node.string = str_space;
while (scanf("%s", node.string) != EOF) {
node_ptr = (struct node *)bsearch((const void *)(&node),

(const void *)table, TABSIZE,
sizeof(struct node), node_compare);

if (node_ptr != (char*)NULL)
(void)printf("string = %20s, length = %d\n",

node_ptr–>string, node_ptr–>length);
else

(void) printf("not found: %s\n", node.string);
}/* while */

}
/*

This routine compares two nodes based on an
alphabetical ordering of the string field.

*/
int node_compare(struct node *node1, struct node *node2);
{

return strcmp(node1–>string, node2–>string);
}
.ft 1

SEE ALSO
hsearch(BA_LIB), lsearch(BA_LIB), qsort(BA_LIB), tsearch(BA_LIB).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ba_lib/bsearch
svid

Page: 316

catgets (BA_LIB) catgets (BA_LIB)

NAME
catgets – read a program message

SYNOPSIS
#include <nl_types.h>

char *catgets(nl_catd catd, int set_num, int msg_num, const char
*s);

DESCRIPTION
The catgets function attempts to read message msg_num, in set set_num, from the
message catalogue identified by catd. catd is a catalogue descriptor returned from an
earlier call to catopen() [see catopen(BA_LIB)]. s points to a default message
string which will be returned by catgets() if the identified message catalogue is
not currently available.

RETURN VALUE
If the identified message is retrieved successfully, catgets() returns a pointer to
an internal buffer area containing the null terminated message string. If the call is
unsuccessful because the message catalogue identified by catd is not currently avail-
able, a pointer to s is returned.

SEE ALSO
catopen(BA_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/catgets
svid

Page: 317

catopen (BA_LIB) catopen (BA_LIB)

NAME
c a t o p e n, c a t c l o s e – open/close a message catalog

SYNOPSIS
i n c l u d e < n l _ t y p e s . h >

n l _ c a t d c a t o p e n (c o n s t c h a r ∗name, i n t oflag) ;

i n t c a t c l o s e (n l _ c a t d catd) ;

DESCRIPTION
c a t o p e n opens a message catalog and returns a catalog descriptor. name specifies
the name of the message catalog to be opened. If name contains a ‘‘/’’ then name
specifies a pathname for the message catalog. Otherwise, the environment variable
N L S P A T H is used. If N L S P A T H does not exist in the environment, or if a message
catalog cannot be opened in any of the paths specified by N L S P A T H, then the default
path is used [see nl_types(BA_ENV)].

The names of message catalogs, and their location in the filestore, can vary from one
system to another. Individual applications can choose to name or locate message
catalogs according to their own special needs. A mechanism is therefore required
to specify where the catalog resides.

The N L S P A T H variable provides both the location of message catalogs, in the form of
a search path, and the naming conventions associated with message catalog files.
For example:

N L S P A T H = / n l s l i b / % L / % N . c a t : / n l s l i b / % N / % L

The metacharacter % introduces a substitution field, where % L substitutes the
current setting of the locale (see below) and % N substitutes the value of the name
parameter passed to c a t o p e n. Thus, in the above example, c a t o p e n will search in
/ n l s l i b /locale/name. c a t, then in / n l s l i b /name/locale, for the required message
catalog.

The evaluation of locale as referenced by the substitution field % L depends on the
argument oflag. When oflag is N L _ C A T _ L O C A L E, the L C _ M E S S A G E S category as
returned by s e t l o c a l e(BA_OS) is used to locate the message catalog. When oflag
is zero, the environment variable L A N G locates the catalog without regard to the
L C _ M E S S A G E S category. If either of these methods fails, then the default language
as defined in n l _ t y p e s . h is used.

For a complete description of the metacharacters available for N L S P A T H, see
e n v v a r(BA_ENV).

N L S P A T H will normally be set up on a system wide basis (for example, in
/ e t c / p r o f i l e) and thus makes the location and naming conventions associated
with message catalogs transparent to both programs and users.

c a t c l o s e closes the message catalog identified by catd .

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/catopen
svid

Page: 318

catopen (BA_LIB) catopen (BA_LIB)

Return Values
If successful, c a t o p e n returns a message catalog descriptor for use in subsequent
calls to c a t g e t s and c a t c l o s e. Otherwise c a t o p e n returns (n l _ c a t d) - 1.

c a t c l o s e returns zero if successful, otherwise –1.

SEE ALSO
c a t g e t s(BA_LIB), e n v v a r(BA_ENV), n l _ t y p e s(BA_ENV), s e t l o c a l e(BA_OS).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ba_lib/catopen
svid

Page: 319

clock (BA_LIB) clock (BA_LIB)

NAME
clock – report CPU time used

SYNOPSIS
#include <time.h>

clock_t clock(void);

DESCRIPTION
The function clock() returns the amount of CPU time used since the first call to
the function clock(). The time reported is the sum of the user and system times
of the calling process and its terminated child processes for which it has executed
the wait(), pclose(), or system() routines.

To determine the time in seconds, the value returned by the clock() function
should be divided by the value of the macro CLOCKS_PER_SEC (the number per
second of the value returned by the clock() function).

RETURN VALUE
If the processor time used is not available or its value cannot be represented, the
function returns the value (clock_t)-1.

USAGE
The value returned by clock() is defined in microseconds for compatibility with
systems that have CPU clocks with much higher resolution.

SEE ALSO
times(BA_OS), wait(BA_OS), popen(BA_OS), system(BA_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/clock
svid

Page: 320

conv (BA_LIB) conv (BA_LIB)

NAME
conv: toupper, tolower, _toupper, _tolower, toascii – translate characters

SYNOPSIS
#include <locale.h>
#include <ctype.h>

int toupper(int c);

int tolower(int c);

int _toupper(int c);

int _tolower(int c);

int toascii(int c);

DESCRIPTION
The functions toupper() and tolower() have as domain the range of the
getc() routine: an integer, the value of which is representable as an unsigned
char, or EOF, which is defined by the <stdio.h> header file and represents end-
of-file. If the argument of toupper() represents a lower-case letter, the result is
the corresponding upper-case letter. If the argument of tolower() represents an
upper-case letter, the result is the corresponding lower-case letter. All other argu-
ments in the domain are returned unchanged.

The macros _toupper(), _tolower(), and toascii() are defined by the
<ctype.h> header file. The macros _toupper() and _tolower() accomplish
the same thing as toupper() and tolower(), but have restricted domains and
are faster. The macro _toupper() requires an lower-case letter as its argument; its
result is the corresponding upper-case letter. The macro _tolower() requires an
upper-case letter as its argument; its result is the corresponding lower-case letter.
Arguments outside the domain cause undefined results.

The macro toascii() yields its argument with all bits turned off that are not part
of a standard ASCII character; it is intended for compatibility with other systems.

The functions toupper() and tolower() and the macros _toupper() and
_tolower() are affected by LC_CTYPE. In the "C" locale, or in a locale where shift
information is not defined, these functions determine the case of characters accord-
ing to the rules of the ASCII-coded character set. Characters outside the ASCII
range of characters are returned unchanged.

SEE ALSO
ctype(BA_LIB), getc(BA_LIB), setlocale(BA_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/conv
svid

Page: 321

crypt (BA_LIB) crypt (BA_LIB)

NAME
crypt, setkey, encrypt – generate string encoding

SYNOPSIS
char *crypt(const char *key, const char *salt);

void setkey(const char *key);

void encrypt(char *block, int edflag);

DESCRIPTION
The function crypt() is a string-encoding function.

The argument key is a string to be encoded. The argument salt is a two-character
string chosen from the set [a–zA–Z0–9./]; this string is used to perturb the
encoding algorithm, after which the string that key points to is used as the key to
repeatedly encode a constant string. The returned value points to the encoded
string. The first two characters are the salt itself.

The functions setkey() and encrypt() provide (rather primitive) access to the
encoding algorithm. The argument to setkey() is a 64-bit string represented by a
character array of length 64 containing only the characters with numerical value 0
and 1. The string is divided into groups of 8 and the low-order bit in each group is
ignored; this gives a 56-bit key. This is the key that will be used with the above
mentioned algorithm to encode the string block with the function encrypt().

The argument to encrypt() is a character array of length 64 containing only the
characters with numerical value 0 and 1. The argument array is modified in place
to a similar array representing the bits of the argument after having been subjected
to the encoding algorithm using the key set by setkey().

If the argument edflag is zero, the argument is encoded, otherwise it is decoded.

ERRORS
Under the following conditions, these functions fail, and set errno to:

ENOSYS The functionality is not supported on this implementation.

USAGE
The return value of the function crypt() points to static data that are overwritten
by each call.

LEVEL
Level 1.

Optional: the functionality of crypt(), setkey() and encrypt() may not be
present in all implementations of the Base System. On implementations which do
not support this functionality, calls to these functions will return with errno set to
ENOSYS.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/crypt
svid

Page: 322

ctermid (BA_LIB) ctermid (BA_LIB)

NAME
ctermid – generate filename for terminal

SYNOPSIS
#include <unistd.h>
#include <stdio.h>

char *ctermid(char *s);

DESCRIPTION
The function ctermid() generates the pathname of the controlling terminal for the
current process and stores it in a string. Access to the file is not guarranteed.

If the argument s is a null pointer, the string is stored in an internal static area
which will be overwritten at the next call to ctermid(). The address of the static
area is returned. Otherwise, s is assumed to point to a character array of at least
L_ctermid elements; the pathname is placed in this array and the value of s is
returned.

RETURN VALUE
The function ctermid() returns an empty string if the pathname that would refer
to the controlling terminal cannot be determined.

USAGE
The difference between the ttyname() routine and the function ctermid() is
that the ttyname() routine must be passed a file descriptor and returns the name
of the terminal associated with that file descriptor, whereas the function cter-
mid() returns the name of the controlling terminal for the current process.

SEE ALSO
ttyname(BA_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/ctermid
svid

Page: 323

ctime (BA_LIB) ctime (BA_LIB)

NAME
c t i m e, l o c a l t i m e, g m t i m e, a s c t i m e, t z s e t – convert date and time to string

SYNOPSIS
i n c l u d e < t i m e . h >

c h a r * c t i m e (c o n s t t i m e _ t *clock) ;

s t r u c t t m * l o c a l t i m e (c o n s t t i m e _ t *clock) ;

s t r u c t t m * g m t i m e (c o n s t t i m e _ t *clock) ;

c h a r * a s c t i m e (c o n s t s t r u c t t m *tm) ;

e x t e r n i n t d a y l i g h t ;

e x t e r n c h a r * t z n a m e [2] ;

v o i d t z s e t (v o i d) ;

DESCRIPTION
c t i m e, l o c a l t i m e, and g m t i m e accept arguments of type t i m e _ t, pointed to by
clock, representing the time in seconds since 00:00:00 UTC, January 1, 1970. c t i m e
returns a pointer to a 26-character string as shown below. Time zone and daylight
savings corrections are made before the string is generated. The fields are constant
in width:

F r i A u g 1 3 0 0 : 0 0 : 0 0 1 9 9 3 \ n \ 0

l o c a l t i m e and g m t i m e return pointers to t m structures, described below. l o c a l -
t i m e corrects for the main time zone and possible alternate (‘‘daylight savings’’)
time zone; g m t i m e converts directly to Coordinated Universal Time (UTC), which is
the time the UNIX system uses internally.

a s c t i m e converts a t m structure to a 26-character string, as shown in the above
example, and returns a pointer to the string.

Declarations of all the functions and externals, and the t m structure, are in the
t i m e . h header file.

The value of t m _ i s d s t is positive if daylight savings time is in effect, zero if day-
light savings time is not in effect, and negative if the information is not available.
(Previously, the value of t m _ i s d s t was defined as non-zero if daylight savings time
was in effect.)

The external variable t i m e z o n e contains the difference, in seconds, between UTC
and local standard time. The external variable d a y l i g h t indicates whether time
should reflect daylight savings time. t i m e z o n e defaults to 0 (UTC). The external
variable d a y l i g h t is non-zero if an alternate time zone exists. The time zone names
are contained in the external variable t z n a m e, which by default is set to:

c h a r * t z n a m e [2] = { " G M T " , " " } ;

These functions know about the peculiarities of this conversion for various time
periods for the U.S.A. (specifically, the years 1974, 1975, and 1987). They will handle
the new daylight savings time starting with the first Sunday in April, 1987.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/ctime
svid

Page: 324

ctime (BA_LIB) ctime (BA_LIB)

t z s e t uses the contents of the environment variable T Z to override the value of the
different external variables. It also sets the external variable d a y l i g h t to zero if
Daylight Savings Time conversions should never be applied for the time zone in
use; otherwise, non-zero. t z s e t is called by a s c t i m e and may also be called by the
user. See e n v i r o n() for a description of the T Z environment variable.

SEE ALSO
g e t e n v(BA_LIB), m k t i m e(BA_LIB), p r i n t f(BA_LIB), p u t e n v(BA_LIB),
s e t l o c a l e(BA_OS), s t r f t i m e(BA_LIB), t i m e(BA_OS),

LEVEL
Level 1.

NOTICES
The functions c t i m e, l o c a l t i m e, f g m t i m e, t z s e t and a s c t i m e are BA_LIB func-
tions, and identical to the c t i m e BA_LIB page. c t i m e _ r, l o c a l t i m e _ r and
g m t i m e _ r are MT_LIB functions.

The return values for c t i m e, l o c a l t i m e, and g m t i m e point to static data whose
content is overwritten by each call.

Setting the time during the interval of change from t i m e z o n e to a l t z o n e or vice
versa can produce unpredictable results. The system administrator must change
the Julian start and end days annually.

Use the reentrant functions for multithreaded applications.

Page 2

FINAL COPY
June 15, 1995

File: ba_lib/ctime
svid

Page: 325

ctype (BA_LIB) ctype (BA_LIB)

NAME
ctype: isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct, isprint,
isgraph, iscntrl, isascii – classify characters

SYNOPSIS
#include <ctype.h>

int isalpha(int c);

int isupper(int c);

int islower(int c);

int isdigit(int c);

int isxdigit(int c);

int isalnum(int c);

int isspace(int c);

int ispunct(int c);

int isprint(int c);

int isgraph(int c);

int iscntrl(int c);

int isascii(int c);

DESCRIPTION
These macros classify character-coded integer values. Each is a predicate returning
non-zero for true, zero for false. The behavior of these macros, except isascii(),
isdigit(), and isxdigit() is affected by the current locale [see
setlocale(BA_OS)]. In the "C" locale, or in a locale where character type information
is not defined, characters are classified according to the rules of the US-ASCII 7-bit
coded character set.

The macro isascii() is defined on all integer values; the rest are defined only
where the argument is an int, the value of which is representable as an unsigned
char, or EOF, which is defined by the <stdio.h> header file and represents end-
of-file.

isalpha() tests for any character for which isupper() or islower() is
true, or any character that is one of an implementation-defined set
of characters for which none of iscntrl(), isdigit(),
ispunct(), or isspace() is true. In the "C" locale, isalpha()
returns true only for the characters for which isupper() or
islower() is true.

isupper() tests for any character that is an upper-case letter or is one of an
implementation-defined set of characters for which none of
iscntrl(), isdigit(), ispunct(), isspace(), or
islower() is true. In the "C" locale, isupper() returns true
only for the characters defined as upper-case ASCII characters.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/ctype
svid

Page: 326

ctype (BA_LIB) ctype (BA_LIB)

islower() tests for any character that is a lower-case letter or is one of an
implementation-defined set of characters for which none of
iscntrl(), isdigit(), ispunct(), isspace(), or
isupper() is true. In the "C" locale, islower() returns true
only for the characters defined as lower-case ASCII characters.

isdigit() tests for any decimal-digit character.

isxdigit() tests for any hexadecimal-digit character ([0–9], [A–F] or
[a–f]).

isalnum() tests for any character for which isalpha() or isdigit() is
true (letter or digit).

isspace() tests for any space, tab, carriage-return, newline, vertical-tab or
form-feed (standard white-space characters) or for one of an
implementation-defined set of characters for which isalnum() is
false. In the "C" locale, isspace() returns true only for the stan-
dard white-space characters.

ispunct() tests for any printing character which is neither a space nor a char-
acter for which isalnum() is true.

isprint() tests for any printing character, including space (" ").

isgraph() tests for any printing character, except space.

iscntrl() tests for any "control character" as defined by the character set.

isascii() tests for any ASCII character, code between 0 and 0177 inclusive.

Functions must exist for all the above defined macros. To get the function form, the
macro name must be undefined (e.g. #undef isdigit).

RETURN VALUE
If the argument to any of these macros is not in the domain of the function, the
result is undefined.

SEE ALSO
setlocale(BA_OS).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ba_lib/ctype
svid

Page: 327

difftime (BA_LIB) difftime (BA_LIB)

NAME
difftime – computes the difference between two calendar times

SYNOPSIS
#include <time.h>

double difftime(time_t time1, time_t time0);

DESCRIPTION
The function difftime() computes the difference between two calendar times.
difftime() returns the difference (time1 minus time0) expressed in seconds as a
double.

USAGE
This function is provided because there are no general arithmetic properties defined
for type time_t.

SEE ALSO
ctime(BA_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/difftime
svid

Page: 328

div (BA_LIB) div (BA_LIB)

NAME
div, ldiv – compute the quotient and remainder

SYNOPSIS
#include <stdlib.h>

div_t div(int numer, int denom);

ldiv_t ldiv(long int numer, long int denom);

DESCRIPTION
The function div() computes the quotient and remainder of the division of the
numerator numer by the denominator denom. This function provides well-defined
semantics for the signed integral division and remainder operations.

div() returns a structure of type div_t which includes the following members:

int quot; /* quotient */
int rem; /* remainder */

ldiv() is similar to div(), except that the arguments and the members of the
returned structure (which has type ldiv_t) all have type long int.

RETURN VALUE
If the result cannot be represented, the behavior is undefined; otherwise, quotient ∗
denom + remainder will equal numer. If the division is inexact, the resulting quotient
is the integer of lesser magnitude that is the nearest to the algebraic quotient.

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/div

svid

Page: 329

drand48 (BA_LIB) drand48 (BA_LIB)

and transformed into the returned value.

The functions drand48(), lrand48() and mrand48() store the last 48-bit X i
generated in an internal buffer; that is why they must be initialized prior to being
invoked. The functions erand48(), nrand48() and jrand48() require the cal-
ling program to provide storage for the successive X i values in the array specified
as an argument when the functions are invoked. That is why these routines do not
have to be initialized; the calling program merely has to place the desired initial
value of X i into the array and pass it as an argument. By using different arguments,
functions erand48(), nrand48() and jrand48() allow separate modules of a
large program to generate several independent streams of pseudo-random
numbers. In other words, the sequence of numbers in each stream will not depend
upon how many times the routines have been called to generate numbers for the
other streams.

The initializer function srand48() sets the high-order 32-bits of X i to the bits con-
tained in its argument seedval. The low-order 16-bits of X i are set to the arbitrary
value 330 E 16.

The initializer function seed48() sets the value of X i to the 48-bit value specified
in the argument array. In addition, the previous value of X i is copied into a 48-bit
internal buffer, used only by seed48(), and a pointer to this buffer is the value
returned by seed48().

The initialization function lcong48() allows the user to specify the initial X i , the
multiplier value a and the addend value c. Argument array elements param[0-2]
specify X i , param[3-5] specify the multiplier a, and param[6] specifies the 16-bit
addend c. After lcong48() has been called, a subsequent call to either
srand48() or seed48() will restore the standard multiplier and addend values, a
and c, specified above.

USAGE
The pointer returned by seed48(), which can just be ignored if not needed, is use-
ful if a program is to be restarted from a given point at some future time. Use the
pointer to get at and store the last X i value and then use this value to reinitialize via
seed48() when the program is restarted.

SEE ALSO
rand(BA_LIB).

LEVEL
Level 1

Page 2

FINAL COPY
June 15, 1995

File: ba_lib/drand48
svid

Page: 331

erf (BA_LIB) erf (BA_LIB)

NAME
erf, erfc – error function and complementary error function

SYNOPSIS
#include <math.h>

double erf(double x);

double erfc(double x);

DESCRIPTION
The function erf() returns the error function of x, defined as follows:

√ π
2_ ___

0
∫
x

e − t2

dt

The function erfc() returns 1.0–erf(x).

RETURN VALUE
For both erf() and erfc(), if an input parameter is NaN, then the function will
return NaN and set errno to EDOM.

USAGE
The function erfc() is provided because of the extreme loss of relative accuracy if
erf(x) is called for large x and the result subtracted from 1.0.

SEE ALSO
exp(BA_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/erf

svid

Page: 332

exp (BA_LIB) exp (BA_LIB)

NAME
exp, log, log10, pow, sqrt, cbrt – exponential, logarithm, power, root functions

SYNOPSIS
#include <math.h>

double exp(double x);

double log(double x);

double log10(double x);

double pow(double x, double y);

double sqrt(double x);

double cbrt(double x);

DESCRIPTION
The function exp() returns ex.

The function log() returns the natural logarithm of x. The value of x must be posi-
tive.

The function log10() returns the base ten logarithm of x. The value of x must be
positive.

The function pow() returns xy. If x is zero, y must be non-negative. If x is negative,
y must be an integer.

The function sqrt() returns the non-negative square root of x. The value of x may
not be negative.

The function cbrt() returns the cube root of x.

RETURN VALUE
A macro HUGE_VAL will be defined by the <math.h> header file. This macro
evaluates to a positive double expression, not necessarily representable as a float.
On implementations that support the IEEE 754 standard, HUGE_VAL evaluates to
+∞.

If an input parameter is NaN, then all functions will return NaN and set errno to
EDOM. The only exception is for pow(), which always returns 1 when its second
argument is 0, regardless of the value of its first argument.

The function exp() returns HUGE_VAL when the correct value would overflow and
sets errno to ERANGE. The function exp() returns 0 when the correct value
would underflow and sets errno to ERANGE.

The functions log() and log10() will return an implementation-defined value
(IEEE NaN or equivalent if available) and will set errno to EDOM when x is negative,
and will return −HUGE_VAL and set errno to ERANGE when x is zero.

The function pow() will return an implementation-defined value (IEEE NaN or
equivalent if available) and set errno to EDOM when the first argument is negative
and the second is non-integral. When the first argument is 0 and the second argu-
ment is negative, finite, and an odd integer, pow() returns ±HUGE_VAL, according
to the sign of the first argument and sets errno to EDOM. When the first argument
is 0 and the second argument is negative, finite, and not an odd integer, pow

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/exp
svid

Page: 333

exp (BA_LIB) exp (BA_LIB)

returns HUGE_VAL and sets errno to EDOM. The return value will be 1 with no
error when both arguments are zero. The return value will be ±HUGE_VAL and
errno will be set to ERANGE when the correct value would overflow. The return
value will be 0 and errno will be set to ERANGE when the correct value would
underflow.

On a system that supports the IEEE 754 standard, pow returns NAN and sets errno to
EDOM when x is ±1 and y is ±∞.

The function sqrt() will return an implementation-defined value (IEEE NaN or
equivalent if available) and set errno to EDOM when x is negative.

SEE ALSO
hypot(BA_LIB), hyperbolic(BA_LIB).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ba_lib/exp
svid

Page: 334

fattach (BA_LIB) fattach (BA_LIB)

NAME
fattach – attach a STREAMS-based file descriptor to an object in the file system
name space

SYNOPSIS
int fattach(int fildes, const char *path);

DESCRIPTION
The fattach() routine attaches a STREAMS-based file descriptor to an object in
the file system name space, effectively associating a name with fildes. fildes must be
a valid open file descriptor representing a STREAMS file. path is a pathname of an
existing object and the process must have appropriate privileges or be the owner of
the file and have write permissions. When the Enhanced Security Extension is
implemented, fildes and path must have the same MAC level. All subsequent opera-
tions on path will operate on the STREAMS file until such time that the STREAMS
file is detached from the node. A fildes can be attached to more than one path, that
is, a stream can have several names associated with it.

The attributes of the named stream [see stat(BA_OS)] are initialized as follows:
the permissions, user ID, group ID, and times are set to those of path, the number of
links is set to 1, and the size and dev’ set to those of the streams device associated
with fildes. If any attributes of the named stream are subsequently changed (for
example, chmod), the attributes of the underlying object are not affected.

RETURN VALUE
Upon successful completion, the fattach() routine returns a value of 0; other-
wise, a value of –1 is returned and errno is set to indicate an error.

ERRORS
Under the following conditions, fattach() fails and sets errno to:

EACCES if the user is the owner of path but does not have write permis-
sions on path or if fildes is locked.

EACCES if fildes and path do not have the same MAC level.

EBADF if fildes is not a valid open file descriptor.

ENOENT if path does not exist.

ENOTDIR if a component of a path prefix is not a directory.

EINVAL if fildes is not a STREAMS file.

EPERM if the effective user ID is not the owner of path or a user with the
appropriate privileges.

EBUSY if path is currently a mount point or has a STREAMS file descrip-
tor attached it.

ENAMETOOLONG if the size of path exceeds {PATH_MAX}, or the component of a
pathname is longer than {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

ELOOP if too many symbolic links were encountered in translating path.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/fattach
svid

Page: 335

fattach (BA_LIB) fattach (BA_LIB)

SEE ALSO
fdetach(BA_LIB), isastream(BA_LIB), streams (BA_DEV).

FUTURE DIRECTIONS
The fattach() routine may be enhanced in the future to enable a file descriptor
that is not associated with a STREAMS-based file to be attached to an object in the
file system name space.

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ba_lib/fattach
svid

Page: 336

fdetach (BA_LIB) fdetach (BA_LIB)

NAME
fdetach – detach a name from a STREAMS-based file descriptor

SYNOPSIS
int fdetach(const char *path);

DESCRIPTION
The fdetach() routine detaches a STREAMS-based file descriptor from a name in
the file system. path is the pathname of the object in the file system name space,
which was previously attached [see fattach(BA_LIB)]. The user must be the owner
of the file or be a user with the appropriate privileges. All subsequent operations
on path will operate on the file system node and not on the STREAMS file. The per-
missions and status of the node are restored to the state the node was in before the
STREAMS file was attached to it.

RETURN VALUE
Upon successful completion, the function fdetach() returns a value of 0; other-
wise, it returns a value of -1 and sets errno to indicate an error.

ERRORS
Under the following conditions, the function fdetach() fails and sets errno to:

EPERM if the effective user ID is not the owner of path or is not a user
with appropriate permissions.

ENOTDIR if a component of the path prefix is not a directory.

ENOENT if path does not exist.

EINVAL if path is not attached to a STREAMS file.

ENAMETOOLONG if the size of a pathname exceeds {PATH_MAX}, or pathname
component is longer than {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

ELOOP if too many symbolic links were encountered in translating path.

SEE ALSO
fattach(BA_LIB), streams(BA_DEV).

FUTURE DIRECTIONS
fdetach() may be enhanced in the future to enable a file descriptor that is not
associated with a STREAMS-based file to be detached from a node.

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/fdetach
svid

Page: 337

floor (BA_LIB) floor (BA_LIB)

NAME
floor, ceil, fmod, remainder, fabs – floor, ceiling, remainder, absolute value func-
tions

SYNOPSIS
#include <math.h>

double floor(double x);
double ceil(double x);
‡ double fmod(double x, double y);
double remainder(double x, double y);
double fabs(double x);

DESCRIPTION
The function floor() returns the largest integral value not greater than x.

The function ceil() returns the smallest integral value not less than x.

The function fmod() returns the floating point remainder f = x − my when y is non-
zero, where m is the integral value chosen so that f has the same sign as x and f <
 y .

The function remainder() returns the floating point remainder r = x − ny when y
is non-zero. The value n is the integral value nearest the exact value x/y; when n
− x/y = 1⁄2 , the value n is chosen to be even.

The function fabs() returns x , the absolute value of x.

RETURN VALUE
If an input parameter is NaN, then the function will return NaN and set errno to
EDOM.

When y is zero the functions fmod() and remainder() will return an
implementation-defined value (IEEE NaN or equivalent if available) and set errno
to EDOM.

On a system that supports the IEEE 754 standard, if the value of x for fmod() or
remainder() is +-∞, these functions will return IEEE NaN and set errno to EDOM.

SEE ALSO
abs(BA_LIB).

LEVEL
Level 1. fmod() function Level 2, effective 9/30/89.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/floor
svid

Page: 338

fmtmsg (BA_LIB) fmtmsg (BA_LIB)

NAME
fmtmsg – display a message in the standard format on standard error and the sys-
tem console

SYNOPSIS
#include <fmtmsg.h>

int fmtmsg(long classification, const char *label, int severity,
const char *text, const char *action, const char *tag);

DESCRIPTION
The function fmtmsg() can be used to display messages in standard format instead
of the traditional printf() interface. fmtmsg() in conjunction with get-
text() provides a simple interface for producing language-independent applica-
tions.

Based on a message’s classification component, the function fmtmsg() either
writes a formatted message to standard error, the console, or to both.

A formatted message consists of up to five standard components as defined below.
The component, classification, is not part of the standard message displayed to the
user, but defines the source of the message and directs the display of the formatted
message.

classification
Contains identifiers from the following groups of major classifications and
subclassifications. Any one identifier from a subclass may be used in combi-
nation with a single identifier from a different subclass. Two or more
identifiers from the same subclass should not be used together, with the
exception of identifiers from the display subclass. (Both display subclass
identifiers may be used so that messages can be displayed to both standard
error and the system console).

major classifications
Identifies the source of the condition. Identifiers are: MM_HARD
(hardware), MM_SOFT (software), and MM_FIRM (firmware).

message source subclassifications
Identifies the type of software in which the problem is detected.
Identifiers are: MM_APPL (application), MM_UTIL (utility), and
MM_OPSYS (operating system).

display subclassifications
Indicates where the message is to be displayed. Identifiers are:
MM_PRINT to display the message on the standard error stream,
MM_CONSOLE to display the message on the system console. One or
both identifiers may be used.

status subclassifications
Indicates whether the application will recover from the condition.
Identifiers are: MM_RECOVER (recoverable) and MM_NRECOV (non-
recoverable).

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/fmtmsg
svid

Page: 339

fmtmsg (BA_LIB) fmtmsg (BA_LIB)

An additional identifier, MM_NULLMC, indicates that no classification com-
ponent is supplied for the message.

label Identifies the source of the message. The format is two fields separated by a
colon. The first field is up to 10 characters, the second is up to 14 characters.
Suggested usage is that label identifies the package in which the application
resides as well as the program or application name. For example, the label
UX:cat indicates the operating system package and the cat application.

severity
Indicates the seriousness of the condition. Identifiers for the standard levels
of severity are:

MM_HALT
indicates that the application has encountered a severe fault and is halt-
ing. Produces the print string HALT.

MM_ERROR
indicates that the application has detected a fault. Produces the print
string ERROR.

MM_WARNING
indicates a condition that is out of the ordinary, that might be a prob-
lem, and should be watched. Produces the print string WARNING.

MM_INFO
provides information about a condition that is not in error. Produces
the print string INFO.

MM_NOSEV
indicates that no severity level is supplied for the message. Describes
the error condition that produced the message. The text string is not
limited to a specific size.

text Describes the error condition that produced the message. If the text string is
null then a message will be issued stating that no text has been provided.

action Describes the first step to be taken in the error-recovery process.
fmtmsg() precedes the action string with the prefix: TO FIX:. The action
string is not limited to a specific size.

tag An identifier which references on-line documentation for the message. Sug-
gested usage is that tag includes the label and a unique identifying number.
A sample tag is UX:cat:146.

Environment Variables
There are two environment variables that control the behavior of fmtmsg():
MSGVERB (message verbosity) and SEV_LEVEL (severity level). SEV_LEVEL can
be used in shell scripts or set in the user’s shell. MSGVERB can be set by the
administrator in the /etc/profile for the system. Users can override the
system-set MSGVERB by resetting MSGVERB in their own .profile files or by
changing the value in their current shell session.

Page 2

FINAL COPY
June 15, 1995

File: ba_lib/fmtmsg
svid

Page: 340

fmtmsg (BA_LIB) fmtmsg (BA_LIB)

MSGVERB tells fmtmsg() which message components it is to select when writing
messages to standard error. The value of MSGVERB is a colon-list of optional key-
words. MSGVERB can be set as follows:

MSGVERB=[keyword[:keyword[:...]]]
export MSGVERB

Valid keywords are: label, severity, text, action, and tag. If MSGVERB con-
tains a keyword for a component and the component’s value is not the component’s
null value, fmtmsg() includes that component in the message when writing the
message to standard error. If MSGVERB does not include a keyword for a message
component, that component is not included in the display of the message. The key-
words may appear in any order. If MSGVERB is not defined, if its value is the null-
string, if its value is not of the correct format, or if it contains keywords other than
the valid ones listed above, fmtmsg() selects all components.

MSGVERB affects only which components are selected for display to standard error.
All message components are included in console messages.

SEV_LEVEL defines severity levels and associates print strings with them for use by
fmtmsg(). The standard severity levels shown below cannot be modified. Addi-
tional severity levels can be defined, redefined, and removed.

0 (no severity is used)
1 HALT
2 ERROR
3 WARNING
4 INFO

SEV_LEVEL can be set as follows:

SEV_LEVEL=[description[:description[:...]]]
export SEV_LEVEL

The format of description is a three-field comma list as follows:

description=severity_keyword,level,printstring
where

severity_keyword
is not used by the fmtmsg() function; it is used by the fmtmsg com-
mand [see fmtmsg(BU_CMD)].

level
is a character string that evaluates to a positive integer (other than 0, 1,
2, 3, or 4, which are reserved for the standard severity levels). The
command fmtmsg uses severity-keyword and passes level onto
fmtmsg().

printstring
is the character string used by fmtmsg() in the standard message for-
mat whenever the severity value level is used.

If SEV_LEVEL is not defined, or if its value is null, no severity levels other than the
defaults are available. If a description in the colon list is not a three-field comma list,
or, if the second field of a comma list does not evaluate to a positive integer, that
description in the colon list is ignored.

Page 3

FINAL COPY
June 15, 1995

File: ba_lib/fmtmsg
svid

Page: 341

fmtmsg (BA_LIB) fmtmsg (BA_LIB)

Use in Applications
One or more message components may be systematically omitted from messages
generated by an application by using the null value of the argument for that com-
ponent. The table below indicates the null values and identifiers for fmtmsg()
arguments.

_ __
Argument Type Null-Value Identifier_ __
label char* (char*)NULL MM_NULLLBL
severity int O MM_NULLSEV
class long OL MM_NULLMC
text char* (char*)NULL MM_NULLTXT
action char* (char*)NULL MM_NULLACT
tag char* (char*)NULL MM_NULLTAG_ __

Another means of systematically omitting a component is by omitting the com-
ponent keyword(s) when defining the MSGVERB environment variable (see Environ-
ment Variables).

ERRORS
The exit codes for fmtmsg() are the following:

MM_OK = the function succeeded
MM_NOTOK = the function failed completely
MM_NOMSG = the function was unable to generate a message on standard error,

but otherwise succeeded.
MM_NOCON = the function was unable to generate a console message,

but otherwise succeeded.

EXAMPLE
Example 1:

The following example of fmtmsg():

fmtmsg(MM_PRINT, "UX:cat", MM_ERROR, "illegal option",
"refer to cat in user’s reference manual", "UX:cat:001")

produces a complete message in the standard message format:

UX:cat: ERROR: illegal option
TO FIX: refer to cat in user’s reference manual UX:cat:001

Example 2:

When the environment variable MSGVERB is set as follows:

MSGVERB=severity:text:action

and the Example 1 is used, fmtmsg() produces:

ERROR: illegal option
TO FIX: refer to cat in user’s reference manual

Page 4

FINAL COPY
June 15, 1995

File: ba_lib/fmtmsg
svid

Page: 342

fmtmsg (BA_LIB) fmtmsg (BA_LIB)

Example 3:

When the environment variable SEV_LEVEL is set as follows:

SEV_LEVEL=note,5,NOTE

the following call to fmtmsg():

fmtmsg(MM_PRINT | MM_UTIL, "UX:cat", 5, "cannot open file",
"specify correct file name", "UX:cat:002")

produces:

UX:cat: NOTE: cannot open file
TO FIX: specify correct file name UX:cat(1):002

SEE ALSO
fmtmsg(BU_CMD), gettxt(BA_LIB), printf(BA_LIB).

FUTURE DIRECTIONS
This interface is to be removed when the three-year waiting period has expired. It
is replaced by pfmt.

LEVEL
Level 2: April 1991.

Page 5

FINAL COPY
June 15, 1995

File: ba_lib/fmtmsg
svid

Page: 343

fnmatch (BA_LIB) fnmatch (BA_LIB)

NAME
f n m a t c h – match filename or pattern

SYNOPSIS
i n c l u d e < f n m a t c h . h >

i n t f n m a t c h (c o n s t c h a r ∗pattern, c o n s t c h a r ∗string, i n t flags) ;

DESCRIPTION
f n m a t c h is part of the X/Open Portability Guide Issue 4 optional POSIX2 C-
Language Binding feature group.

Return Values
f n m a t c h returns F N M _ N O S Y S and sets e r r n o to E N O S Y S.

USAGE
Administrator.

SEE ALSO
g l o b(BA_LIB), w o r d e x p(BA_LIB)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/fnmatch
svid

Page: 344

frexp (BA_LIB) frexp (BA_LIB)

NAME
frexp, ldexp, modf – manipulate parts of floating-point numbers

SYNOPSIS
#include <math.h>
double frexp(double value, int *eptr);

‡ double ldexp(double value, int exp);

double modf(double value, double *iptr);

DESCRIPTION
Every non-zero number can be written uniquely as x ∗ 2n, where the significand x is
in the range 0.5 ≤ x < 1.0 and the exponent n is an integer. The function
frexp() returns the significand of value and stores the exponent indirectly in the
location pointed to by eptr. If value is zero, both results returned by frexp() are
zero.

The function ldexp() returns the quantity value ∗ 2exp.

The function modf() returns the fractional part of value and stores the integral part
indirectly in the location pointed to by iptr. Both the fractional and integral parts
have the same sign as value.

RETURN VALUE
A macro HUGE_VAL will be defined by the <math.h> header file. This macro
evaluates to a positive double expression, not necessarily representable as a float.
On implementations that support the IEEE 754 standard, HUGE_VAL evalutates to
+∞.

If the correct value would overflow, ldexp() will return ±HUGE_VAL (according to
the sign of value) and set errno to ERANGE.

If the correct value would underflow, the function ldexp() returns 0 and sets
errno to ERANGE.

If an input parameter is NaN, then the function will return NaN and set errno to
EDOM.

SEE ALSO
exp(BA_LIB), scalb(BA_LIB).

LEVEL
Level 1. ldexp() is Level 2, effective 9/30/89.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/frexp
svid

Page: 345

ftw (BA_LIB) ftw (BA_LIB)

NAME
ftw, nftw – walk a file tree

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>
#include <ftw.h>

int ftw(const char *path,
int (*fn) (const char *, const struct stat *, int), int depth);

int nftw(const char *path,
int (*fn)(const char *, const struct stat *, int, struct FTW*),
int depth, int flags);

DESCRIPTION
The function ftw() descends the directory hierarchy rooted in path. For each node
in the hierarchy, the function ftw() calls a user-defined function fn() passing it
three arguments. The first argument passed is a character pointer to a null-
terminated string containing the name of the node. The second argument passed to
fn() is a pointer to a stat structure [see stat(BA_OS)] containing information about
the node, and the third argument passed is an integer. Possible values of the
parameter, defined by the <ftw.h> header file, are FTW_F for a file, FTW_D for a
directory, FTW_DNR for a directory that cannot be read and FTW_NS for an object
for which stat() could not successfully be executed. If the integer is FTW_DNR,
descendants of that directory will not be processed. If the integer is FTW_NS, the
contents of the stat structure are undefined.

The function nftw() works similarly as ftw() except that it takes on an additional
argument flags. The flags field is used to specify:

FTW_PHYS Physical walk, does not follow symbolic links. Otherwise, nftw()
will follow links but will not walk down any path that crosses itself.

FTW_MOUNT The walk will not cross a mount point.

FTW_DEPTH All subdirectories will be visited before the directory itself.

FTW_CHDIR The walk will change to each directory before reading it.

The function nftw() calls fn() with four arguments at each file and directory. The
first argument is the pathname of the object, the second is a pointer to the stat
buffer, and the third is an integer giving additional information as follows:

FTW_F The object is a file.

FTW_D The object is a directory.

FTW_DP The object is a directory and subdirectories have been visited.

FTW_SL The object is a symbolic link.

FTW_DNR The object is a directory that cannot be read. fn() will not be called for
any of its descendants.

FTW_NS stat() failed on the object because of lack of appropriate permission.
The stat buffer passed to fn() is undefined. stat() failure for any
reason is considered an error and nftw() will return -1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/ftw

svid

Page: 347

ftw (BA_LIB) ftw (BA_LIB)

The fourth argument is a struct FTW which contains the following members:
int base;
int level;

The value of base is the offset into the pathname of the object; this pathname is
passed as the first argument to fn(). The value of level indicates depth relative to
the root of of the walk, where the root level has a value of zero.

The function ftw() visits a directory before visiting any of its descendants.

Both functions use one file descriptor for each level in the tree. The argument depth
limits the number of file descriptors so used. The argument depth should be in the
range of 1 to {OPEN_MAX}. The function ftw() will run more quickly if depth is at
least as large as the number of levels in the tree. When the function ftw() returns
it closes any file descriptors it has opened but not those opened by the user sup-
plied function fn().

RETURN VALUE
The tree traversal continues until the tree is exhausted, an invocation of fn() returns
a non-zero value or some error is detected within ftw() (such as an I/O error). If
the tree is exhausted, the function ftw() returns 0. If the function fn() returns a
non-zero value, the function ftw() stops its tree traversal and returns whatever
value was returned by the function fn().

If the function ftw() encounters an error other than EACCES (see FTW_DNR and
FTW_NS above), it returns –1 and errno is set to the type of error. The external
variable errno may contain the error values that are possible when a directory is
opened [see open(BA_OS)] or when the stat() routine is executed on a directory
or file.

ERRORS
Under the following conditions, the function ftw() fails and sets errno to:
EACCES if a component of the path prefix denies search permission or read per-

mission is denied for path, and fu() returns -1 and does not reset
errno.

ENAMETOOLONG
if the length of the path string exceeds {PATH_MAX}, or a pathname
component is longer than {NAME_MAX} while {_POSIX_NO_TRUNC} is
in effect.

ENOENT if the path argument points to the name of a file which does not exist or
points to an empty string.

ENOTDIR if a component of path is not a directory.

SEE ALSO
stat(BA_OS), malloc(BA_OS).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995
File: ba_lib/ftw

svid

Page: 348

fwprintf (BA_LIB) fwprintf (BA_LIB)

NAME
f w p r i n t f, w p r i n t f, s w p r i n t f – print formatted wide/multibyte character output

SYNOPSIS
i n c l u d e < w c h a r . h >

i n t f w p r i n t f (F I L E *strm, c o n s t w c h a r _ t *format, . . . / * args * /) ;

i n t s w p r i n t f (w c h a r _ t *s, s i z e _ t maxsize, c o n s t w c h a r _ t *format,
. . . / * args * /) ;

i n t w p r i n t f (c o n s t w c h a r _ t *format, . . . / * args * /) ;

DESCRIPTION
Each of these functions converts, formats, and outputs its args under control of the
wide character string format. Each function returns the number of wide/multibyte
characters transmitted (not including the terminating null wide character in the case
of s w p r i n t f) or a negative value if an output error was encountered.

f w p r i n t f places multibyte output on strm.

w p r i n t f places multibyte output on the standard output stream s t d o u t.

s w p r i n t f places wide character output, followed by a null wide character (\ 0), in
consecutive wide characters starting at s, limited to no more than maxsize wide char-
acters. If more than maxsize wide characters were requested, the output array will
contain exactly maxsize wide characters, with a null wide character being the last
(when maxsize is nonzero); a negative value is returned.

The format consists of zero or more ordinary wide characters (not %) which are
directly copied to the output, and zero or more conversion specifications, each of
which is introduced by the a % and results in the fetching of zero or more associated
args.

Each conversion specification takes the following general form and sequence:

% [pos$] [flags] [width] [.prec] [size]fmt

pos$ An optional entry, consisting of one or more decimal digits followed by a $
character, that specifies the number of the next arg to access. The first arg
(just after format) is numbered 1. If this entry is not present, the arg following
the most recently used arg will be accessed.

flags Zero or more wide characters that change the meaning of the conversion
specification. The flag characters and their meanings are:

– The result of the conversion will be left-justified within the field. (It
will be right-justified if this flag is not specified.)

+ The result of a signed conversion will always begin with a sign (+ or
–). (It will begin with a sign only when a negative value is converted
if this flag is not specified.)

space If the first wide character of a signed conversion is not a sign, or if a
signed conversion results in no wide characters, a space will be
prefixed to the result. If the space and + flags both appear, the space
flag will be ignored.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/fwprintf
svid

Page: 349

fwprintf (BA_LIB) fwprintf (BA_LIB)

The value is to be converted to an alternate form, depending on the
fmt wide character:

a, A, e, E, f, F, g, G
The result will contain a decimal point wide character, even if
no digits follow. (Normally, the decimal point wide character
is only present when fractional digits are produced.)

b, B A nonzero result will have 0 b or 0 B prefixed to it.

g, G Trailing zero digits will not be removed from the result, as
they normally are.

o The precision is increased (only when necessary) to force a
zero as the first digit.

x, X A nonzero result will have 0 x or 0 X prefixed to it.

For other conversions, the behavior is undefined.

0 For all numeric conversions (a, A, e, E, f, F, g, G, b, B, d, i, o, u, x and
X), leading zeros (following any indication of sign or base) are used to
pad to the field width; no space padding is performed. If the 0 and –
flags both appear, the 0 flag will be ignored. For the integer numeric
conversions (b, B, d, i, o, u, x and X), if a precision is specified, the 0
flag will be ignored. For other conversions, the behavior is
undefined.

´ (an apostrophe) The nonfractional portion of the result of a decimal
numeric conversion (d, i, u, f, F, g and G) will be grouped by the
current locale’s thousands’ separator wide character.

width An optional entry that consists of either one or more decimal digits, or an
asterisk (*), or an asterisk followed by one or more decimal digits and a $. It
specifies the minimum field width: If the converted value has fewer
wide/multibyte characters than the field width, it will be padded (with space
by default) on the left or right (see the above flags description) to the field
width.

.prec An optional entry that consists of a period (.) that precedes either zero or
more decimal digits, or an asterisk (*), or an asterisk followed by one or
more decimal digits and a $. It specifies a value that depends on the fmt
wide character:

a, A, e, E, f, F
It specifies the number of fractional digits (those after the decimal
point wide character). For the hexadecimal floating conversions (a
and A), the number of fractional digits is just sufficient to produce an
exact representation of the value (trailing zero digits are removed);
for the other conversions, the default number of fractional digits is 6.

b, B, d, i, o, u, x, X
It specifies the minimum number of digits to appear. The default
minimum number of digits is 1.

Page 2

FINAL COPY
June 15, 1995

File: ba_lib/fwprintf
svid

Page: 350

fwprintf (BA_LIB) fwprintf (BA_LIB)

g, G It specifies the maximum number of significant digits. The default
number of significant digits is 6.

s, S It specifies the maximum number of wide/multibyte characters to
output. The default is to take all elements up to the null terminator
(the entire string).

If only a period is specified, the precision is taken to be zero. For other
conversions, the behavior is undefined.

size An optional h, l (ell), or L that specifies other than the default argument
type, depending on the fmt character:

a, A, e, E, f, F, g, G
The default argument type is d o u b l e; an l is ignored for compatibil-
ity with the s c a n f functions (a f l o a t arg will have been promoted to
d o u b l e); an L causes a l o n g d o u b l e arg to be converted.

b, B, o, u, x, X
The default argument type is u n s i g n e d i n t; an h causes the
u n s i g n e d i n t arg to be narrowed to u n s i g n e d s h o r t before conver-
sion; an l causes an u n s i g n e d l o n g arg to be converted.

c The default argument type is i n t which is converted to a wide char-
acter as if by calling b t o w c before output; an l causes a w c h a r _ t arg
to be output. l c is a synonym for C.

d, i The default argument type is i n t; an h causes the i n t arg to be nar-
rowed to s h o r t before conversion; an l causes a l o n g arg to be con-
verted.

n The default argument type is pointer to i n t; an h changes it to be a
pointer to s h o r t, and l to pointer to l o n g.

s The default argument type is pointer the first element of a character
array; an l changes it to be a pointer to the first element of a w c h a r _ t
array. l s is a synonym for S.

If a size appears other than in these combinations, the behavior is undefined.

fmt A conversion wide character (described below) that shows the type of
conversion to be applied.

When a field width or precision includes an asterisk (*), an i n t arg supplies the
width or precision value, and is said to be ‘‘indirect’’. A negative indirect field
width value is taken as a – flag followed by a positive field width. A negative
indirect precision value will be taken as zero. When an indirect field width or preci-
sion includes a $, the decimal digits similarly specify the number of the arg that sup-
plies the field width or precision. Otherwise, an i n t arg following the most recently
used arg will be accessed for the indirect field width, or precision, or both, in that
order; the arg to be converted immediately follows these. Thus, if a conversion
specification includes pos$ as well as a $-less indirect field width, or precision, or
both, pos is taken to be the number of the i n t arg used for the first $-less indirec-
tion, not the arg to be converted.

Page 3

FINAL COPY
June 15, 1995

File: ba_lib/fwprintf
svid

Page: 351

fwprintf (BA_LIB) fwprintf (BA_LIB)

When numbered argument specifications are used, specifying the Nth argument
requires that all the preceding arguments, from the first to the (N–1)th, be specified
at least once, in a consistent way, in the format string.

The conversion wide characters and their meanings are:

a, A The floating arg is converted to hexadecimal floating notation in the style
[–] 0 xh.hhhp±d. The binary exponent of the converted value (d) is one or
more decimal digits. The number of fractional hexadecimal digits h is equal
to the precision. If the precision is missing, the result will have just enough
digits to represent the value exactly. The value is rounded when fewer frac-
tional digits is specified. If the precision is zero and the # flag is not
specified, no decimal point wide character appears. The single digit to the
left of the decimal point character is nonzero for normal values. The A
conversion specifier produces a value with 0 X and P instead of 0 x and p.

b, B, o, u, x, X
The unsigned integer arg is converted to unsigned binary (b and B),
unsigned octal (o), unsigned decimal (u), or unsigned hexadecimal notation
(x and X). The x conversion uses the letters a b c d e f and the X conversion
uses the letters A B C D E F. The precision specifies the minimum number of
digits to appear; if the value being converted can be represented in fewer
digits, it will be expanded with leading zeros. The default precision is 1.
The result of converting a zero value with a precision of zero is no wide
characters.

c The integer arg is converted to a wide character as if by calling b t o w c, and
the resulting wide character is output.

C, l c The wide character w c h a r _ t arg is output.

d, i The integer arg is converted to signed decimal. The precision specifies the
minimum number of digits to appear; if the value being converted can be
represented in fewer digits, it will be expanded with leading zeros. The
default precision is 1. The result of converting a zero value with a precision
of zero is no characters.

e, E The floating arg is converted to the style [–]d.ddde±dd, where there is one
digit before the decimal point character (which is nonzero if the argument is
nonzero) and the number of digits after it is equal to the precision. If the
precision is missing, it is taken as 6; if the precision is zero and the # flag is
not specified, no decimal point wide character appears. The value is
rounded to the appropriate number of digits. The E conversion wide char-
acter will produce a number with E instead of e introducing the exponent.
The exponent always contains at least two digits. If the value is zero, the
exponent is zero.

f, F The floating arg is converted to decimal notation in the style [–]ddd.ddd,
where the number of fractional digits is equal to the precision specification.
If the precision is missing, it is taken as 6; if the precision is zero and the #
flag is not specified, no decimal point wide character appears. If a decimal
point wide character appears, at least one digit appears before it. The value
is rounded to the appropriate number of digits.

Page 4

FINAL COPY
June 15, 1995

File: ba_lib/fwprintf
svid

Page: 352

fwprintf (BA_LIB) fwprintf (BA_LIB)

g, G The floating arg is converted in style e or f (or in style E or F in the case of a
G conversion wide character), with the precision specifying the number of
significant digits. If the precision is zero, it is taken as one. The style used
depends on the value converted; style e (or E) will be used only if the
exponent resulting from the conversion is less than –4 or greater than or
equal to the precision. Trailing zeros are removed from the fractional part
of the result; a decimal point wide character appears only if it is followed by
a digit.

n The arg is taken to be a pointer to an integer into which is written the
number of wide/multibyte characters output so far by this call. No argu-
ment is converted.

p The arg is taken to be a pointer to v o i d. The value of the pointer is con-
verted to an sequence of printable wide characters, which matches those
read by the % p conversion of the f w s c a n f(BA_LIB) functions.

s The arg is taken to be a pointer to the first element of an array of characters.
Multibyte characters from the array are output up to (but not including) a
terminating null character; if a precision is specified, no more than that
many wide/multibyte characters are output. If a precision is not specified
or is greater than the size of the array, the array must contain a terminating
null character. (A null pointer for arg will yield undefined results.)

S, l s The arg is taken to be a pointer to the first element of an array of w c h a r _ t.
Wide characters from the string are output until a null wide character is
encountered or the number of wide/multibyte characters given by the preci-
sion wide would be surpassed. If the precision specification is missing, it is
taken to be infinite. In no case will a partial wide/multibyte character be
output.

% Output a %; no argument is converted.

If the form of the conversion specification does not match any of the above, the
results of the conversion are undefined. Similarly, the results are undefined if there
are insufficient args for the format. If the format is exhausted while args remain, the
excess args are ignored.

If a floating-point value represents an infinity, the output is [±]inf, where inf is
i n f i n i t y or I N F I N I T Y when the field width or precision is at least 8 and i n f or
I N F otherwise, the uppercase versions used only for a capitol conversion wide char-
acter. Output of the sign follows the rules described above.

If a floating-point value has the internal representation for a NaN (not-a-number),
the output is [±]nan[(m)]. Depending on the conversion character, nan is similarly
either n a n or N A N. If the represented NaN matches the architecture’s default, no
(m) will be output. Otherwise m represents the bits from the significand in hexade-
cimal with a b c d e f or A B C D E F used, depending on the case of the conversion wide
character. Output of the sign follows the rules described above.

Otherwise, the locale’s decimal point wide character will be used to introduce the
fractional digits of a floating-point value.

Page 5

FINAL COPY
June 15, 1995

File: ba_lib/fwprintf
svid

Page: 353

fwprintf (BA_LIB) fwprintf (BA_LIB)

A nonexistent or small field width does not cause truncation of a field; if the result
of a conversion is wider than the field width, the field is expanded to contain the
conversion result. Multibyte characters generated on streams (s t d o u t or strm) are
printed as if the p u t c function had been called repeatedly.

Errors
These functions return the number of wide/multibyte characters transmitted (not
counting the terminating null wide character for s w p r i n t f and v s w p r i n t f), or
return a negative value if an error was encountered.

USAGE
To print a date and time in the form ‘‘Sunday, July 3, 10:02,’’ where w e e k d a y and
m o n t h are pointers to null-terminated strings:

w p r i n t f (L " % s , % s % i , % d : % . 2 d " ,
w e e k d a y , m o n t h , d a y , h o u r , m i n) ;

To print π to 5 decimal places:

w p r i n t f (L " p i = % . 5 f " , 4 * a t a n (1 . 0)) ;

The following two calls to w p r i n t f both produce the same result of
1 0 1 0 0 0 3 0 0 1 0:

w p r i n t f (L " % d % 1 $ d % . * d % 1 $ d " , 1 0 , 5 , 3 0 0) ;
w p r i n t f (L " % d % 1 $ d % 3 $. * 2 $ d % 1 $ d " , 1 0 , 5 , 3 0 0) ;

SEE ALSO
printf(BA_LIB), putc(BA_LIB), scanf(BA_LIB) setlocale(BA_LIB), stdio(BA_LIB),
write(BA_OS)

LEVEL
Level 1.

Page 6

FINAL COPY
June 15, 1995

File: ba_lib/fwprintf
svid

Page: 354

fwscanf (BA_LIB) fwscanf (BA_LIB)

NAME
f w s c a n f, w s c a n f, s w s c a n f – convert formatted wide/multibyte character input

SYNOPSIS
#include <wchar.h>

int fwscanf(FILE *stream, const wchar_t ∗format, ...);

int wscanf(const wchar_t ∗format, ...);

int swscanf(const wchar_t *s, const wchar_t *format, ...);

DESCRIPTION
f w s c a n f reads input from the stream pointed to by s t r e a m, under control of the
wide string pointed to by f o r m a t that specifies admissible input sequences and
how they are converted for input. If there are insufficient arguments for the format,
the behavior is undefined. If the format is exhausted while the arguments remain,
the excess arguments are evaluated but are otherwise ignored.

w s c a n f reads input to the stream in the same manner as f w s c a n f, with the argu-
ment s t d i n interposed before the arguments to w s c a n f.

s w s c a n f reads input to the stream in the same manner as f w s c a n f, except that the
argument s specifies a wide string from which the generated input is read, rather
than converting multibyte characters from a stream. Also, the detection of wide or
multibyte encoding errors may differ. If the end of the wide string is reached, it
behaves the same as when an end-of-file is encountered for f w s c a n f. If copying
takes place between objects that overlap, the behavior is undefined.

The format is composed of zero or more directives which include:

One or more white space wide characters

Ordinary wide characters (not % or white space)

Conversion specifications (all wide characters which are members of the
basic character set).

Each conversion specification is introduced by the wide character % and followed
by:

An optional assignment-suppressing wide character *.

An optional nonzero decimal integer that specifies the maximum field
width.

An optional h, l or L indicating the size of the receiving object. The conver-
sion specifiers d, i, and n are preceded by h if the corresponding argument
is a pointer to s h o r t i n t instead of a pointer to i n t, or by l if it is a pointer
to l o n g i n t. The conversion specifiers b, o, u and x are preceded by h if the
corresponding argument is a pointer to u n s i g n e d s h o r t i n t instead of a
pointer to u n s i g n e d i n t, or by l if it is a pointer to an u n s i g n e d l o n g
i n t. The conversion specifiers a, e, f and g are preceded by l if the
corresponding argument is a pointer to d o u b l e rather than a pointer to
f l o a t or by L if it is a pointer to l o n g d o u b l e. The conversion specifiers c,
s and [. . .] are preceded by l if the corresponding argument is a pointer to
w c h a r _ t instead of a pointer to c h a r a c t e r. l c and l s are synonyms for C
and S respectively. If an h, l or L appears with any other conversion

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/fwscanf
svid

Page: 355

fwscanf (BA_LIB) fwscanf (BA_LIB)

specifier, the behavior is undefined.

A wide character that specifies the type of conversion to be applied.

f w s c a n f executes each directive of the format in turn. If a directive fails, the func-
tion returns. Failures can be input failures if an encoding error occurs or if input
characters are unavailable. Failures can also be matching failures if there is inap-
propriate input.

A directive comprised of white space wide characters is executed by reading input
up to the first non white-space character which remains unread, or until no more
wide characters can be read.

A directive that is an ordinary wide character is executed by reading the next wide
character of the stream. If the wide character differs from the directive, the direc-
tive fails, and the differing and next wide characters remain unread.

A directive that is a conversion specification defines a set of matching input
sequences, as described below for each specifier. A conversion specification is exe-
cuted as follows:

1 Input white-space wide characters, as specified by the i s w s p a c e function,
are skipped unless the specification includes a c or n specifier.

2 An input item is read from the stream unless the specification includes an n
specifier. An input item is defined as the longest matching sequence of
input wide characters unless that exceeds a specified field width. The first
wide character, if any, after the input item remains unread. If the length of
the input item is zero, the execution of the directive fails. This condition is a
matching failure, unless an error prevented input from the stream, which
causes an input failure.

3 Except for a % specifier, the input item is converted to a type appropriate to
the conversion specifier. This also applies to an n directive for the count of
wide characters. If the input item is not a matching sequence, the execution
of the directive fails. This constitutes a matching failure. Unless assignment
suppression is indicated by a *, the result of the conversion is placed in the
object pointed to by the first argument following the f o r m a t argument that
has not already received a conversion result. If this object does not have an
appropriate type, or if the result of the conversion cannot be represented in
the space provided, the behavior is undefined.

The following section lists the valid conversion specifiers and their meanings:

d Matches an optionally signed decimal integer whose format is the same as
expected for the subject sequence of the w c s t o l function with the value 1 0
for the b a s e argument. The corresponding argument is a pointer to an
integer.

i Matches an optionally signed integer whose format is the same as expected
for the subject sequence of the w c s t o l function with the value 0 for the
b a s e argument. The corresponding argument is a pointer to an integer.

Page 2

FINAL COPY
June 15, 1995

File: ba_lib/fwscanf
svid

Page: 356

fwscanf (BA_LIB) fwscanf (BA_LIB)

b Matches an optionally signed binary integer whose format is the same as
expected for the subject sequence of the w c s t o u l function with the value 2
for the b a s e argument. The corresponding argument is a pointer to an
integer.

o Matches an optionally signed octal integer whose format is the same as
expected for the subject sequence of the w c s t o u l function with the value 8
for the b a s e argument. The corresponding argument is a pointer to an
integer.

u Matches an optionally signed decimal integer whose format is the same as
expected for the subject sequence of the w c s t o u l function with the value 1 0
for the b a s e argument. The corresponding argument is a pointer to an
unsigned integer.

x Matches an optionally signed hexadecimal integer whose format is the same
as expected for the subject sequence of the w c s t o u l function with the value
1 6 for the b a s e argument. The corresponding argument is a pointer to an
unsigned integer.

a , e , f , g
Matches an optionally floating point number whose format is the same as
expected for the subject sequence of the w c s t o d function. The correspond-
ing argument is a pointer to a floating point number.

s Matches a sequence of non-white-space wide/multibyte characters. The
corresponding argument is a pointer to the initial element of an array of
w c h a r _ t type large enough to accept the sequence and a terminating null
wide character that is added automatically.

c Matches a sequence of wide/multibyte characters of the number specified
by the field width, or 1 if no field width is present in the directive. The
corresponding argument is a pointer to the initial element of an array of
w c h a r _ t type large enough to accept the sequence. No null wide character
is added.

C , l c Matches a sequence of wide/multibyte characters of the number specified
by the field width (1 if no width is present in the directive). The correspond-
ing argument should be a pointer to the initial element of a w c h a r _ t array
large enough to accept the sequence of wide characters. No null wide char-
acter is added. The normal skip over white space is suppressed.

S , l s Matches a sequence of wide/multibyte characters, optionally delimited by
white-space wide/multibyte characters. The corresponding argument
should be a pointer to the initial element of a w c h a r _ t array large enough to
accept the sequence of wide characters and a terminating null wide charac-
ter, which will be added automatically.

p Matches an implementation-defined set of sequences that are the same as
the set of sequences that are produced by the % p conversion of f w p r i n t f.
The corresponding argument is a pointer to v o i d. The interpretation of the
input is implementation defined. If the input item is a value converted ear-
lier during the same program execution, the pointer that results compares
equally to that value. Otherwise the behavior of % p is undefined.

Page 3

FINAL COPY
June 15, 1995

File: ba_lib/fwscanf
svid

Page: 357

fwscanf (BA_LIB) fwscanf (BA_LIB)

n No input is consumed. The corresponding argument is a pointer to an
integer into which is written the number of wide/multibyte characters read
so far from the input stream written into it. Execution of a % n directive does
not increment the assignment count returned at the completion of execution
of this function.

[. . .] Matches a nonempty sequence of wide/multibyte characters from a set of
expected wide characters (the scanset) as designated by the wide characters
between the brackets (the scanlist), see below. The corresponding argument
should be a pointer to the initial element of a character array large enough
to accept the generated multibyte sequence and a terminating null character,
which will be added automatically.

l [. . .]
Matches a nonempty sequence of wide/multibyte characters from a set of
expected wide characters (the scanset) as designated by the wide characters
between the brackets (the scanlist), see below. The corresponding argument
should be a pointer to the initial element of a w c h a r _ t array large enough to
accept the sequence of wide characters and a terminating null wide charac-
ter, which will be added automatically.

% Matches a single %. No conversion or assignment occurs. The complete
conversion specification is % %.

For [. . .] and l [. . .], the conversion specifier includes all subsequent characters
in the the format string, up to and including the matching right bracket (]). The
characters between the brackets (the scanlist) comprise the scanlist, unless the char-
acter after the left braket is a circumflex (ˆ), in which case the scanlist contains all
characters that do not appear in the scanlist and the right bracket. If the conversion
specifier begins with [] or [̂], the right bracket character is in the scanlist and the
next character is the matching right bracket that ends the specification; otherwise
the first right bracket character is the one that ends the specification.

If a conversion specification is invalid, the behavior is undefined. The conversion
specifiers A , E , G and X are also valid and behave the same as a , e , g and x
respectively.

Errors
f w s c a n f, w s c a n f and s w s c a n f return the number of wide characters transmitted or
return a negative value if an error was encountered.

SEE ALSO
printf(BA_LIB), putc(BA_LIB), scanf(BA_LIB), setlocale(BA_LIB), stdio(BA_LIB),
write(BA_OS)

LEVEL
Level 1.

Page 4

FINAL COPY
June 15, 1995

File: ba_lib/fwscanf
svid

Page: 358

get_t_errno (BA_LIB) get_t_errno (BA_LIB)

NAME
g e t _ t _ e r r n o , s e t _ t _ e r r n o – get/set t_errno value

SYNOPSIS
i n c l u d e < x t i . h >

i n t g e t _ t _ e r r n o (v o i d)

i n t s e t _ t _ e r r n o (i n t)

DESCRIPTION
The g e t _ t _ e r r n o and s e t _ t _ e r r n o functions are used in TLI/XTI multi-threaded
applications to set and return the value in t _ e r r n o.

These functions are required by applications compiled with the _ R E E N T R A N T flag if
the user needs to set the thread-specific version of t _ e r r n o.

USAGE
While g e t _ t _ e r r n o and s e t _ t _ e r r n o are designed for use in multi-threaded
applications, they are available for used in non-reentrant code and may be incor-
porated if a need is anticipated to convert to reentrant code later on.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/get_t_errno
svid

Page: 359

getc (BA_LIB) getc (BA_LIB)

NAME
g e t c, g e t c h a r, f g e t c, g e t w – get character or word from a stream

SYNOPSIS
i n c l u d e < s t d i o . h >

i n t g e t c (F I L E *stream) ;

i n t g e t c h a r (v o i d) ;

i n t f g e t c (F I L E *stream) ;

i n t g e t w (F I L E *stream) ;

DESCRIPTION
g e t c returns the next character (that is, byte) from the named input stream as an
u n s i g n e d c h a r converted to an i n t. It also moves the file pointer, if defined,
ahead one character in stream . g e t c h a r is defined as g e t c (s t d i n). g e t c and
g e t c h a r are macros.

f g e t c behaves like g e t c, but is a function rather than a macro. f g e t c runs more
slowly than g e t c, but it takes less space per invocation and its name can be passed
as an argument to a function.

g e t w returns the next word (that is, integer) from the named input stream. g e t w
increments the associated file pointer, if defined, to point to the next word. The size
of a word is the size of an integer and varies from machine to machine. g e t w
assumes no special alignment in the file.

Errors
If the stream is at E O F, the E O F indicator for the stream is set and g e t c returns E O F. If
a read error occurs, the error indicator for the stream is set, g e t c returns E O F and
sets e r r n o to identify the error.

Under the following conditions, the functions g e t c, g e t c h a r, f g e t c and g e t w fail
and set e r r n o to:

E A G A I N if the O _ N O N B L O C K flag is set for the underlying file descriptor and the
process would have blocked in the read operation.

E B A D F if the underlying file descriptor is not a valid file descriptor open for
reading.

E I N T R if a signal was caught during the g e t c, g e t c h a r, f g e t c or g e t w call,
and no data was transferred.

E I O if a physical I/O error has occurred, or the process is in a background
process group and is attempting to read from its controlling terminal,
and either the process is ignoring or blocking the S I G T T I N signal or the
process group of the process is orphaned.

NOTICES
If the integer value returned by g e t c, g e t c h a r, or f g e t c is stored into a character
variable and then compared against the integer constant E O F, the comparison may
never succeed, because sign-extension of a character on widening to integer is
implementation dependent.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/getc
svid

Page: 360

getc (BA_LIB) getc (BA_LIB)

The macro version of g e t c evaluates a stream argument more than once and may
treat side effects incorrectly. In particular, g e t c (* f + +) does not work sensibly.
Use f g e t c instead.

Because of possible differences in word length and byte ordering, files written using
p u t w are implementation dependent, and may not be read using g e t w on a different
processor.

Functions exist for all the above-defined macros. To get the function form, the
macro name must be undefined (for example, # u n d e f g e t c).

SEE ALSO
f c l o s e(BA_OS), f e r r o r(BA_OS), f o p e n(BA_OS), f r e a d(BA_OS), g e t s(BA_LIB),
p u t c(BA_LIB), s c a n f(BA_LIB), s t d i o(BA_LIB), u n g e t c(BA_LIB)

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ba_lib/getc
svid

Page: 361

getdate (BA_LIB) getdate (BA_LIB)

NAME
getdate – convert user format date and time

SYNOPSIS
#include <time.h>

struct tm *getdate(char *string);

extern int getdate_err;

DESCRIPTION
The routine getdate() converts user definable date and/or time specifications
pointed to by string, into a struct tm. The structure declaration is in the
<time.h> header file [see ctime(BA_LIB)].

User supplied templates are used to parse and interpret the input string. The tem-
plates are text files created by the user DATEMSK. The DATEMSK variable should be
set to indicate the full pathname of the template file. The first line in the template
that matches the input specification is used for interpretation and conversion into
the internal time format. Upon successful completion, the function getdate()
returns a pointer to a struct tm; otherwise, it returns NULL and the external vari-
able getdate_err is set to indicate the error.

The following field descriptors are supported:
%% same as %
%a abbreviated weekday name
%A full weekday name
%b abbreviated month name
%B full month name
%c locale’s appropriate date and time representation
%d day of month (01 - 31; the leading 0 is optional)
%e same as %d
%D date as %m/%d/%y
%h abbreviated month name
%H hour (00 - 23)
%I hour (01 - 12)
%m month number (01 - 12)
%M minute (00 - 59)
%n same as \n
%p locale’s equivalent of either AM or PM
%r time as %I:%M:%S %p
%R time as %H:%M
%S seconds (00 - 59)
%t same as tab
%T time as %H:%M:%S
%w weekday number (Sunday = 0 - 6)
%x locale’s appropriate date representation
%X locale’s appropriate time representation
%y year within century (00 - 99)
%Y year as ccyy (e.g. 1986)

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/getdate
svid

Page: 362

getdate (BA_LIB) getdate (BA_LIB)

%Z time zone name or no characters if no time zone exists If the time zone
supplied by %Z is not the same as the time zone getdate expects an
invalid input specification error will result. Getdate calculates an
expected time zone based on information supplied to the interface
(such as the hour, day, and month).

The match between the template and input specification performed by getdate() is
case insensitive.

The month and weekday names can consist of any combination of upper and lower
case letters. The user can request that the input date or time specification be in a
specific language by setting the LC_TIME category [see setlocale(BA_OS)].

Leading 0’s are not necessary for the descriptors that allow leading 0’s. However,
at most two digits are allowed for those descriptors, including leading 0’s. Extra
whitespace in either the template file or in string is ignored.

The field descriptors %c, %x, and %X will not be supported if they include unsup-
ported field descriptors.

The following example shows the possible contents of a template:
%m
%A %B %d, %Y, %H:%M:%S
%A
%B
%m/%d/%y %I %p
%d,%m,%Y %H:%M
at %A the %dst of %B in %Y
run job at %I %p,%B %dnd
%A den %d. %B %Y %H.%M Uhr

The following are examples of valid input specifications for the above template:
getdate("10/1/87 4 PM");
getdate("Friday");
getdate("Friday September 18, 1987, 10:30:30");
getdate("24,9,1986 10:30");
getdate("at monday the 1st of december in 1986");
getdate("run job at 3 PM, december 2nd");

If the LC_TIME category is set to a German locale that includes freitag as a
weekday name and oktober as a month name, the following would be valid:

getdate("freitag den 10. oktober 1986 10.30 Uhr");

The following examples shows how local date and time specification can be defined
in the template.

_ ___
INVOCATION LINE IN TEMPLATE_ ___

getdate("11/27/86") %m/%d/%y
getdate("27.11.86") %d.%m.%y
getdate("86-11-27") %y-%m-%d
getdate("Friday 12:00:00") %A %H:%M:%S_ ___

Page 2

FINAL COPY
June 15, 1995

File: ba_lib/getdate
svid

Page: 363

getdate (BA_LIB) getdate (BA_LIB)

The following rules apply for converting the input specification into the internal
format:

1 If only the weekday is given, today is assumed if the given day is equal to the
current day and next week if it is less,

2 If only the month is given, the current month is assumed if the given month is
equal to the current month and next year if it is less and no year is given (the
first day of month is assumed if no day is given),

3 If no hour, minute and second are given the current hour, minute and second
are assumed,

4 If no date is given, today is assumed if the given hour is greater than the
current hour and tomorrow is assumed if it is less.

The following examples help to illustrate the above rules assuming that the current
date is Mon Sep 22 12:19:47 EDT 1986 and the LC_TIME category is set to
the default "C" locale.

_ __
LINE IN

INPUT TEMPLATE DATE_ __
Mon %a Mon Sep 22 12:19:47 EDT 1986
Sun %a Sun Sep 28 12:19:47 EDT 1986
Fri %a Fri Sep 26 12:19:47 EDT 1986
September %B Mon Sep 1 12:19:47 EDT 1986
January %B Thu Jan 1 12:19:47 EST 1987
December %B Mon Dec 1 12:19:47 EST 1986
Sep Mon %b %a Mon Sep 1 12:19:47 EDT 1986
Jan Fri %b %a Fri Jan 2 12:19:47 EST 1987
Dec Mon %b %a Mon Dec 1 12:19:47 EST 1986
Jan Wed 1989 %b %a %Y Wed Jan 4 12:19:47 EST 1989
Fri 9 %a %H Fri Sep 26 09:00:00 EDT 1986
Feb 10:30 %b %H:%S Sun Feb 1 10:00:30 EST 1987
10:30 %H:%M Tue Sep 23 10:30:00 EDT 1986
13:30 %H:%M Mon Sep 22 13:30:00 EDT 1986_ __

ERRORS
Upon failure, NULL is returned and the variable getdate_err is set to indicate the
error.

The following is a complete list of the getdate_err settings and their correspond-
ing descriptions.

1 the DATEMSK environment variable is null or undefined,
2 the template file cannot be opened for reading,
3 failed to get file status information,
4 the template file is not a regular file,
5 an error is encountered while reading the template file,
6 memory allocation failed (not enough memory available),
7 there is no line in the template that matches the input,

Page 3

FINAL COPY
June 15, 1995

File: ba_lib/getdate
svid

Page: 364

getdate (BA_LIB) getdate (BA_LIB)

8 invalid input specification Example: February 31 or a time is specified
that can not be represented in a time_t (representing the time in
seconds since 00:00:00 UTC, January 1, 1970)

SEE ALSO
ctime(BA_LIB), ctype(BA_LIB), setlocale(BA_OS), strftime(BA_LIB), time(BA_OS).

LEVEL
Level 2, September 30, 1993. Replaced by strptime(BA_LIB).

Page 4

FINAL COPY
June 15, 1995

File: ba_lib/getdate
svid

Page: 365

getenv (BA_LIB) getenv (BA_LIB)

NAME
getenv – return value for environment name

SYNOPSIS
#include <unistd.h>

#include <stdlib.h>

char *getenv(const char *name);

DESCRIPTION
The function getenv() searches the environment for a string of the form
name=value and returns a pointer to the value in the current environment if such a
string is present. Otherwise, NULL is returned.

SEE ALSO
envvar(BA_ENV), exec(BA_OS), putenv(BA_LIB), system(BA_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/getenv
svid

Page: 366

getgrent (BA_LIB) getgrent (BA_LIB)

NAME
g e t g r e n t, g e t g r g i d, g e t g r n a m, s e t g r e n t, e n d g r e n t, f g e t g r e n t – get group file
entry

SYNOPSIS
i n c l u d e < g r p . h >

s t r u c t g r o u p ∗g e t g r e n t (v o i d) ;
s t r u c t g r o u p ∗g e t g r g i d (g i d _ t gid) ;

s t r u c t g r o u p ∗g e t g r n a m (c o n s t c h a r ∗name) ;

v o i d s e t g r e n t (v o i d) ;

v o i d e n d g r e n t (v o i d) ;

s t r u c t g r o u p ∗f g e t g r e n t (F I L E ∗f) ;

DESCRIPTION
g e t g r e n t, g e t g r g i d, and g e t g r n a m each returns a pointer to a structure contain-
ing the broken-out fields of a line in the / e t c / g r o u p file. Each line contains a
‘‘group’’ structure, defined in the g r p . h header file with the following members:

c h a r ∗g r _ n a m e ; /∗ t h e n a m e o f t h e g r o u p ∗/
g i d _ t g r _ g i d ; /∗ t h e n u m e r i c a l g r o u p I D ∗/
c h a r ∗ ∗g r _ m e m ; /∗ v e c t o r o f p o i n t e r s t o m e m b e r n a m e s ∗/

When first called, g e t g r e n t returns a pointer to the first group structure in the file;
thereafter, it returns a pointer to the next group structure in the file; so, successive
calls may be used to search the entire file. g e t g r g i d searches from the beginning of
the file until a numerical group id matching gid is found and returns a pointer to
the particular structure in which it was found.

g e t g r n a m searches from the beginning of the file until a group name matching name
is found and returns a pointer to the particular structure in which it was found. If
an end-of-file or an error is encountered on reading, these functions return a null
pointer.

A call to s e t g r e n t has the effect of rewinding the group file to allow repeated
searches. e n d g r e n t may be called to close the group file when processing is com-
plete.

f g e t g r e n t returns a pointer to the next group structure in the stream f , which
matches the format of / e t c / g r o u p.

Errors
g e t g r e n t, g e t g r g i d, g e t g r n a m, and f g e t g r e n t return a null pointer on E O F or
error. If a bad entry is encountered, e r r n o is set to E I N V A L. If the functions are
unable to allocate sufficient space for the entry, e r r n o is set to E N O M E M.

SEE ALSO
g e t l o g i n (BA_LIB), g e t p w e n t (BA_LIB),

NOTICES
All information is contained in a static area, so it must be copied if it is to be saved.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/getgrent
svid

Page: 367

getgrent (BA_LIB) getgrent (BA_LIB)

LEVEL
Level 2.

Page 2

FINAL COPY
June 15, 1995

File: ba_lib/getgrent
svid

Page: 368

getlogin (BA_LIB) getlogin (BA_LIB)

NAME
g e t l o g i n – get login name

SYNOPSIS
i n c l u d e < s t d l i b . h >

c h a r ∗g e t l o g i n (v o i d) ;
DESCRIPTION

g e t l o g i n returns a pointer to the login name It may be used in conjunction with
g e t p w n a m to locate the correct password file entry when the same user id is shared
by several login names.

If g e t l o g i n is called within a process that is not attached to a terminal, it returns a
null pointer. The correct procedure for determining the login name is to call
c u s e r i d, or to call g e t l o g i n and if it fails to call g e t p w u i d.

SEE ALSO
c u s e r i d(BA_LIB), g e t g r e n t(BA_LIB), g e t p w e n t(BA_LIB)

LEVEL
Level 1.

NOTICES
The return values point to static data whose content is overwritten by each call.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/getlogin
svid

Page: 369

getpass (SD_LIB) getpass (SD_LIB)

NAME
g e t p a s s – read a password

SYNOPSIS
i n c l u d e < u n i s t d . h >

c h a r ∗g e t p a s s (c o n s t c h a r ∗prompt) ;

DESCRIPTION
g e t p a s s reads up to a newline or E O F from the file / d e v / t t y, after prompting on
the standard error output with the null-terminated string prompt and disabling
echoing. A pointer is returned to a null-terminated string of at most 8 characters. If
/ d e v / t t y cannot be opened, a null pointer is returned. An interrupt will terminate
input and send an interrupt signal to the calling program before returning.

Files
/ d e v / t t y

NOTICES
The return value of g e t p a s s points to static data whose content is overwritten by
each call.

Use the reentrant function g e t p a s s _ r for multi-threaded applications.

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/getpass
svid

Page: 370

getopt (BA_LIB) getopt (BA_LIB)

NAME
getopt – get option letter from argument vector

SYNOPSIS
#include <stdio.h>

int getopt(int argc, char *const *argv, const char *optstring);

extern char *optarg;
extern int optind, opterr, optopt;

DESCRIPTION
The function getopt() is a command-line parser. It returns the next option letter
in argv that matches a letter in optstring.

The function getopt() places in optind the argv index of the next argument to
be processed. The external variable optind is initialized to 1 before the first call to
the function getopt().

The argument optstring is a string of recognized option letters; if a letter is followed
by a colon, the option is expected to have an argument that may be separated from
it by white space.

The variable optarg is set to point to the start of the option argument on return
from getopt().

When all options have been processed (i.e., up to the first non-option argument),
the function getopt() returns EOF. The special option –– may be used to delimit
the end of the options; EOF will be returned and –– will be skipped.

The following rules comprise the System V standard for command-line syntax:

RULE 1: Command names must be between two and nine characters.

RULE 2: Command names must include lower-case letters and digits only.

RULE 3: Option names must be a single character in length.

RULE 4: All options must be delimited by the – character.

RULE 5: Options with no arguments may be grouped behind one delimiter.

RULE 6: The first option-argument following an option may be preceded by
white space.

RULE 7: Option arguments cannot be optional.

RULE 8: Groups of option arguments following an option must be separated by
commas or separated by white space and quoted.

RULE 9: All options must precede operands on the command line.

RULE 10: The characters –– may be used to delimit the end of the options.

RULE 11: The order of options relative to one another should not matter.

RULE 12: The order of operands may matter and position-related interpretations
should be determined on a command-specific basis.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/getopt
svid

Page: 371

getopt (BA_LIB) getopt (BA_LIB)

RULE 13: The – character preceded and followed by white space should be used
only to mean standard input.

RETURN VALUE
The function getopt() returns a question mark (?) when it encounters an option
letter not included in optstring; it also prints an error message on stderr if opterr
is set to non-0 (opterr is initialized to 1). The value of the character that caused
the error is in optopt. The message is printed in the standard error format.
getopt() supports localized output messages. If the appropriate translated sys-
tem messages are installed on the system, they are selected by the latest call to set-
locale() (using the LC_ALL or LC_MESSAGES categories).

The label defined by a call to setlabel() will be used if available; otherwise, the
name of the utility (argv[0]) will be used.

EXAMPLE
The following code fragment shows how one might process the options and argu-
ments for a command that takes: mutually exclusive options a and b, exactly one of
which is required; an optional option i which takes an option-argument; and at
least two arguments.

main(int argc, char *argv[]

{

int opt, aflg=0, bflg=0, iflg=0, errflg=0, retval ;

char *cmdname, *ifile, *ofile ;

FILE *infile, *outfile ;

extern int optind, opterr, errno ;

extern char *optarg ;

setlabel("UX:example");

cmdname = argv[0] ;

opterr = 0 ; /* inhibit getopt err msg */

while ((opt=getopt(argc,argv,"abi:")) != EOF) {

switch (opt) {

case ’a’ :

aflg += 1 ; break ;

case ’b’ :

bflg += 1 ; break ;

case ’i’ :

iflg += 1 ; ifile = optarg ; break ;

default : /* includes ’?’ case */

errflg += 1 ; break ;

}

}

if (errflg>0 || aflg+bflg!=1 || iflg>1 || argc-optind<2) {

usage_err_exit(cmdname) ;

}

if (iflg == 0) {

infile = stdin ;

} else if ((infile=fopen(ifile,"r")) == NULL) {

open_err_exit(cmdname,ifile,errno) ;

}

Page 2

FINAL COPY
June 15, 1995

File: ba_lib/getopt
svid

Page: 372

getopt (BA_LIB) getopt (BA_LIB)

(continues)
for (; optind<argc ; optind+=1) {

if ((outfile=fopen(ofile=argv[optind],"r+")) == NULL) {

open_err_exit(cmdname,ofile,errno) ;

}

if ((retval=do_work(aflg,bflg,infile,outfile)) != 0) {

work_err_exit(cmdname,ofile,retval) ;

}

if (fclose(outfile) != 0) {

close_err_exit(cmdname,ofile,errno) ;

}

}

exit(0) ;

}

SEE ALSO
pfmt(BA_LIB) setlabel(BA_LIB)

LEVEL
Level 1.

Page 3

FINAL COPY
June 15, 1995

File: ba_lib/getopt
svid

Page: 373

getpwent (BA_LIB) getpwent (BA_LIB)

NAME
g e t p w e n t, g e t p w u i d, g e t p w n a m, s e t p w e n t, e n d p w e n t, f g e t p w e n t – manipulate
password file entry

SYNOPSIS
i n c l u d e < p w d . h >

i n c l u d e < s t d i o . h >

s t r u c t p a s s w d ∗g e t p w e n t (v o i d) ;
s t r u c t p a s s w d ∗g e t p w u i d (u i d _ t uid) ;

s t r u c t p a s s w d ∗g e t p w n a m (c o n s t c h a r ∗name) ;

v o i d s e t p w e n t (v o i d) ;

v o i d e n d p w e n t (v o i d) ;

s t r u c t p a s s w d ∗f g e t p w e n t (F I L E ∗f) ;

DESCRIPTION
g e t p w e n t, g e t p w u i d, and g e t p w n a m each returns a pointer to an object with the fol-
lowing structure containing the broken-out fields of a line in the / e t c / p a s s w d file.
Each line in the file contains a p a s s w d structure, declared in the p w d . h header file:

s t r u c t p a s s w d {
c h a r ∗p w _ n a m e ;
c h a r ∗p w _ p a s s w d ;
u i d _ t p w _ u i d ;
g i d _ t p w _ g i d ;
c h a r ∗p w _ d i r ;
c h a r ∗p w _ s h e l l ;

} ;

When first called, g e t p w e n t returns a pointer to the first p a s s w d structure in the
file; thereafter, it returns a pointer to the next p a s s w d structure in the file. Thus suc-
cessive calls can be used to search the entire file. g e t p w u i d searches from the
beginning of the file until a numerical user ID matching uid is found and returns a
pointer to the particular structure in which it was found. g e t p w n a m searches from
the beginning of the file until a login name matching name is found, and returns a
pointer to the particular structure in which it was found. If an end-of-file or an
error is encountered on reading, these functions return a null pointer.

A call to s e t p w e n t has the effect of rewinding the password file to allow repeated
searches. e n d p w e n t may be called to close the password file when processing is
complete.

f g e t p w e n t returns a pointer to the next p a s s w d structure in the stream f , which
matches the format of / e t c / p a s s w d.

Files
/ e t c / p a s s w d

Return Values
g e t p w e n t, g e t p w u i d, g e t p w n a m, and f g e t p w e n t return a null pointer on E O F or
error.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/getpwent
svid

Page: 374

gets (BA_LIB) gets (BA_LIB)

SEE ALSO
ferror(BA_OS), fopen(BA_OS), fread(BA_OS), getc(BA_LIB), puts(BA_LIB),
scanf(BA_LIB).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ba_lib/gets
svid

Page: 377

getsubopt (BA_LIB) getsubopt (BA_LIB)

NAME
getsubopt – parse sub options from a string.

SYNOPSIS
int getsubopt(char **optionp, char *tokens[], char **valuep);

DESCRIPTION
The function getsubopt() parses suboptions in a flag argument that were initially
parsed by getopt() [see getopt(BA_LIB)]. These suboptions are separated by
commas and may consist of either a single token, or a token-value pair separated by
an equal sign. Because commas delimit suboptions in the option string, they are not
allowed to be part of the suboption or the value of a suboption. Similarly, because
the equal sign separates a token from its value, a token must not contain an equal
sign. An example command that uses this syntax is mount. mount allows
parameters to be specified with the -o switch as follows :

mount –o rw,hard,bg,wsize=1024 speed:/usr /usr

In this example there are four suboptions: rw, hard, bg, and wsize, the last of
which has an associated value of 1024.

getsubopt() takes the address of a pointer to the option string, a vector of possi-
ble tokens, and the address of a value string pointer. It returns the index of the
token that matched the suboption in the input string or –1 if there was no match. If
the option string at *optionp contains only one suboption, getsubopt() updates
*optionp to point to the null at the end of the string, otherwise it isolates the subop-
tion by replacing the comma separator with a null, and updates *optionp to point to
the start of the next suboption. If the suboption has an associated value,
getsubopt() updates *valuep to point to the value’s first character. Otherwise it
sets *valuep to NULL.

The token vector is organized as a series of pointers to NULL-terminated strings.
The end of the token vector is identified by NULL.

When getsubopt() returns, if *valuep is not NULL then the suboption processed
included a value. The calling program may use this information to determine if the
presence or lack of a value for this subobtion is an error.

Additionally, when getsubopt() fails to match the suboption with the tokens in
the tokens array, the calling program should decide if this is an error, or if the
unrecognized option should be passed on to another program.

EXAMPLE
The following code fragment shows how options may be processed to the mount
command using getsubopt().

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/getsubopt
svid

Page: 378

getsubopt (BA_LIB) getsubopt (BA_LIB)

char *myopts[] = {

#define READONLY 0

"ro",

#define READWRITE 1

"rw",

#define WRITESIZE 2

"wsize",

#define READSIZE 3

"rsize",

NULL};

main(argc, argv)

int argc;

char **argv;

{

int sc, c, errflag;

char *options, *value;

extern char *optarg;

extern int optind;

.

.

.

while((c = getopt(argc, argv, "abf:o:")) != -1) {

switch (c) {

case ’a’: /* process a option */

break;

case ’b’: /* process b option */

break;

case ’f’:

ofile = optarg;

break;

case ’?’:

errflag++;

break;

(continues)

Page 2

FINAL COPY
June 15, 1995

File: ba_lib/getsubopt
svid

Page: 379

getsubopt (BA_LIB) getsubopt (BA_LIB)

case ’o’:

options = optarg;

while (*options != ’\0’) {

switch(getsubopt(&options,myopts,&value) {

case READONLY : /* process ro option */

break;

case READWRITE : /* process rw option */

break;

case WRITESIZE : /* process wsize option */

if (value == NULL) {

error_no_arg();

errflag++;

} else

write_size = atoi(value);

break;

case READSIZE : /* process rsize option */

if (value == NULL) {

error_no_arg();

errflag++;

} else

read_size = atoi(value);

break;

default :

/* process unknown token */

error_bad_token(value);

errflag++;

break;

}

}

break;

}

}

if (errflag) {

/* print Usage instructions etc. */

}

for (; optind<argc; optind++) {

/* process remaining arguments */

}

.

.

.

}

SEE ALSO
getopt(BA_LIB).

LEVEL
Level 1.

Page 3

FINAL COPY
June 15, 1995

File: ba_lib/getsubopt
svid

Page: 380

gettxt (BA_LIB) gettxt (BA_LIB)

NAME
gettxt – retrieve a text string

SYNOPSIS
char *gettxt(char *msgid, char *dflt_str);

DESCRIPTION
The routine gettxt() retrieves a text string from a message file. The arguments to
the function are a mess’ msgid and a default string dflt_str to be used if the retrieval
fails.

The text strings are in files created by mkmsgs [see mkmsgs(AS_CMD)] and
installed in

/usr/lib/locale/locale/LC_MESSAGES
directories.

The directory locale can be viewed as the language in which the text strings are writ-
ten. The user can request that messages be displayed in a specific language by set-
ting the environment variable LC_MESSAGES. If LC_MESSAGES is not set the
environment variable LANG will be used.

If LANG is not set, the locale in which the strings will be retrieved is the C locale and
the files containing the strings are in

/usr/lib/locale/C/LC_MESSAGES/*.

The user can also change the language in which the messages are displayed by
invoking the setlocale() [see setlocale(BA_OS)] function with the appropriate
arguments. If the locale is explicitly changed (via setlocale()), the pointers
returned by gettxt() may no longer be valid.

The following depicts the acceptable syntax of msgid for a call to gettxt():
msgfilename:msgnumber

The argument msgid consists of two fields separated by a colon. The first field is
used to indicate the file that contains the text strings and is limited to 14 characters.
These characters must be selected from a set of all character values excluding \0
(null) and the ASCII code for / (slash) and : (colon). The names of message files
must be the same as the names of files created by mkmsgs() and installed in
/usr/lib/locale/locale/LC_MESSAGES/∗. If no file name is specified,
gettxt() will use the name specified with setcat(). [see setcat(BA_LIB)] The
numeric field indicates the sequence number of the string in the file. The strings are
numbered from 1.

If msgfilename does not exist in the locale (specified by the last call to setlocale
using the LC_ALL or LC_MESSAGES categories), or if the message number is out of
bounds, gettxt attempts to retrieve the message from the C locale. If this second
retrieval fails, gettxt uses dflt_str.

If msgfilename is omitted, gettxt attempts to retrieve the string from the default
catalog specified by the last call to setcat.

gettxt outputs Message not found!!\n if:

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/gettxt
svid

Page: 381

gettxt (BA_LIB) gettxt (BA_LIB)

– msgfilename is not a valid catalog name as defined above

– no catalog is specified (either explicitly or via setcat)

– msgnumber is not a positive number

– no message could be retrieved and dflt_str was omitted

FILES
/usr/lib/locale/C/LC_MESSAGES/* Default message files created by

mkmsgs()

/usr/lib/locale/locale/LC_MESSAGES/* message files for different
languages created by mkmsgs()

EXAMPLE
In the following code fragment:

gettxt("test:10", "hello world\n")
gettxt("test:10", "")
setcat("test");
gettxt(":10", "hello world\n")

test is the name of the file that contains the messages; 10 is the message number.

SEE ALSO
envvar(BA_ENV), gettxt(BU_CMD), mkmsgs(AS_CMD), setcat(BA_LIB),
setlocale(BA_OS), srchtxt(AS_CMD).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ba_lib/gettxt
svid

Page: 382

getwc (BA_LIB) getwc (BA_LIB)

NAME
g e t w c, g e t w c h a r, f g e t w c – get next wide character from a stream

SYNOPSIS
i n c l u d e < s t d i o . h >
i n c l u d e < w c h a r . h >

w i n t _ t g e t w c (F I L E ∗stream) ;

w i n t _ t g e t w c h a r (v o i d) ;

w i n t _ t f g e t w c (F I L E ∗stream) ;

DESCRIPTION
f g e t w c transforms the next multibyte character from the named input stream into a
wide character, and returns it. It also increments the file pointer, if defined, by one
multibyte character. g e t w c h a r is defined as g e t w c (s t d i n).

g e t w c behaves like f g e t w c, except that g e t w c may be implemented as a macro
which evaluates stream more than once.

Errors
These functions return the constant W E O F and sets the stream’s end-of-file indicator
at the end-of-file. They return W E O F if an error is found. If the error is an I/O error,
the error indicator is set. If it is due to an invalid or incomplete multibyte character,
e r r n o is set to E I L S E Q.

NOTICES
If the value returned by g e t w c, g e t w c h a r, or f g e t w c is compared with the integer
constant W E O F after being stored in a w c h a r _ t object, the comparison may not
succeed.

SEE ALSO
f c l o s e(BA_OS), f e r r o r(BA_OS), f o p e n(BA_OS), p u t w c(BA_LIB), s c a n f(BA_LIB),
s t d i o(BA_LIB),

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/getwc
svid

Page: 383

fgetws (BA_LIB) fgetws (BA_LIB)

NAME
f g e t w s – get a w c h a r _ t string from a stream

SYNOPSIS
i n c l u d e < s t d i o . h >
i n c l u d e < w i d e c . h >

w c h a r _ t ∗f g e t w s (w c h a r _ t ∗s, i n t n, F I L E ∗stream) ;

DESCRIPTION
f g e t w s reads wide characters from the stream, converts them to w c h a r _ t charac-
ters, and places them in the w c h a r _ t array pointed to by s. f g e t w s reads until n–1
w c h a r _ t characters are transferred to s, or a newline character or an end-of-file con-
dition is encountered. The w c h a r _ t string is then terminated with a w c h a r _ t null
character.

Errors
If end-of-file or a read error is encountered and no characters have been
transformed, no w c h a r _ t characters are transferred to s and a null pointer is
returned and the error indicator for the stream is set. If the read error is an illegal
byte sequence, e r r n o is set to E I L S E Q. If end-of-file is encountered, the E O F indica-
tor for the stream is set. Otherwise, s is returned.

SEE ALSO
f r e a d(BA_OS), g e t w c(BA_LIB), s c a n f(BA_LIB), s t d i o(BA_LIB)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/getws
svid

Page: 384

glob (BA_LIB) glob (BA_LIB)

NAME
g l o b , g l o b f r e e – generate pathnames matching a pattern

SYNOPSIS
i n c l u d e < g l o b . h >

i n t g l o b (c o n s t c h a r *pattern, i n t flags,
i n t (*errfunc) (c o n s t c h a r *epath, i n t eerrno) , g l o b _ t *pglob) ;

v o i d g l o b f r e e (g l o b _ t *pglob) ;

DESCRIPTION
These functions are part of the X/Open Portability Guide Issue 4 optional POSIX2
C-Language Binding feature group.

Return Values
g l o b returns G L O B _ N O S Y S and sets e r r n o to E N O S Y S.

g l o b f r e e returns and sets e r r n o to E N O S Y S.

USAGE
Administrator.

SEE ALSO
f n m a t c h(BA_LIB), w o r d e x p(BA_LIB)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/glob
svid

Page: 385

grantpt (BA_LIB) grantpt (BA_LIB)

NAME
grantpt – grant access to the slave pseudo-terminal device

SYNOPSIS
int grantpt(int fildes);

DESCRIPTION
The function grantpt() changes the mode and ownership of the slave pseudo-
terminal device associated with its master pseudo-terminal counter part. fildes is
the file descriptor returned from a successful open of the master pseudo-terminal
device. A setuid() root program [see setuid(BA_OS)] is invoked to change the
permissions. The user ID of the slave is set to the real UID of the calling process
and the group ID is set to a reserved group. The permission mode of the slave
pseudo-terminal is set to readable, writeable, by the owner and writeable by the
group.

RETURN VALUE
Upon successful completion, the function grantpt() returns a value of 0; other-
wise, it returns a value of -1. Failure could occur if fildes is not an open file descrip-
tor, is not associated with a master pseudo-terminal device, or if the corresponding
slave device could not be accessed.

SEE ALSO
open(BA_OS), ptsname(BA_LIB), setuid(BA_OS), unlockpt(BA_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/grantpt
svid

Page: 386

hsearch (BA_LIB) hsearch (BA_LIB)

NAME
hsearch, hcreate, hdestroy – manage hash search tables

SYNOPSIS
#include <search.h>

ENTRY *hsearch(ENTRY item, ACTION action);

int hcreate(unsigned nel);

void hdestroy(void);

DESCRIPTION
The function hsearch() is a hash-table search routine. It returns a pointer into a
hash table indicating the location at which an entry can be found. The comparison
function used by hsearch() is the function strcmp() [see string(BA_LIB)].

The argument item is a structure of type ENTRY (defined in search.h header[see
search(BA_ENV)]) containing two pointers: item.key pointing to the comparison key
and item.data pointing to any other data to be associated with that key. (Pointers to
types other than void should be cast to pointer-to-void.)

The argument action is a member of an enumeration type ACTION, indicating the
disposition of the entry if it cannot be found in the table.

ENTER indicates that the item should be inserted in the table at an appropriate point.
Given a duplicate of an existing item, the new item is not entered, and hsearch()
returns a pointer to the existing item.

FIND indicates that no entry should be made. Unsuccessful resolution is indicated
by the return of NULL.

The function hcreate() allocates sufficient space for the table and must be called
before hsearch() is used. The value of nel is an estimate of the maximum number
of entries that the table will contain. This number may be adjusted upward by the
algorithm in order to obtain certain mathematically favorable circumstances.

The function hdestroy() destroys the search table and may be followed by
another call to hcreate().

RETURN VALUE
The function hsearch() returns NULL if either the action is FIND and the item
could not be found or the action is ENTER and the table is full.

The function hcreate() returns 0 if it cannot allocate sufficient space for the table.

EXAMPLE
The example reads in strings followed by two numbers and stores them in a hash
table. It then reads in strings and finds the entry in the table and prints it.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/hsearch
svid

Page: 387

hsearch (BA_LIB) hsearch (BA_LIB)

#include <stdio.h>

#include <search.h>

#include <string.h>

struct info { /* these are in the table */

int age, room; /* apart from the key. */

};

#define NUM_EMPL 5000 /* # of elements in the table */

main ()

{

char string_space[NUM_EMPL*20]; /* space for strings */

struct info info_space[NUM_EMPL]; /* space for employee info */

char *str_ptr = string_space; /* next avail space for strings */

struct info *info_ptr = info_space; /* next avail space for info */

ENTRY item, *found_item;

char name_to_find[30]; /* name to look for in table */

int i = 0;

/* create table */

(void) hcreate(NUM_EMPL);

while (scanf("%s%d%d", str_ptr, &info_ptr–>age,

&info_ptr–>room) != EOF && i++ < NUM_EMPL) {

/* put info in structure, and structure in item */

item.key = str_ptr;

item.data = (void *)info_ptr;

str_ptr += strlen(str_ptr) + 1;

info_ptr++;

(void) hsearch(item, ENTER); /* put item into table */

}

/* access table */

item.key = name_to_find;

while (scanf("%s", item.key) != EOF) {

if ((found_item = hsearch(item, FIND)) != NULL) {

/* if item is in the table */

(void) printf("found %s, age = %d, room = %d\n",

found_item–>key,

((struct info *)found_item–>data)–>age,

((struct info *)found_item–>data)–>room);

} else {

(void) printf("no such employee %s\n",

name_to_find);

}

}

}

SEE ALSO
bsearch(BA_LIB), lsearch(BA_LIB), malloc(BA_OS), string(BA_LIB),
tsearch(BA_LIB).

Page 2

FINAL COPY
June 15, 1995

File: ba_lib/hsearch
svid

Page: 388

hsearch (BA_LIB) hsearch (BA_LIB)

FUTURE DIRECTIONS
The restriction of having only one hash search table active at any given time will be
removed.

LEVEL
Level 1.

Page 3

FINAL COPY
June 15, 1995

File: ba_lib/hsearch
svid

Page: 389

hyperbolic (BA_LIB) hyperbolic (BA_LIB)

NAME
hyperbolic: sinh, cosh, tanh, asinh, acosh, atanh – hyperbolic functions

SYNOPSIS
#include <math.h>

double sinh(double x);

double cosh(double x);

double tanh(double x);

double asinh(double x);

double acosh(double x);

double atanh(double x);

DESCRIPTION
The functions sinh(), cosh(), and tanh() return, respectively, the hyperbolic
sine, cosine, and tangent of their argument.

The functions asinh(), acosh(), and atanh() return, respectively, the inverse
hyperbolic sine, cosine, and tangent of their argument.

RETURN VALUE
A macro HUGE_VAL will be defined by the <math.h> header file. This macro
evaluates to a positive double expression, not necessarily representable as a float.
On implementations that support the IEEE 754 standard, HUGE_VAL evalutates to
+∞.

The functions sinh() and cosh() will return HUGE_VAL (sinh() will return
−HUGE_VAL for negative x) and set errno to ERANGE when the correct value
overflows.

The function acosh() returns an implementation-defined value (IEEE NaN or
equivalent if available) and sets errno to EDOM when its argument is less than 1.0.

The function atanh() returns an implementation-defined value (IEEE NaN or
equivalent if available) and sets errno to EDOM when its argument has absolute
value greater than 1.0.

On implementations which support IEEE NaN, if an input parameter is NaN, then
the function will return NaN and set errno to EDOM.

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/hyperbolic
svid

Page: 390

hypot (BA_LIB) hypot (BA_LIB)

NAME
hypot – Euclidean distance function

SYNOPSIS
#include <math.h>

hypot(double x, double y);

DESCRIPTION
The function hypot() returns √ x 2 + y 2 taking precautions against unwarranted
overflows.

RETURN VALUE
A macro HUGE_VAL will be defined by the <math.h> header file. This macro
evaluates to a positive double expression, not necessarily representable as a float.
On implementations that support the IEEE 754 standard, HUGE_VAL evalutates to
+∞.

On implementations which support IEEE NaN, if an input parameter is NaN, then
the function will return NaN and set errno to EDOM.

The only exception is that if one of the arguments is NaN and the other argument is
±∞, HUGE_VAL is returned with no error indication.

The function hypot() will return HUGE_VAL and set errno to ERANGE when the
correct value overflows.

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/hypot
svid

Page: 391

iconv_close (BA_LIB) iconv_close (BA_LIB)

NAME
i c o n v _ c l o s e – code conversion deallocation function

SYNOPSIS
i n c l u d e < i c o n v . h >

i n t i c o n v _ c l o s e (i c o n v _ t cd) ;

DESCRIPTION
i c o n v _ c l o s e deallocates the conversion descriptor cd, and all data contained
within it. If a file descriptor or similar facility is used within the descriptor, it is
closed and deallocated.

Return Values
If iconv_close encounters no errors, it returns zero. Otherwise - 1 is returned, and
e r r n o is set.

Errors
E B A D F cd may be an invalid conversion descriptor.

USAGE
Administrator.

SEE ALSO
i c o n v(AU_CMD), i c o n v _ o p e n(BA_LIB),

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/iconv_close
svid

Page: 392

iconv_open (BA_LIB) iconv_open (BA_LIB)

NAME
i c o n v _ o p e n – code conversion allocation function.

SYNOPSIS
i n c l u d e < i c o n v . h >

i c o n v _ t i c o n v _ o p e n (c o n s t c h a r ∗tocode, c o n s t c h a r ∗fromcode) ;

DESCRIPTION
i c o n v _ o p e n returns a conversion descriptor for the codeset conversion from
codeset fromcode to codeset tocode. This descriptor is used on subsequent calls to
iconv.

The allowable values for fromcode and tocode are dependent on the implementation.
This is also true for the different combinations allowed.

A conversion descriptor is valid until the creating process terminates, or until it is
passed to i c o n v _ c l o s e.

Return Values
If i c o n v _ o p e n completes successfully, a conversion descriptor is returned. Should
the function fail,i c o n v _ o p e n returns (i c o n v _ t) - 1 and e r r n o is set to indicate an
error.

Errors
E M F I L E There may be no more file descriptors free for the process.

E N F I L E There may be too many open files on the system.

E N O M E M Not enough memory.

E I N V A L The implementation does not support the specified conversion.

USAGE
Administrator.

SEE ALSO
i c o n v(BU_CMD), i c o n v(BA_LIB), i c o n v _ c l o s e(BA_LIB), i c o n v h(BA_LIB)

LEVEL
Level 1.

NOTICES
In some implementations, this function uses dynamic memory allocation (m a l l o c)
to provide space for internal buffer areas. If there is not enough space to cater for
these buffers, it is likely that the i c o n v _ o p e n function will fail.

Applications that are portable must assume that conversion descriptors are invali-
dated after one of the exec functions is called.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/iconv_open
svid

Page: 393

initgroups (BA_LIB) initgroups (BA_LIB)

NAME
initgroups – initialize the supplementary group access list

SYNOPSIS
#include <sys/types.h>

int initgroups(const char *name, gid_t basegid);

DESCRIPTION
The function initgroups() gets the supplementary group membership for the
user specified by name and then initializes the supplementary group access list of
the calling process using setgroups() [see setgroups() in getgroups(BA_OS)].
The basegid group ID is also included in the supplementary group access list. This is
typically the real group ID from the password file.

If the number of groups, including the basegid entry, exceeds {NGROUPS_MAX}, then
subsequent group entries are ignored.

RETURN VALUE
Upon successful completion, the function initgroups() returns a value of 0; oth-
erwise, it returns a value of -1 and sets errno to indicate an error.

ERRORS
Under the following condition, the function initgroups() fails and sets errno
to:

EPERM if the calling process does not have appropriate privileges.

SEE ALSO
getgroups(BA_OS), group(BA_ENV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/initgroups
svid

Page: 394

isastream (BA_LIB) isastream (BA_LIB)

NAME
isastream – test a file descriptor

SYNOPSIS
int isastream(int fildes);

DESCRIPTION
The function isastream() determines if a file descriptor represents a STREAMS
file. fildes refers to an open file.

RETURN VALUE
Upon successful completion, the function isastream() returns a value of 1 if
fildes represents a STREAMS file and 0 if not. Otherwise, the function
isastream() returns a value of -1 and sets errno to indicate an error.

ERRORS
Under the following conditions, the function isastream() fails and sets errno to:

EBADF if fildes is not a valid open file.

SEE ALSO
streams(BA_DEV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/isastream
svid

Page: 395

isnan (BA_LIB) isnan (BA_LIB)

NAME
isnan, isnand – test for NaN

SYNOPSIS
#include <math.h>

int isnan(double x);

int isnand (double x);

DESCRIPTION
The function isnan() tests whether x is IEEE NaN. The functionality of isnand()
is identical to that of isnan().

RETURN VALUE
The functions isnan() and isnand() return non-zero if x is IEEE NaN; otherwise
it returns 0.

The function isnan() always returns 0 on implementations that do not support
IEEE NaN.

SEE ALSO
math(BA_ENV).

LEVEL
Level 1.

The following interface definition has been moved to Level 2 effective April 1991.

int isnand (double x);

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/isnan
svid

Page: 396

lfmt (BA_LIB) lfmt (BA_LIB)

NAME
lfmt – l f m t, v l f m t; display error message in standard format and pass to logging
and monitoring services

SYNOPSIS
#include <pfmt.h>

int lfmt(FILE *stream, long flags, char *format, ... /* arg */);

i n c l u d e < s t d a r g . h >
i n c l u d e < p f m t . h >

i n t v l f m t (F I L E ∗stream, l o n g flags, c h a r ∗format, v a _ l i s t ap) ;

DESCRIPTION
l f m t retrieves a format string from a locale-specific message database (unless
M M _ N O G E T is specified) and uses it for p r i n t f style formatting of args. The output is
displayed on stream. If stream is N U L L, no output is displayed. l f m t encapsulates
the output in the standard error message format (unless M M _ N O S T D is specified, in
which case the output is simply p r i n t f-like).

l f m t forwards its output to the logging and monitoring facility, even if stream is
null. Optionally, l f m t will display the output on the console, with a date and time
stamp.

If the p r i n t f format string is to be retrieved from a message database, the format
argument must have the following structure:

catalog:msgnum:defmsg.

If M M _ N O G E T is specified, only the defmsg part must be specified.

catalog indicates the message database that contains the localized version of the for-
mat string. catalog is limited to 14 characters. These characters must be selected
from a set of all character values, excluding \ 0 (null) and the ASCII codes for /
(slash) and : (colon).

msgnum must be a positive number that indicates the index of the string into the
message database.

If catalog does not exist in the locale (specified by the last call to s e t l o c a l e using
the L C _ A L L or L C _ M E S S A G E S categories), or if the message number is out of bounds,
l f m t attempts to retrieve the message from the C locale. If this second retrieval
fails, l f m t uses the defmsg part of the format argument.

If catalog is omitted, l f m t attempts to retrieve the string from the default catalog
specified by the last call to s e t c a t. In this case, the format argument has the follow-
ing structure:

:msgnum:defmsg.

l f m t outputs M e s s a g e n o t f o u n d ! ! \ n as the format string if:

– catalog is not a valid catalog name as defined above

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/lfmt
svid

Page: 397

lfmt (BA_LIB) lfmt (BA_LIB)

– no catalog is specified (either explicitly or via s e t c a t)

– msgnum is not a positive number, or if no message could be retrieved
from the message databases and defmsg was omitted.

The flags determine the type of output (i.e., whether the format should be inter-
preted as is or encapsulated in the standard message format), and the access to mes-
sage catalogs to retrieve a localized version of format. The flags are composed of
several groups, and can take the following values (one from each group):

Output format control

M M _ N O S T D do not use the standard message format, interpret format as
a p r i n t f format. Only catalog access control flags, console
display control, and logging information should be specified if
M M _ N O S T D is used; all other flags will be ignored.

M M _ S T D output using the standard message format (default, value 0).

Catalog access control

M M _ N O G E T do not retrieve a localized version of format. In this case,
only the defmsg part of the format is specified.

M M _ G E T retrieve a localized version of format, from the catalog, using
msgnum as the index and defmsg as the default message
(default, value 0).

Severity (standard message format only)

M M _ H A L T generates a localized version of H A L T.

M M _ E R R O R generates a localized version of E R R O R (default, value 0).

M M _ W A R N I N G generates a localized version of W A R N I N G.

M M _ I N F O generates a localized version of I N F O.

Additional severities can be defined. Add-on severities can be defined with
number-string pairs with numeric values from the range [5,255], using
a d d s e v (). The numeric value ORed with other flags will generate the
specified severity.

If the severity is not defined, l f m t uses the string S E V =N where N is
replaced by the integer severity value passed in flags.

Multiple severities passed in flags will not be detected as an error. Any com-
bination of severities will be summed and the numeric value will cause the
display of either a severity string (if defined) or the string S E V =N (if
undefined).

Action

M M _ A C T I O N specifies an action message. Any severity value is super-
seded and replaced by a localized version of T O F I X.

Page 2

FINAL COPY
June 15, 1995

File: ba_lib/lfmt
svid

Page: 398

lfmt (BA_LIB) lfmt (BA_LIB)

Console display control

M M _ C O N S O L E display the message to the console in addition to the
specified stream.

M M _ N O C O N S O L E do not display the message to the console in addition to
the specified stream (default, value 0).

Logging information

Major classification
identifies the source of the condition. Identifiers are: M M _ H A R D
(hardware), M M _ S O F T (software), and M M _ F I R M (firmware).

Message source subclassification
identifies the type of software in which the problem is spotted.
Identifiers are: M M _ A P P L (application), M M _ U T I L (utility), and
M M _ O P S Y S (operating system).

Standard Error Message Format
l f m t displays error messages in the following format:

label: severity: text

If no label was defined by a call to s e t l a b e l, the message is displayed in the format:

severity: text

If l f m t is called twice to display an error message and a helpful action or recovery
message, the output can look like:

label: severity: text
label: T O F I X : text

v l f m t is the same as l f m t except that instead of being called with a variable
number of arguments, it is called with an argument list as defined by the s t d a r g . h
header file.

The s t d a r g . h header file defines the type v a _ l i s t and a set of macros for advanc-
ing through a list of arguments whose number and types may vary. The argument
ap to v l f m t is of type v a _ l i s t. This argument is used with the s t d a r g . h header
file macros v a _ s t a r t, v a _ a r g and v a _ e n d [see v a _ s t a r t, v a _ a r g, and v a _ e n d in
s t d a r g(5)]. The EXAMPLE sections below show their use.

The macro v a _ a l i s t is used as the parameter list in a function definition as in the
function called e r r o r in the example below. The macro v a _ s t a r t (ap,), where ap
is of type v a _ l i s t, must be called before any attempt to traverse and access
unnamed arguments. Calls to v a _ a r g (ap, atype) traverse the argument list. Each
execution of v a _ a r g expands to an expression with the value and type of the next
argument in the list ap, which is the same object initialized by v a _ s t a r t. The argu-
ment atype is the type that the returned argument is expected to be. The
v a _ e n d (ap) macro must be invoked when all desired arguments have been
accessed. [The argument list in ap can be traversed again if v a _ s t a r t is called
again after v a _ e n d.] In the example below, v a _ a r g is executed first to retrieve the
format string passed to e r r o r. The remaining e r r o r arguments, arg1, arg2, ..., are
given to v l f m t in the argument ap.

Page 3

FINAL COPY
June 15, 1995

File: ba_lib/lfmt
svid

Page: 399

lfmt (BA_LIB) lfmt (BA_LIB)

RETURN VALUE
On success, l f m t and v l f m t return the number of bytes transmitted. On failure,
they return a negative value:

–1 write error to stream

–2 cannot log and/or display at console.

EXAMPLE
lfmt example 1

s e t l a b e l (" U X : t e s t ") ;
l f m t (s t d e r r , M M _ E R R O R | M M _ C O N S O L E | M M _ S O F T | M M _ U T I L ,

" t e s t : 2 : C a n n o t o p e n f i l e : % s \ n " , s t r e r r o r (e r r n o)) ;

displays the message to stderr and to the console and makes it available for logging:

U X : t e s t : E R R O R : C a n n o t o p e n f i l e : N o s u c h f i l e o r d i r e c t o r y

lfmt example 2
s e t l a b e l (" U X : t e s t ") ;
l f m t (s t d e r r , M M _ I N F O | M M _ S O F T | M M _ U T I L ,

" t e s t : 2 3 : t e s t f a c i l i t y i s e n a b l e d \ n ") ;

displays the message to stderr and makes it available for logging:

U X : t e s t : I N F O : t e s t f a c i l i t y e n a b l e d

vlfmt example
The following demonstrates how v l f m t could be used to write an e r r l o g routine:

i n c l u d e < p f m t . h >
i n c l u d e < s t d a r g . h >
. . .
/∗

∗ e r r l o g s h o u l d b e c a l l e d l i k e
∗ e r r l o g (l o g _ i n f o , f o r m a t , a r g 1 , . . .) ;
∗/
v o i d e r r l o g (l o n g l o g _ i n f o , c o n s t c h a r * f o r m a t , . . .)

{
v a _ l i s t a p ;

v a _ s t a r t (a p , f o r m a t) ;
(v o i d) v l f m t (s t d e r r , l o g _ i n f o | M M _ E R R O R , f o r m a t , a p) ;
v a _ e n d (a p) ;
(v o i d) a b o r t () ;

}

SEE ALSO
addsev(BA_LIB), envvar(BA_ENV), gettxt(BA_LIB), pfmt(BA_LIB), lfmt(BU_CMD),
pfmt(BU_CMD), printf(BA_LIB), setcat(BA_LIB), setlabel(BA_LIB),
setlocale(BA_LIB).

LEVEL
Level 2, April 1991.

Page 4

FINAL COPY
June 15, 1995

File: ba_lib/lfmt
svid

Page: 400

lgamma (BA_LIB) lgamma (BA_LIB)

NAME
lgamma, gamma – log gamma functions

SYNOPSIS
#include <math.h>

double lgamma(double x);
†double gamma(double x);
extern int signgam;

DESCRIPTION
The functions lgamma() and gamma() return ln (Γ(x)), where Γ(x) is defined
as:

0
∫
∞

e − tt x − 1 dt

The sign of Γ(x) is returned in the external integer signgam. If x is negative then it
must not have an integral value. x may not be zero.

The following code fragment might be used to calculate Γ:

if ((y = lgamma(x)) > LN_MAXDOUBLE)
error();

y = signgam * exp(y);

RETURN VALUE
On implementations that support IEEE NaN, if an input parameter is NaN, then the
function will return NaN and set errno to EDOM.

A macro HUGE_VAL will be defined by the <math.h> header file. This macro
evaluates to a positive double expression, not necessarily representable as a float.
On implementations that support the IEEE 754 standard, HUGE_VAL evaluates to
+∞.

For non-positive integer arguments, gamma() and lgamma() return HUGE_VAL
and set errno to EDOM.

If the correct value would overflow, gamma() andlgamma() return HUGE_VAL and
set errno to ERANGE.

SEE ALSO
exp(BA_LIB)

FUTURE DIRECTIONS
On a system that supports the IEEE 754 standard, if the value of x for lgamma() is
-infinity, lgamma will return IEEE NaN and set errno to EDOM.

The function gamma() will be removed from a future issue of the SVID.

LEVEL
Level 2.

gamma is Level 2, effective September 30, 1993.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/lgamma
svid

Page: 401

localeconv (BA_LIB) localeconv (BA_LIB)

NAME
localeconv – set the components of a locale

SYNOPSIS
#include <locale.h>

struct lconv *localeconv(void);

DESCRIPTION
The function localeconv() sets the components of an object with type struct
lconv with the values appropriate for the formatting of numeric quantities (mone-
tary and otherwise) according to the rules of the current locale [see
setlocale(BA_OS)]. struct lconv includes the following members:

char *decimal_point;
char *thousands_sep;
char *grouping;
char *int_curr_symbol;
char *currency_symbol;
char *mon_decimal_point;
char *mon_thousands_sep;
char *mon_grouping;
char *positive_sign;
char *negative_sign;
char int_frac_digits;
char frac_digits;
char p_cs_precedes;
char p_sep_by_space;
char n_cs_precedes;
char n_sep_by_space;
char p_sign_posn;
char n_sign_posn;

The members of the structure with type char * are strings, any of which (except
decimal_point) can point to "", to indicate that the value is not available in the
current locale or is of zero length. The members with type char are nonnegative
numbers, any of which can be CHAR_MAX (defined in <limits.h>) to indicate that
the value is not available in the current locale. The members are the following:

char *decimal_point
The decimal-point character used to format non-monetary quantities.

char *thousands_sep
The character used to separate groups of digits to the left of the decimal-
point character in formatted non-monetary quantities.

char *grouping
A string in which each element is taken as an integer that indicates the
number of digits that comprise the current group in a formatted non-
monetary quantity. The elements of grouping are interpreted according to
the following:

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/localeconv
svid

Page: 402

localeconv (BA_LIB) localeconv (BA_LIB)

CHAR_MAX No further grouping is to be performed.

0 The previous element is to be repeatedly used for the
remainder of the digits.

other The value is the number of digits that comprise the current
group. The next element is examined to determine the size of
the next group of digits to the left of the current group.

char *int_curr_symbol
The international currency symbol applicable to the current locale, left-
justified within a four-character space-padded field. The character
sequences should match with those specified in: ISO 4217 Codes for the
Representation of Currency and Funds .

char *currency_symbol
The local currency symbol applicable to the current locale.

char *mon_decimal_point
The decimal-point used to format monetary quantities.

char *mon_thousands_sep
The separator for groups of digits to the left of the decimal-point in format-
ted monetary quantities.

char *mon_grouping
A string in which each element is taken as an integer that indicates the
number of digits that comprise the current group in a formatted monetary
quantity. The elements of mon_grouping are interpreted according to the
rules described under grouping.

char *positive_sign
The string used to indicate a nonnegative-valued formatted monetary quan-
tity.

char *negative_sign
The string used to indicate a negative-valued formatted monetary quantity.

char int_frac_digits
The number of fractional digits (those to the right of the decimal point) to
be displayed in an internationally formatted monetary quantity.

char frac_digits
The number of fractional digits (those to the right of the decimal-point) to
be displayed in a formatted monetary quantity.

char p_cs_precedes
Set to 1 or 0 if the currency_symbol respectively precedes or succeeds
the value for a nonnegative formatted monetary quantity.

char p_sep_by_space
Set to 1 or 0 if the currency_symbol respectively is or is not separated by
a space from the value for a nonnegative formatted monetary quantity.

char n_cs_precedes
Set to 1 or 0 if the currency_symbol respectively precedes or succeeds
the value for a negative formatted monetary quantity.

Page 2

FINAL COPY
June 15, 1995

File: ba_lib/localeconv
svid

Page: 403

localeconv (BA_LIB) localeconv (BA_LIB)

char n_sep_by_space
Set to 1 or 0 if the currency_symbol respectively is or is not separated by
a space from the value for a negative formatted monetary quantity.

char p_sign_posn
Set to a value indicating the positioning of the positive_sign for a non-
negative formatted monetary quantity. The value of p_sign_posn is
interpreted according to the following:

0 Parentheses surround the quantity and currency_symbol.

1 The sign string precedes the quantity and currency_symbol.

2 The sign string succeeds the quantity and currency_symbol.

3 The sign string immediately precedes the currency_symbol.

4 The sign string immediately succeeds the currency_symbol.

char n_sign_posn
Set to a value indicating the positioning of the negative_sign for a nega-
tive formatted monetary quantity. The value of n_sign_posn is inter-
preted according to the rules described under p_sign_posn.

RETURN VALUE
The function localeconv() returns a pointer to the filled-in object. The structure
pointed to by the return value may be overwritten by a subsequent call to
localeconv().

EXAMPLE
The following table illustrates the rules used by four countries to format monetary
quantities.

Country Positive format Negative format International format
Italy L.1.234 -L.1.234 ITL.1.234
Netherlands F 1.234,56 F -1.234,56 NLG 1.234,56
Norway kr1.234,56 kr1.234,56- NOK 1.234,56
Switzerland SFrs.1,234.56 SFrs.1,234.56C CHF 1,234.56

For these four countries, the respective values for the monetary members of the
structure returned by localeconv() are as follows:

Italy Netherlands Norway Switzerland
int_curr_symbol "ITL." "NLG " "NOK " "CHF "
currency_symbol "L." "F" "kr" "SFrs."
mon_decimal_point "" "," "," "."
mon_thousands_sep "." "." "." ","
mon_grouping "\3" "\3" "\3" "\3"
positive_sign "" "" "" ""
negative_sign "-" "-" "-" "C"
int_frac_digits 0 2 2 2
frac_digits 0 2 2 2
p_cs_precedes 1 1 1 1
p_sep_by_space 0 1 0 0
n_cs_precedes 1 1 1 1
n_sep_by_space 0 1 0 0

Page 3

FINAL COPY
June 15, 1995

File: ba_lib/localeconv
svid

Page: 404

localeconv (BA_LIB) localeconv (BA_LIB)

p_sign_posn 1 1 1 1
n_sign_posn 1 4 2 2

Note that the mon_grouping value ("\3" for all the above countries) is the ANSI
C encoding for a string literal whose value is octal 3 (null-terminated). Hence,
grouping is by threes (repeating) because the string is interpreted as an integer
value of 3 followed by zero.

SEE ALSO
setlocale(BA_OS).

LEVEL
Level 1.

Page 4

FINAL COPY
June 15, 1995

File: ba_lib/localeconv
svid

Page: 405

lsearch (BA_LIB) lsearch (BA_LIB)

NAME
lsearch, lfind – linear search and update

SYNOPSIS
#include <sys/types.h>
#include <search.h>

void *lsearch(const void *key, void *base,
size_t *nelp, size_t width,
int (*compar)(const void *, const void *));

void *lfind(const void *key, const void *base,
size_t *nelp, size_t width,
int (*compar)(const void *, const void *));

DESCRIPTION
The function lsearch() is a linear search routine. It returns a pointer into a table
indicating where a datum may be found. If the datum does not occur, it is added at
the end of the table. The value of key points to the datum to be sought in the table.
The value of base points to the first element in the table. The value of nelp points to
an integer containing the current number of elements in the table. The value of
width is the size of an element in bytes. The variable pointed to by nelp is incre-
mented if the datum is added to the table. The value of compar is the name of the
comparison function which the user must supply (strcmp(), for example). It is
called with two arguments that point to the elements being compared. The function
must return zero if the elements are equal and non-zero otherwise.

The function lfind() is the same as lsearch() except that if the datum is not
found, it is not added to the table. Instead, a null pointer is returned.

RETURN VALUE
If the datum is found, both the functions lsearch() and lfind() return a
pointer to it. Otherwise, the function lfind() returns NULL and the function
lsearch() returns a pointer to the newly added element.

USAGE
The pointers to the key and the element at the base of the table may be pointers to
any type.

The comparison function need not compare every byte, so arbitrary data may be
contained in the elements in addition to the values being compared.

The value required should be cast into type pointer-to-element.

Space for the table must be managed by the application-program. Undefined
results can occur if there is not enough room in the table to add a new item.

EXAMPLE
The following code fragment will read in ≤ TABSIZE strings of length ≤ ELSIZE
and store them in a table, eliminating duplicates.

#include <stdio.h>
#include <search.h>
#include <string.h>

#define TABSIZE 50
#define ELSIZE 120

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/lsearch
svid

Page: 406

lsearch (BA_LIB) lsearch (BA_LIB)

char line[ELSIZE], tab[TABSIZE][ELSIZE];
size_t nel = 0;
. . .
while (fgets(line, ELSIZE, stdin) != NULL &&

nel < TABSIZE)
(void) lsearch((void *) line, (void *) tab,

&nel, ELSIZE, strcmp);
. . .

SEE ALSO
bsearch(BA_LIB), hsearch(BA_LIB), tsearch(BA_LIB).

FUTURE DIRECTIONS
NULL will be returned by the function lsearch(), with errno set appropriately, if
there is not enough room in the table to add a new item.

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ba_lib/lsearch
svid

Page: 407

makecontext (BA_LIB) makecontext (BA_LIB)

NAME
m a k e c o n t e x t, s w a p c o n t e x t – manipulate user contexts

SYNOPSIS
i n c l u d e < u c o n t e x t . h >

v o i d m a k e c o n t e x t (u c o n t e x t _ t ∗ucp, (v o i d ∗func) () , i n t argc, . . .);

i n t s w a p c o n t e x t (u c o n t e x t _ t ∗oucp, u c o n t e x t _ t ∗ucp) ;

DESCRIPTION
These functions are useful for implementing user-level context switching between
multiple threads of control within a process.

m a k e c o n t e x t modifies the context specified by ucp, which has been initialized
using g e t c o n t e x t; when this context is resumed using s w a p c o n t e x t or s e t c o n -
t e x t [see g e t c o n t e x t(BA_OS)], program execution continues by calling the func-
tion func, passing it the arguments that follow argc in the m a k e c o n t e x t call. Before
a call is made to m a k e c o n t e x t, the context being modified should have a stack allo-
cated for it. The value of argc must match the number of integers passed to func,
otherwise the behavior is undefined.

The u c _ l i n k field is used to determine the context that will be resumed when the
context being modified by m a k e c o n t e x t returns. The u c _ l i n k field should be ini-
tialized prior to the call to m a k e c o n t e x t.

s w a p c o n t e x t saves the current context in the context structure pointed to by oucp
and sets the context to the context structure pointed to by ucp .

These functions will fail if the following is true:

E N O M E M ucp does not have enough stack left to complete the operation.

SEE ALSO
e x i t(BA_OS), g e t c o n t e x t(BA_OS), s i g a c t i o n(BA_OS), s i g p r o c m a s k(BA_OS),
u c o n t e x t(BA_ENV)

RETURN VALUE
On successful completion, s w a p c o n t e x t return a value of zero. Otherwise, a value
of –1 is returned and e r r n o is set to indicate the error.

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/makecontext
svid

Page: 408

mbchar (BA_LIB) mbchar (BA_LIB)

–2 if the next n bytes form an incomplete (but potentially valid) multi-
byte character, and all n bytes have been processed; this situation does
not apply since the multibyte encoding is stateless.

–1 if an encoding error occurs (when the next n or fewer bytes do not
form a complete and valid multibyte character); the value of the
macro E I L S E Q is stored in e r r n o, but the conversion state is
unchanged.

SEE ALSO
s t d l i b(BA_ENV), m b s t r i n g(BA_LIB), s e t l o c a l e(BA_OS),

LEVEL
Level 1.

Page 3

FINAL COPY
June 15, 1995

File: ba_lib/mbchar
svid

Page: 411

mbsinit (BA_LIB) mbsinit (BA_LIB)

NAME
m b s i n i t – test for initial multibyte conversion state

SYNOPSIS
i n c l u d e < w c h a r . h >
i n t m b s i n i t (c o n s t m b s t a t e _ t ∗ps) ;

DESCRIPTION
If ps is not a null pointer, m b s i n i t determines whether the pointed-to m b s t a t e _ t
object describes an initial conversion state.

Return Values
m b s i n i t returns nonzero.

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/mbsinit
svid

Page: 412

mbstring (BA_LIB) mbstring (BA_LIB)

when the next multibyte character does exceed the limit of n total bytes to be stored
into the array pointed to by s. Each conversion takes place as if by a call to the
w c r t o m b.

If s is not a null pointer, the pointer object pointed to by pwcs is assigned either a
null pointer (if conversion stopped due to reaching a terminating null wide charac-
ter) or the address just past the last wide character converted. If conversion
stopped due to reaching a terminating null wide character and if s is not a null
pointer, the resulting state described is the initial conversion state.

Return Values
If an invalid multibyte character is encountered, m b s t o w c s returns (s i z e _ t) - 1.
Otherwise, m b s t o w c s returns the number of array elements modified, not including
the terminating zero code, if any. If pwcs is a null pointer, m b s t o w c s returns the
number of elements required for the wide character code array.

If a wide character code is encountered that does not correspond to a valid multi-
byte character, w c s t o m b s returns (s i z e _ t) - 1. Otherwise, w c s t o m b s returns the
number of bytes modified, not including a terminating null character, if any. If s is
a null pointer, w c s t o m b s returns the number of bytes required for the character
array.

If the input string does not begin with a valid multibyte character, an encoding
error occurs for m b s r t o w c s. In this case, it stores the value of the macro E I L S E Q in
e r r n o and returns (s i z e _ t) - 1, but the conversion state is unchanged. Otherwise,
it returns the number of multibyte characters successfully converted, which is the
same as the number of array elements modified when s is not a null pointer.

If the first code is not a valid wide character, an encoding error occurs for
w c s r t o m b s. In this case, it stores the value of the macro E I L S E Q in e r r n o and
returns (s i z e _ t) - 1, but the conversion state is unchanged. Otherwise, it returns
the number of bytes in the resulting multibyte characters sequence, which is the
same as the number of array elements modified when s is not a null pointer.

SEE ALSO
m b c h a r(BA_LIB), s e t l o c a l e(BA_OS),

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ba_lib/mbstring
svid

Page: 414

memory (BA_LIB) memory (BA_LIB)

NAME
m e m o r y: m e m c c p y, m e m c h r, m e m c m p, m e m c p y, m e m m o v e, m e m s e t – memory operations

SYNOPSIS
i n c l u d e < s t r i n g . h >

v o i d ∗m e m c c p y (v o i d ∗s1, c o n s t v o i d ∗s2, i n t c, s i z e _ t n) ;

v o i d ∗m e m c h r (c o n s t v o i d ∗s, i n t c, s i z e _ t n) ;

i n t m e m c m p (c o n s t v o i d ∗s1, c o n s t v o i d ∗s2, s i z e _ t n) ;

v o i d ∗m e m c p y (v o i d ∗s1, c o n s t v o i d ∗s2, s i z e _ t n) ;

v o i d ∗m e m m o v e (v o i d ∗s1, c o n s t v o i d ∗s2, s i z e _ t n) ;

v o i d ∗m e m s e t (v o i d ∗s, i n t c, s i z e _ t n) ;

DESCRIPTION
These functions operate as efficiently as possible on memory areas (arrays of bytes
bounded by a count, not terminated by a null character). They do not check for the
overflow of any receiving memory area.

m e m c c p y copies bytes from memory area s2 into s1 , stopping after the first
occurrence of c (converted to an u n s i g n e d c h a r) has been copied, or after n bytes
have been copied, whichever comes first. It returns a pointer to the byte after the
copy of c in s1 , or a null pointer if c was not found in the first n bytes of s2 .

m e m c h r returns a pointer to the first occurrence of c (converted to an u n s i g n e d
c h a r) in the first n bytes (each interpreted as an u n s i g n e d c h a r) of memory area s ,
or a null pointer if c does not occur.

m e m c m p compares its arguments, looking at the first n bytes (each interpreted as an
u n s i g n e d c h a r), and returns an integer less than, equal to, or greater than 0,
according as s1 is lexicographically less than, equal to, or greater than s2 when
taken to be unsigned characters.

m e m c p y copies n bytes from memory area s2 to s1 . It returns s1 .

m e m m o v e copies n bytes from memory areas s2 to s1. Copying between objects that
overlap will take place correctly. It returns s1.

m e m s e t sets the first n bytes in memory area s to the value of c (converted to an
u n s i g n e d c h a r). It returns s .

SEE ALSO
s t r i n g (BA_LIB)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/memory
svid

Page: 415

mktemp (BA_LIB) mktemp (BA_LIB)

NAME
mktemp – make a unique filename

SYNOPSIS
char *mktemp(char *template);

DESCRIPTION
The function mktemp() replaces the contents of the string pointed to by template by
a unique filename and returns template. The string in template should look like a
filename with six trailing Xs; mktemp() will replace the Xs with a character string
that can be used to create a unique filename.

RETURN VALUE
The function mktemp() returns the pointer template. If a unique name cannot be
created, template will point to a null string.

SEE ALSO
tmpfile(BA_LIB), tmpnam(BA_LIB).

FUTURE DIRECTIONS
NULL will be returned if a unique name cannot be created.

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/mktemp
svid

Page: 416

mktime (BA_LIB) mktime (BA_LIB)

NAME
mktime – converts a tm structure to a calendar time

SYNOPSIS
#include <sys/types.h>
#include <time.h>

time_t mktime(struct tm *timeptr);

DESCRIPTION
The mktime() function converts the time represented by the struct tm pointed
to by timeptr into a calendar time (the number of seconds since 00:00:00 UTC, Janu-
ary 1, 1970)[see time(BA_ENV)].

In addition to computing the calendar time, mktime() normalizes the supplied tm
structure. The original values of the tm_wday and tm_yday components of the
structure are ignored, and the original values of the other components are not res-
tricted to the ranges indicated in the definition of the structure. On successful com-
pletion, the values of the tm_wday and tm_yday components are set appropriately,
and the other components are set to represent the specified calendar time, but with
their values forced to be within the appropriate ranges. The final value of tm_mday
is not set until tm_mon and tm_year are determined.

The original values of the components may be either greater than or less than the
specified range. For example, a tm_hour of –1 means 1 hour before midnight,
tm_mday of 0 means the day preceding the current month, and tm_mon of –2
means 2 months before January of tm_year.

If tm_isdst is positive, the original values are assumed to be in the alternate
timezone. If it turns out that the alternate timezone is not valid for the computed
calendar time, then the components are adjusted to the main timezone. Likewise, if
tm_isdst is zero, the original values are assumed to be in the main timezone and
are converted to the alternate timezone if the main timezone is not valid. If
tm_isdst is negative, the correct timezone is determined and the components are
not adjusted.

Local timezone information is used as if mktime() had called tzset().

RETURN VALUE
The function mktime() returns the specified calendar time. If the calendar time
cannot be represented, the function returns the value (time_t)–1.

SEE ALSO
ctime(BA_LIB), getenv(BA_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/mktime
svid

Page: 417

nl_langinfo (BA_LIB) nl_langinfo (BA_LIB)

NAME
nl_langinfo – language information

SYNOPSIS
#include <nl_types.h>
#include <langinfo.h>

char *nl_langinfo(nl_item item);

DESCRIPTION
The nl_langinfo() function returns a pointer to a null-terminated string con-
taining information relevant to a particular language or cultural area defined in the
programs locale. The manifest constant names and values of item are defined in
<langinfo.h> [see langinfo(BA_ENV)].

For example:

nl_langinfo (ABDAY_1);

would return a pointer to the string "Dim" if the identified language was French
and a French locale was correctly installed; or "Sun" if the identified language was
English.

RETURN VALUE
If setlocale() [see setlocale(BA_OS)] has not been called successfully, or if
langinfo data for a supported language is either not available or item is not
defined therein, then nl_langinfo returns a pointer to the corresponding string
in the C locale. In all locales, nl_langinfo() returns a pointer to an empty
string if item contains an invalid setting.

USAGE
The array pointed to by the return value should not be modified by the program.
Subsequent calls to nl_langinfo() may overwrite the array.

SEE ALSO
setlocale(BA_OS), langinfo(BA_ENV), nl_types(BA_ENV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/nl_langinfo
svid

Page: 418

perror (BA_LIB) perror (BA_LIB)

NAME
perror – system error messages

SYNOPSIS
#include <stdio.h>

void perror (const char ∗s);

DESCRIPTION
The function perror() produces a message on the standard error output describ-
ing the last error encountered during a call to a function.

The string pointed to by the argument s is printed first, then a colon and a blank,
then the message and a new-line. To be of most use, the argument string should
include the name of the program that incurred the error.

The error number is taken from the external variable errno, which is set when
errors occur but not cleared when successful calls are made.

If given a null-string, the function perror() prints only the message and a new-
line.

To simplify variant formatting of messages, the function strerror() [see
strerror(BA_LIB)] can be used to return a pointer to the error message string
associated with errno.

perror() marks for update the st_ctime and st_mtime fields of the underlying
file associated with the standard error stream at some time between its successful
completion and the completion of fflush(), fclose(), on stderror() or
exit() or abort().

p e r r o r () uses the UNIX System V Message Handling Facility.The message is
retrieved from the locale-specific version of the system catalog u x s y s e r r. [See
setlocale(BA_OS)].

USAGE
The perror() function is provided for ANSI compatibility.

SEE ALSO
abort(BA_OS), exit(BA_OS), fclose(BA_OS), gettxt(BA_LIB), setlocale(BA_OS),
strerror(BA_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/perror
svid

Page: 419

pfmt (BA_LIB) pfmt (BA_LIB)

NAME
p f m t, v p f m t – display error message in standard format

SYNOPSIS
i n c l u d e < p f m t . h >

i n t p f m t (F I L E *stream, l o n g flags, c h a r *format, . . . / * a r g s * /) ;
i n c l u d e < s t d a r g . h >
i n c l u d e < p f m t . h >

i n t v p f m t (F I L E *stream, l o n g flags, c h a r *format, v a _ l i s t ap) ;

DESCRIPTION
pfmt

p f m t uses a format string for p r i n t f style formatting of args. The output is
displayed on stream. p f m t encapsulates the output in the standard error message
format.

If the p r i n t f format string is to be retrieved from a message database, the format
argument must have the following structure:

[[catalog] : [msgnum] :]defmsg.

defmsg can only appear alone if flags include M M _ N O G E T.

catalog indicates the message database that contains the localized version of the for-
mat string. catalog must be limited to 14 characters. These characters must be
selected from a set of all characters values, excluding \ 0 (null) and the ASCII codes
for / (slash) and : (colon).

msgnum must be a positive number that indicates the index of the string into the
message database.

If catalog does not exist in the locale (specified by the last call to s e t l o c a l e using
the L C _ A L L or L C _ M E S S A G E S categories), or if the message number is out of bounds,
p f m t attempts to retrieve the message from the C locale. If this second retrieval
fails, p f m t uses the defmsg part of the format argument.

If catalog is omitted, p f m t attempts to retrieve the string from the default catalog
specified by the last call to s e t c a t. In this case, the format argument has the follow-
ing structure:

msgnum:defmsg.

p f m t outputs

M e s s a g e n o t f o u n d ! ! . . .

as the format string if:

catalog is not a valid catalog name as defined above

no catalog is specified (either explicitly or via s e t c a t)

msgnum is not a positive number,

no message could be retrieved and defmsg was omitted

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/pfmt
svid

Page: 420

pfmt (BA_LIB) pfmt (BA_LIB)

The flags determine the type of output (that is, whether the format should be inter-
preted as is or encapsulated in the standard message format), and the access to mes-
sage catalogs to retrieve a localized version of format.

The flags are composed of several groups, and can take the following values (one
from each group):

Output format control

M M _ N O S T D do not use the standard message format, interpret format as a
p r i n t f format. Only catalog access control flags should be
specified if M M _ N O S T D is used; all other flags will be ignored.

M M _ S T D output using the standard message format (default, value 0).

Catalog access control

M M _ N O G E T do not retrieve a localized version of format. In this case, only
the defmsg part of the format is specified.

M M _ G E T retrieve a localized version of format, from the catalog, using
msgnum as the index and defmsg as the default message
(default, value 0).

Severity (standard message format only)

M M _ H A L T generates a localized version of H A L T.

M M _ E R R O R generates a localized version of E R R O R (default, value 0).

M M _ W A R N I N G generates a localized version of W A R N I N G.

M M _ I N F O generates a localized version of I N F O.

Additional severities can be defined. Add-on severities can
be defined with number-string pairs with numeric values
from the range [5-255], using a d d s e v(BA_LIB). The numeric
value ORed with other flags will generate the specified sever-
ity.

If the severity is not defined, p f m t uses the string S E V =N
where N is replaced by the integer severity value passed in
flags.

Multiple severities passed in flags will not be detected as an
error. Any combination of severities will be summed and the
numeric value will cause the display of either a severity
string (if defined) or the string S E V=N (if undefined).

Action

M M _ A C T I O N specifies an action message. Any severity value is superseded
and replaced by a localized version of T O F I X.

Standard Error Message Format
p f m t displays error messages in the following format:

label: severity: text

Page 2

FINAL COPY
June 15, 1995

File: ba_lib/pfmt
svid

Page: 421

pfmt (BA_LIB) pfmt (BA_LIB)

If no label was defined by a call to s e t l a b e l, the message is displayed in the format:

severity: text

If p f m t is called twice to display an error message and a helpful action or recovery
message, the output can look like:

label: severity: text
label: TO FIX: text

vpfmt
v p f m t is the same as p f m t except that instead of being called with a variable
number of arguments, it is called with an argument list as defined by the s t d a r g . h
header file.

The s t d a r g . h header file defines the type v a _ l i s t and a set of macros for advanc-
ing through a list of arguments whose number and types may vary. The argument
ap to v p f m t is of type v a _ l i s t. This argument is used with the s t d a r g . h header
file macros v a _ s t a r t, v a _ a r g and v a _ e n d [see v a _ s t a r t, v a _ a r g, and v a _ e n d in
s t d a r g(BA_ENV)]. The USAGE sections below show their use.

The macro v a _ a l i s t is used as the parameter list in a function definition as in the
function called e r r o r in the example below. The macro

v a _ s t a r t (ap,)

where ap is of type v a _ l i s t, must be called before any attempt to traverse and
access unnamed arguments. Calls to

v a _ a r g (ap, atype)

traverse the argument list. Each execution of v a _ a r g expands to an expression with
the value and type of the next argument in the list ap, which is the same object ini-
tialized by v a _ s t a r t. The argument atype is the type that the returned argument is
expected to be.

The

v a _ e n d (ap)

macro must be invoked when all desired arguments have been accessed. [The argu-
ment list in ap can be traversed again if v a _ s t a r t is called again after v a _ e n d.] In
the example below, v a _ a r g is executed first to retrieve the format string passed to
e r r o r. The remaining e r r o r arguments, arg1, arg2, . . ., are given to v p f m t in the
argument ap.

Return Values
On success, p f m t and v p f m t return the number of bytes transmitted. On failure,
they return a negative value:

Errors
–1 write error to stream

USAGE
pfmt Example 1

s e t l a b e l (" U X : t e s t ") ;
p f m t (s t d e r r , M M _ E R R O R , " t e s t : 2 : C a n n o t o p e n f i l e : % s \ n " ,
s t r e r r o r (e r r n o)) ;

Page 3

FINAL COPY
June 15, 1995

File: ba_lib/pfmt
svid

Page: 422

printf (BA_LIB) printf (BA_LIB)

NAME
f p r i n t f, p r i n t f, s n p r i n t f, s p r i n t f – print formatted output

SYNOPSIS
i n c l u d e < s t d i o . h >
i n t f p r i n t f (F I L E *strm, c o n s t c h a r *format, . . . / * args * /) ;

i n t p r i n t f (c o n s t c h a r *format, . . . / * args * /) ;

i n t s n p r i n t f (c h a r *s, s i z e _ t maxsize, c o n s t c h a r *format, . . . / * args * /) ;

i n t s p r i n t f (c h a r *s, c o n s t c h a r *format, . . . / * args * /) ;

DESCRIPTION
Each of these functions converts, formats, and outputs its args under control of the
character string format. Each function returns the number of characters transmitted
(not including the terminating null character in the case of s n p r i n t f, and s p r i n t f)
or a negative value if an output error was encountered.

f p r i n t f places output on strm.

p r i n t f places output on the standard output stream s t d o u t.

s p r i n t f places output, followed by a null character (\ 0), in consecutive bytes start-
ing at s. It is the caller’s responsibility to ensure that enough storage is available.

s n p r i n t f behaves like s p r i n t f, except that no more than m a x s i z e characters are
placed into the array, including the terminating null character. If more than maxsize
characters were requested, the output array will contain exactly maxsize characters,
with a null character being the last (when maxsize is nonzero); a negative value is
returned.

The format consists of zero or more ordinary characters (not %) which are directly
copied to the output, and zero or more conversion specifications, each of which is
introduced by the a % and results in the fetching of zero or more associated args.

Each conversion specification takes the following general form and sequence:

% [pos$] [flags] [width] [.prec] [size]fmt

pos$ An optional entry, consisting of one or more decimal digits followed by a $
character, that specifies the number of the next arg to access. The first arg
(just after format) is numbered 1. If this entry is not present, the arg following
the most recently used arg will be accessed.

flags Zero or more characters that change the meaning of the conversion
specification. The flag characters and their meanings are:

– The result of the conversion will be left-justified within the field. (It
will be right-justified if this flag is not specified.)

+ The result of a signed conversion will always begin with a sign (+ or
–). (It will begin with a sign only when a negative value is converted
if this flag is not specified.)

space If the first character of a signed conversion is not a sign, or if a signed
conversion results in no characters, a space will be prefixed to the
result. If the space and + flags both appear, the space flag will be
ignored.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/printf
svid

Page: 424

printf (BA_LIB) printf (BA_LIB)

The value is to be converted to an alternate form, depending on the
fmt character:

a, A, e, E, f, F, g, G
The result will contain a decimal point character, even if no
digits follow. (Normally, the decimal point character is only
present when fractional digits are produced.)

b, B A nonzero result will have 0 b or 0 B prefixed to it.

g, G Trailing zero digits will not be removed from the result, as
they normally are.

o The precision is increased (only when necessary) to force a
zero as the first digit.

x, X A nonzero result will have 0 x or 0 X prefixed to it.

For other conversions, the behavior is undefined.

0 For all numeric conversions (a, A, e, E, f, F, g, G, b, B, d, i, o, u, x and
X), leading zeros (following any indication of sign or base) are used to
pad to the field width; no space padding is performed. If the 0 and –
flags both appear, the 0 flag will be ignored. For the integer numeric
conversions (b, B, d, i, o, u, x and X), if a precision is specified, the 0
flag will be ignored. For other conversions, the behavior is
undefined.

´ (an apostrophe) The nonfractional portion of the result of a decimal
numeric conversion (d, i, u, f, F, g and G) will be grouped by the
current locale’s thousands’ separator character.

width An optional entry that consists of either one or more decimal digits, or an
asterisk (*), or an asterisk followed by one or more decimal digits and a $. It
specifies the minimum field width: If the converted value has fewer charac-
ters than the field width, it will be padded (with space by default) on the left
or right (see the above flags description) to the field width.

.prec An optional entry that consists of a period (.) that precedes either zero or
more decimal digits, or an asterisk (*), or an asterisk followed by one or
more decimal digits and a $. It specifies a value that depends on the fmt
character:

a, A, e, E, f, F
It specifies the number of fractional digits (those after the decimal
point character). For the hexadecimal floating conversions (a and A),
the number of fractional digits is just sufficient to produce an exact
representation of the value (trailing zero digits are removed); for the
other conversions, the default number of fractional digits is 6.

b, B, d, i, o, u, x, X
It specifies the minimum number of digits to appear. The default
minimum number of digits is 1.

Page 2

FINAL COPY
June 15, 1995

File: ba_lib/printf
svid

Page: 425

printf (BA_LIB) printf (BA_LIB)

g, G It specifies the maximum number of significant digits. The default
number of significant digits is 6.

s, S It specifies the maximum number of bytes to output. The default is
to take all elements up to the null terminator (the entire string).

If only a period is specified, the precision is taken to be zero. For other
conversions, the behavior is undefined.

size An optional h, l (ell), or L that specifies other than the default argument
type, depending on the fmt character:

a, A, e, E, f, F, g, G
The default argument type is d o u b l e; an l is ignored for compatibil-
ity with the s c a n f functions (a f l o a t arg will have been promoted to
d o u b l e); an L causes a l o n g d o u b l e arg to be converted.

b, B, o, u, x, X
The default argument type is u n s i g n e d i n t; an h causes the
u n s i g n e d i n t arg to be narrowed to u n s i g n e d s h o r t before conver-
sion; an l causes an u n s i g n e d l o n g arg to be converted.

c The default argument type is i n t which is narrowed to u n s i g n e d
c h a r before output; an l causes a w c h a r _ t arg to be converted (to a
multibyte character). l c is a synonym for C.

d, i The default argument type is i n t; an h causes the i n t arg to be nar-
rowed to s h o r t before conversion; an l causes a l o n g arg to be con-
verted.

n The default argument type is pointer to i n t; an h changes it to be a
pointer to s h o r t, and l to pointer to l o n g.

s The default argument type is pointer the first element of a character
array; an l changes it to be a pointer to the first element of a w c h a r _ t
array. l s is a synonym for S.

If a size appears other than in these combinations, the behavior is undefined.

fmt A conversion character (described below) that shows the type of conversion
to be applied.

When a field width or precision includes an asterisk (*), an i n t arg supplies the
width or precision value, and is said to be ‘‘indirect’’. A negative indirect field
width value is taken as a – flag followed by a positive field width. A negative
indirect precision value will be taken as zero. When an indirect field width or preci-
sion includes a $, the decimal digits similarly specify the number of the arg that sup-
plies the field width or precision. Otherwise, an i n t arg following the most recently
used arg will be accessed for the indirect field width, or precision, or both, in that
order; the arg to be converted immediately follows these. Thus, if a conversion
specification includes pos$ as well as a $-less indirect field width, or precision, or
both, pos is taken to be the number of the i n t arg used for the first $-less indirec-
tion, not the arg to be converted.

Page 3

FINAL COPY
June 15, 1995

File: ba_lib/printf
svid

Page: 426

printf (BA_LIB) printf (BA_LIB)

g, G The floating arg is converted in style e or f (or in style E or F in the case of a
G conversion character), with the precision specifying the number of
significant digits. If the precision is zero, it is taken as one. The style used
depends on the value converted; style e (or E) will be used only if the
exponent resulting from the conversion is less than –4 or greater than or
equal to the precision. Trailing zeros are removed from the fractional part
of the result; a decimal point character appears only if it is followed by a
digit.

n The arg is taken to be a pointer to an integer into which is written the
number of characters output so far by this call. No argument is converted.

p The arg is taken to be a pointer to v o i d. The value of the pointer is con-
verted to an sequence of printable characters, which matches those read by
the % p conversion of the s c a n f(BA_LIB) functions.

s The arg is taken to be a pointer to the first element of an array of characters.
Characters from the array are written up to (but not including) a terminat-
ing null character; if a precision is specified, no more than that many charac-
ters are written. If a precision is not specified or is greater than the size of
the array, the array must contain a terminating null character. (A null
pointer for arg will yield undefined results.)

S, l s The arg is taken to be a pointer to the first element of an array of w c h a r _ t.
Wide characters from the string are converted into multibyte characters, and
output until a null wide character is encountered or the number of bytes
given by the precision wide would be surpassed. If the precision
specification is missing, it is taken to be infinite. In no case will a partial
multibyte character be output.

% Output a %; no argument is converted.

If the form of the conversion specification does not match any of the above, the
results of the conversion are undefined. Similarly, the results are undefined if there
are insufficient args for the format. If the format is exhausted while args remain, the
excess args are ignored.

If a floating-point value represents an infinity, the output is [±]inf, where inf is
i n f i n i t y or I N F I N I T Y when the field width or precision is at least 8 and i n f or
I N F otherwise, the uppercase versions used only for a capitol conversion character.
Output of the sign follows the rules described above.

If a floating-point value has the internal representation for a NaN (not-a-number),
the output is [±]nan[(m)]. Depending on the conversion character, nan is similarly
either n a n or N A N. If the represented NaN matches the architecture’s default, no
(m) will be output. Otherwise m represents the bits from the significand in hexade-
cimal with a b c d e f or A B C D E F used, depending on the case of the conversion charac-
ter. Output of the sign follows the rules described above.

Otherwise, the locale’s decimal point character will be used to introduce the frac-
tional digits of a floating-point value.

Page 5

FINAL COPY
June 15, 1995

File: ba_lib/printf
svid

Page: 428

printf (BA_LIB) printf (BA_LIB)

A nonexistent or small field width does not cause truncation of a field; if the result
of a conversion is wider than the field width, the field is expanded to contain the
conversion result. Characters generated on streams (s t d o u t or strm) are printed as
if the p u t c function had been called repeatedly.

Errors
These functions return the number of characters transmitted (not counting the ter-
minating null character for s p r i n t f, v s p r i n t f, s n p r i n t f and v s n p r i n t f), or
return a negative value if an error was encountered.

USAGE
To print a date and time in the form ‘‘Sunday, July 3, 10:02,’’ where w e e k d a y and
m o n t h are pointers to null-terminated strings:

p r i n t f (" % s , % s % i , % d : % . 2 d " ,
w e e k d a y , m o n t h , d a y , h o u r , m i n) ;

To print π to 5 decimal places:

p r i n t f (" p i = % . 5 f " , 4 * a t a n (1 . 0)) ;

The following two calls to p r i n t f both produce the same result of
1 0 1 0 0 0 3 0 0 1 0:

p r i n t f (" % d % 1 $ d % . * d % 1 $ d " , 1 0 , 5 , 3 0 0) ;
p r i n t f (" % d % 1 $ d % 3 $. * 2 $ d % 1 $ d " , 1 0 , 5 , 3 0 0) ;

The following shows a simple use of v f p r i n t f, a function that writes formatted
output to s t d e r r by default.

i n c l u d e < s t d a r g . h >
i n c l u d e < s t d i o . h >

v o i d e r r p r i n t f (F I L E * f p , c o n s t c h a r * f m t , . . .)
{

v a _ l i s t a p ;

v a _ s t a r t (a p , f m t) ;
i f (f p = = 0)

f p = s t d e r r ;
(v o i d) v f p r i n t f (f p , f m t , a p) ;
v a _ e n d (a p) ;

}

SEE ALSO
a b o r t(BA_OS), e x i t(BA_OS), s c a n f(BA_LIB), f w p r i n t f(BA_LIB),
f w s c a n f(BA_LIB), l s e e k(BA_OS), p u t c(BA_LIB), s e t l o c a l e(BA_OS),
s t d i o(BA_LIB), w r i t e(BA_OS)

LEVEL
Level 1.

Page 6

FINAL COPY
June 15, 1995

File: ba_lib/printf
svid

Page: 429

ptsname (BA_LIB) ptsname (BA_LIB)

NAME
ptsname – get name of the slave pseudo-terminal device

SYNOPSIS
#include <stdio.h>

char *ptsname(int fildes);

DESCRIPTION
The function ptsname() returns the name of the slave pseudo-terminal device
associated with a master pseudo-terminal device. fildes is a file descriptor returned
from a successful open of the master device. ptsname() returns a pointer to a
string containing the null-terminated pathname of the slave device of the form
/dev/pts/N.

RETURN VALUE
Upon successful completion, the function ptsname() returns a pointer to a string
which is the name of the pseudo-terminal slave device. This value points to a static
data area that is overwritten by each call to ptsname(). Upon failure, ptsname()
returns NULL. This could occur if fildes is an invalid file descriptor or if the slave
device name does not exist in the file system.

SEE ALSO
grantpt(BA_LIB), open(BA_OS), ttyname(BA_LIB), unlockpt(BA_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/ptsname
svid

Page: 430

putc (BA_LIB) putc (BA_LIB)

NAME
p u t c, p u t c h a r, f p u t c, p u t w – put character or word on a stream

SYNOPSIS
i n c l u d e < s t d i o . h >

i n t p u t c (i n t c, F I L E ∗stream) ;

i n t p u t c h a r (i n t c) ;

i n t f p u t c (i n t c, F I L E ∗stream) ;

i n t p u t w (i n t w, F I L E ∗stream) ;

DESCRIPTION
p u t c writes c (converted to an u n s i g n e d c h a r) onto the output stream at the posi-
tion where the file pointer (if defined) is pointing, and advances the file pointer
appropriately. If the file cannot support positioning requests, or stream was opened
with append mode, the character is appended to the output stream. p u t c h a r (c) is
defined as p u t c (c , s t d o u t). p u t c and p u t c h a r are macros.

f p u t c behaves like p u t c, but is a function rather than a macro. f p u t c runs more
slowly than p u t c, but it takes less space per invocation and its name can be passed
as an argument to a function.

p u t w writes the word (that is, integer) w to the output stream (where the file pointer,
if defined, is pointing). The size of a word is the size of an integer and varies from
machine to machine. p u t w neither assumes nor causes special alignment in the file.

Return Values
Upon successful completion, the functions p u t c, f p u t c, and p u t c h a r return the
value they have written. Otherwise, these functions return the constant EOF and
set e r r n o to indicate the error. The function p u t w returns non-zero and sets the
error indicator for the stdio-stream when an error has occurred. Otherwise, the
function returns 0.

Errors
On success, these functions (with the exception of p u t w) each return the value they
have written. p u t w returns f e r r o r (stream). Otherwise, these functions return the
constant E O F and set e r r n o to indicate the error. If a write error occurs, the error
indicator for the stream is also set. This result will occur, for example, if the file
stream is not open for writing or if the output file cannot grow. Under the following
conditions, the functions p u t c (), p u t c h a r (), f p u t c () and p u t w () fail and set
e r r n o to:

E A G A I N if the O _ N O N B L O C K flag is set for the underlying file descriptor and the
process would have blocked in the write operation.

E B A D F if the underlying file descriptor is not a valid file descriptor open for
writing.

E F B I G if an attempt was made to write a file that exceeds the process’s file size
limit [see ulimit(BA_OS) and getrlimit(BA_OS)].

E I N T R if a signal was caught during the p u t c (), p u t c h a r (), f p u t c () or
p u t w () call and no data was transferred.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/putc
svid

Page: 431

putc (BA_LIB) putc (BA_LIB)

E I O if a physical I/O error has occurred or the process is a member of a
background process group attempting to write to its controlling termi-
nal, T O S T O P is set, the process is neither ignoring nor blocking S I G T T O U
and the process group of the process is orphaned.

E N O S P C if there is no free space remaining on the device containing the file.

E N X I O if the device associated with the underlying file descriptor is a block-
special or character-special file and the file-pointer value is out of range.

E P I P E if an attempt is made to write to a FIFO that is not open for reading by
any process. A S I G P I P E signal is also sent to the process.

SEE ALSO
a b o r t(BA_OS), f c l o s e(BA_OS), f e r r o r(BA_OS), f o p e n(BA_OS), f r e a d(BA_OS),
f t r y l o c k f i l e(MT_LIB), f l o c k f i l e(MT_LIB), p r i n t f(BA_LIB), p u t s(BA_LIB),
s e t b u f(BA_LIB), s t d i o(BA_LIB),

LEVEL
Level 1.

NOTICES
Because it is implemented as a macro, p u t c evaluates a stream argument more than
once. In particular, p u t c (c , ∗f + +) ; doesn’t work sensibly. f p u t c should be used
instead.

Because of possible differences in word length and byte ordering, files written using
p u t w are machine-dependent, and may not be read using g e t w on a different pro-
cessor.

Functions exist for all the above defined macros. To get the function form, the
macro name must be undefined (for example, # u n d e f p u t c).

Page 2

FINAL COPY
June 15, 1995

File: ba_lib/putc
svid

Page: 432

putenv (BA_LIB) putenv (BA_LIB)

NAME
putenv – change or add value to environment

SYNOPSIS
#include <stdlib.h>

int putenv(char *string);

DESCRIPTION
The argument string points to a string of the the following form:

name=value

The function putenv() makes the value of the environment variable name equal
to value by altering an existing variable or creating a new one. In either case, the
string pointed to by string becomes part of the environment, so altering the string
will change the environment. The space used by string is no longer used once a new
string-defining name is passed to the function putenv().

RETURN VALUE
The function putenv() returns non-zero if it was unable to obtain enough space
for an expanded environment, otherwise zero.

USAGE
The function putenv() manipulates the environment pointed to by environ, and
can be used in conjunction with getenv(). However, envp, the third argument to
main(), is not changed [see exec(BA_OS)].

A potential error is to call the function putenv() with a pointer to an automatic
variable as the argument and to then exit the calling function while string is still
part of the environment.

SEE ALSO
exec(BA_OS), malloc(BA_OS), getenv(BA_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/putenv
svid

Page: 433

puts (BA_LIB) puts (BA_LIB)

NAME
puts, fputs – put a string on a stdio-stream

SYNOPSIS
#include <stdio.h>

int puts(const char *s);

int fputs(const char *s, FILE *strm);

DESCRIPTION
The function puts() writes the null-terminated string pointed to by s, followed by
a newline character, to the standard output stream stdout.

The function fputs() writes the null-terminated string pointed to by s to strm.

Neither function writes the terminating null character.

The st_ctime and st_mtime fields of the file will be marked for update between
the successful execution of puts() or fputs() and the next successful comple-
tion of a call to fflush() or fclose() on the same stream or a call to exit() or
abort().

RETURN VALUE
Upon successful completion, the functions puts() and fputs() return the
number of characters written; otherwise these functions return EOF and set errno
to indicate an error.

ERRORS
Under the following conditions, the functions puts(), and fputs() fail and set
errno to:

EAGAIN if the O_NONBLOCK flag is set for the underlying file descriptor and the
process would have blocked in the write operation.

EBADF if the underlying file descriptor is not a valid file descriptor open for
writing.

EFBIG if an attempt was made to write a file that exceeds the process’s file size
limit [see ulimit(BA_OS) and getrlimit(BA_OS)].

EINTR if a signal was caught during the puts(), or fputs() call and no data
was transferred.

EIO if a physical I/O error has occurred or the process is a member of a
background process group attempting to write to its controlling termi-
nal, TOSTOP is set, the process is neither ignoring nor blocking SIGTTOU
and the process group of the process is orphaned.

ENOSPC if there is no free space remaining on the device containing the file.

ENXIO if the device associated with the underlying file descriptor is a block-
special or character-special file and the file-pointer value is out of range.

EPIPE if an attempt is made to write to a FIFO that is not open for reading by
any process. A SIGPIPE signal is also sent to the process.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/puts
svid

Page: 434

puts (BA_LIB) puts (BA_LIB)

USAGE
The function puts() appends a newline character while fputs() does not.

SEE ALSO
ferror(BA_OS), fopen(BA_OS), fread(BA_OS), gets(BA_LIB), printf(BA_LIB),
putc(BA_LIB).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ba_lib/puts
svid

Page: 435

putwc (BA_LIB) putwc (BA_LIB)

NAME
p u t w c, p u t w c h a r, f p u t w c – put wide character on a stream

SYNOPSIS
i n c l u d e < s t d i o . h >
i n c l u d e < w i d e c . h >

w i n t _ t p u t w c (w i n t _ t c, F I L E ∗stream) ;

w i n t _ t p u t w c h a r (w i n t _ t c) ;

w i n t _ t f p u t w c (w i n t _ t c, F I L E ∗stream) ;

DESCRIPTION
p u t w c transforms the wide character c into a multibyte character, and writes it to
the output stream (at the position where the file pointer, if defined, is pointing).
p u t w c h a r (c) is equivalent to p u t w c (c , s t d o u t).

p u t w c behaves like f p u t w c, expect that p u t w c may be implemented as a macro that
evaluates stream more than once.

Errors
On success, these functions return the value they have written. On failure, they
return the constant W E O F. If an I/O error occurs, the error indicator is set for the
stream. If c does not correspond to a valid multibyte character, e r r n o will be set to
E I L S E Q.

SEE ALSO
f c l o s e(BA_OS), f e r r o r(BA_OS), f o p e n(BA_OS), p r i n t f(BA_LIB),
s e t b u f(BA_LIB), s t d i o(BA_LIB)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/putwc
svid

Page: 436

fputws (BA_LIB) fputws (BA_LIB)

NAME
f p u t w s – put a w c h a r _ t string on a stream

SYNOPSIS
i n c l u d e < s t d i o . h >
i n c l u d e < w i d e c . h >

i n t f p u t w s (c o n s t w c h a r _ t ∗s, F I L E ∗stream) ;

DESCRIPTION
f p u t w s transforms the w c h a r _ t null-terminated w c h a r _ t string pointed to by s into
a multibyte character string, and writes the string to the named output stream. This
function does not write the terminating w c h a r _ t null character.

Errors
On success, this function returns the number of w c h a r _ t characters transformed
and written. Otherwise it returns E O F.

SEE ALSO
f r e a d(BA_OS), p r i n t f(BA_LIB), p u t w c(BA_LIB), s t d i o(BA_LIB)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/putws
svid

Page: 437

qsort (BA_LIB) qsort (BA_LIB)

NAME
qsort – quicker sort

SYNOPSIS
#include <stdlib.h>

void qsort(void *base, size_t nel, size_t width,
int (*compar)(const void *, const void *));

DESCRIPTION
The function qsort() is a general sorting algorithm. It sorts a table of data in
place. The contents of the table are sorted in ascending order according to the user
supplied comparison function.

The argument base points to the element at the base of the table.

The argument nel is the number of elements in the table.

The argument width is the size of an element in bytes.

The argument compar is the name of the user supplied comparison function, which
is called with two arguments that point to the elements being compared. The com-
parison function must return an integer less than, equal to or greater than zero to
indicate if the first argument is to be considered less than, equal to or greater than
the second argument.

USAGE
The comparison function need not compare every byte, so arbitrary data may be
contained in the elements in addition to the values being compared.

The relative order in the output of two items which compare as equal is unpredict-
able.

SEE ALSO
bsearch(BA_LIB), lsearch(BA_LIB), string(BA_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/qsort
svid

Page: 438

rand (BA_LIB) rand (BA_LIB)

NAME
r a n d, s r a n d – simple random-number generator

SYNOPSIS
i n c l u d e < s t d l i b . h >

i n t r a n d (v o i d) ;

v o i d s r a n d (u n s i g n e d i n t seed) ;

DESCRIPTION
r a n d uses a multiplicative congruent random-number generator with period 232

that returns successive pseudo-random numbers in the range from 0 to R A N D _ M A X
(defined in s t d l i b . h).

The function s r a n d uses the argument seed as a seed for a new sequence of pseudo-
random numbers to be returned by subsequent calls to the function r a n d. If the
function s r a n d is then called with the same seed value, the sequence of pseudo-
random numbers will be repeated. If the function r a n d is called before any calls to
s r a n d have been made, the same sequence will be generated as when s r a n d is first
called with a seed value of 1.

SEE ALSO
d r a n d 4 8(BA_LIB)

LEVEL
Level 2: September 30, 1989.
*Level 2: June 1993.

NOTICES
The spectral properties of r a n d are limited. d r a n d 4 8(BA_LIB) provides a much
better, though more elaborate, random-number generator.

Each thread that accesses one of the functions d r a n d 4 8 , l r a n d 4 8 , m r a n d 4 8 ,
s r a n d 4 8 , s e e d 4 8, or l c o n g 4 8 should be coded as per the following example:

m u t e x _ l o c k (I _ a m _ u s i n g _ d r a n d 4 8) ;
v a l u e = F U N C T I O N () ;
m u t e x _ u n l o c k (I _ a m _ u s i n g _ d r a n d 4 8) ;

where F U N C T I O N is one of those listed. The same mutex must be used for all six
functions.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/rand
svid

Page: 439

regcomp (BA_LIB) regcomp (BA_LIB)

NAME
r e g c o m p , r e g e x e c , r e g e r r o r , r e g f r e e – regular expression matching

SYNOPSIS
i n c l u d e < r e g e x . h >

i n t r e g c o m p (r e g e x _ t ∗preg, c o n s t c h a r ∗pattern, i n t flags) ;

i n t r e g e x e c (c o n s t r e g e x _ t ∗preg, c o n s t c h a r ∗string, s i z e _ t n,
r e g m a t c h _ t ∗pmatch, i n t flags) ;

s i z e _ t r e g e r r o r (i n t ecode, c o n s t r e g e x _ t ∗preg, c h a r ∗buf, s i z e _ t n) ;

v o i d r e g f r e e (r e g e x _ t ∗preg) ;

DESCRIPTION
These functions are part of the X/Open Portability Guide Issue 4 optional POSIX2
C-Language Binding feature group.

Return Values
r e g c o m p returns R E G _ N O S Y S and sets e r r n o to E N O S Y S.

r e g e r r o r returns 0 and sets e r r n o to E N O S Y S.

r e g e x e c returns R E G _ N O S Y S and sets e r r n o to E N O S Y S.

r e g f r e e returns and sets e r r n o to E N O S Y S.

USAGE
Administrator.

SEE ALSO
r e g e x p(BA_ENV)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/regcomp
svid

Page: 440

regexp (BA_LIB) regexp (BA_LIB)

NAME
regexp: compile, step, advance – regular expression compile and match routines

SYNOPSIS
#define INIT declarations
#define GETC(void) getc code
#define PEEKC(void) peekc code
#define UNGETC(void) ungetc code
#define RETURN(ptr) return code
#define ERROR(val) error code

#include <regexp.h>

char *compile(char *instring, char *expbuf, char *endbuf,
int eof);

int step(char *string, char *expbuf);

int advance(char *string, char *expbuf);

extern char *loc1, *loc2, *locs;

DESCRIPTION
These functions are general purpose regular expression matching routines to be
used in programs that perform regular expression matching. These functions are
defined by the <regexp.h> header file.

The functions step() and advance() do pattern matching given a character
string and a compiled regular expression as input.

The function compile() takes as input a regular expression as defined below and
produces a compiled expression that can be used with step() or advance().

A regular expression specifies a set of character strings. A member of this set of
strings is said to be matched by the regular expression. Some characters have spe-
cial meaning when used in a regular expression; other characters stand for them-
selves.

The regular expressions available for use with the regexp functions are constructed
as follows:

Expression Meaning

c the character c where c is not a special character.

\c the character c where c is any character, except a digit in the range
1–9.

ˆ the beginning of the line being compared.

$ the end of the line being compared.

. any character in the input.

[s] any character in the set s, where s is a sequence of characters and/or a
range of characters, e.g., [c–c].

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/regexp
svid

Page: 441

regexp (BA_LIB) regexp (BA_LIB)

[ˆs] any character not in the set s, where s is defined as above.

r* zero or more successive occurrences of the regular expression r. The
longest leftmost match is chosen.

rx the occurrence of regular expression r followed by the occurrence of
regular expression x. (Concatenation)

r\{m,n\} any number of m through n successive occurrences of the regular
expression r. The regular expression r\{m\} matches exactly m
occurrences; r\{m,\} matches at least m occurrences.

\(r\) the regular expression r. When \n (where n is a number greater than
zero) appears in a constructed regular expression, it stands for the reg-
ular expression x where x is the nth regular expression enclosed in \(
and \) that appeared earlier in the constructed regular expression.
For example, \(r\)x\(y\)z\2 is the concatenation of regular
expressions rxyzy.

Characters that have special meaning except when they appear within square brack-
ets ([]) or are preceded by \ are: ., *, [, \. Other special characters, such as $
have special meaning in more restricted contexts.

The character ˆ at the beginning of an expression permits a successful match only
immediately after a newline, and the character $ at the end of an expression
requires a trailing newline.

Two characters have special meaning only when used within square brackets. The
character – denotes a range, [c–c], unless it is just after the open bracket or before
the closing bracket, [–c] or [c–] in which case it has no special meaning. When
used within brackets, the character ˆ has the meaning complement of if it immedi-
ately follows the open bracket (example: [ˆc]); elsewhere between brackets (exam-
ple: [cˆ]) it stands for the ordinary character ˆ.

The special meaning of the \ operator can be escaped only by preceding it with
another \, e.g. \\.

Programs must have the following five macros declared before the #include
<regexp.h> statement. These macros are used by the compile() routine. The
macros GETC(), PEEKC(), and UNGETC() operate on the regular expression given
as input to compile().

GETC() This macro returns the value of the next character (byte) in the reg-
ular expression pattern. Successive calls to GETC() should return
successive characters of the regular expression.

PEEKC() This macro returns the next character (byte) in the regular expres-
sion. Immediately successive calls to PEEKC() should return the
same character, which should also be the next character returned
by GETC().

UNGETC() This macro causes the argument c to be returned by the next call to
GETC() and PEEKC(). No more than one character of pushback is
ever needed and this character is guaranteed to be the last charac-
ter read by GETC(). The return value of the macro UNGETC(c) is
always ignored.

Page 2

FINAL COPY
June 15, 1995

File: ba_lib/regexp
svid

Page: 442

regexp (BA_LIB) regexp (BA_LIB)

RETURN(ptr) This macro is used on normal exit of the compile() routine. The
value of the argument ptr is a pointer to the character after the last
character of the compiled regular expression. This is useful to pro-
grams which have memory allocation to manage.

ERROR(val) This macro is the abnormal return from the compile() routine.
The argument val is an error number [see ERRORS below for
meanings]. This call should never return.

The syntax of the compile() routine is as follows:

compile(instring, expbuf, endbuf, eof)

The first parameter, instring, is never used explicitly by the compile() routine but
is useful for programs that pass down different pointers to input characters. It is
sometimes used in the INIT declaration (see below). Programs which call functions
to input characters or have characters in an external array can pass down a value of
(char *)0 for this parameter.

The next parameter, expbuf, is a character pointer. It points to the place where the
compiled regular expression will be placed.

The parameter endbuf is one more than the highest address where the compiled reg-
ular expression may be placed. If the compiled expression cannot fit in
(endbuf–expbuf) bytes, a call to ERROR(50) is made.

The parameter eof is the character which marks the end of the regular expression.
This character is usually a /.

Each program that includes the <regexp.h> header file must have a #define
statement for INIT. It is used for dependent declarations and initializations. Most
often it is used to set a register variable to point to the beginning of the regular
expression so that this register variable can be used in the declarations for GETC(),
PEEKC(), and UNGETC(). Otherwise it can be used to declare external variables
that might be used by GETC(), PEEKC() and UNGETC(). [See EXAMPLE below.]

The first parameter to the step() and advance() functions is a pointer to a
string of characters to be checked for a match. This string should be null ter-
minated.

The second parameter, expbuf, is the compiled regular expression which was
obtained by a call to the function compile().

The function step() returns non-zero if some substring of string matches the regu-
lar expression in expbuf and zero if there is no match. If there is a match, two exter-
nal character pointers are set as a side effect to the call to step(). The variable
loc1 points to the first character that matched the regular expression; the variable
loc2 points to the character after the last character that matches the regular expres-
sion. Thus if the regular expression matches the entire input string, loc1 will
point to the first character of string and loc2 will point to the null at the end of
string.

The function advance() returns non-zero if the initial substring of string matches
the regular expression in expbuf. If there is a match, an external character pointer,
loc2, is set as a side effect. The variable loc2 points to the next character in string
after the last character that matched.

Page 3

FINAL COPY
June 15, 1995

File: ba_lib/regexp
svid

Page: 443

regexp (BA_LIB) regexp (BA_LIB)

When advance() encounters a * or \{ \} sequence in the regular expression, it
will advance its pointer to the string to be matched as far as possible and will recur-
sively call itself trying to match the rest of the string to the rest of the regular
expression. As long as there is no match, advance() will back up along the string
until it finds a match or reaches the point in the string that initially matched the *
or \{ \}. It is sometimes desirable to stop this backing up before the initial point
in the string is reached. If the external character pointer locs is equal to the point
in the string at sometime during the backing up process, advance() will break
out of the loop that backs up and will return zero.

The external variables circf, sed, and nbra are reserved.

RETURN VALUE
The function compile() uses the macro RETURN on success and the macro ERROR
on failure (see above). The functions step() and advance() return non-zero on a
successful match and zero if there is no match.

ERRORS
11 range endpoint too large.

16 bad number.

25 \ digit out of range.

36 illegal or missing delimiter.

41 no remembered search string.

42 \(\) imbalance.

43 too many \(.

44 more than 2 numbers given in \{ \}.

45 } expected after \.

46 first number exceeds second in \{ \}.

49 [] imbalance.

50 regular expression overflow.

EXAMPLE
The following is an example of how the regular expression macros and calls might
be defined by an application program:

#define INIT register char *sp = instring;
#define GETC() (*sp++)
#define PEEKC() (*sp)
#define UNGETC(c) (––sp)
#define RETURN(*c) return;
#define ERROR(c) regerr()

#include <regexp.h>

. . .
(void) compile(*argv, expbuf, &expbuf[ESIZE],’\0’);

. . .
if (step(linebuf, expbuf))

succeed();

Page 4

FINAL COPY
June 15, 1995

File: ba_lib/regexp
svid

Page: 444

regexp (BA_LIB) regexp (BA_LIB)

FUTURE DIRECTIONS
The functionality of the regexp functions will eventually be replaced by a more
complete interface and the regexp functions will be discontinued.

LEVEL
Level 2: September 30, 1989.

Page 5

FINAL COPY
June 15, 1995

File: ba_lib/regexp
svid

Page: 445

scalb (BA_LIB) scalb (BA_LIB)

NAME
scalb, logb, nextafter – radix-independent functions

SYNOPSIS
#include <math.h>

‡double scalb(double x, double n);

‡double logb(double x);

double nextafter(double x, double y);

DESCRIPTION
The functions scalb(), logb(), and nextafter() supply radix-independent
facilities for manipulating floating point numbers.

The function scalb() returns x ∗ rn where r is the radix of the machine’s floating
point arithmetic. When r is 2, scalb() returns the same value as ldexp [see
ldexp() in frexp(BA_LIB)].

The function logb() returns the exponent of x. Formally, the return value is the
integral part of logr x as a signed floating point value, for non-zero x.

The function nextafter() returns the next representable double-precision
floating-point value following x in the direction of y. Thus, if y is less than x, nex-
tafter returns the largest representable floating-point number less than x.

RETURN VALUE
A macro HUGE_VAL is defined in the <math.h> header file. This macro calls a
function that either returns +∞ on a system supporting the IEEE 754 standard or
+{MAXDOUBLE} on a system that does not support the IEEE 754 standard.

If the correct value would overflow, the function scalb() returns ±HUGE_VAL
(according to the sign of x) and sets errno to ERANGE.

If the correct value would underflow, the function scalb() returns zero and sets
errno to ERANGE.

The function logb() returns −HUGE_VAL when x is zero and sets errno to EDOM.

On implementations which support IEEE NaN, if an input parameter is NaN, then
the function will return NaN.

SEE ALSO
frexp(BA_LIB).

FUTURE DIRECTIONS
In a future edition of the SVID, logb will be updated according to NCEG recom-
mendations to be conformant to the IEEE Standard 854 rather than 754.

LEVEL
Level 1.

logb() is designated Level 2, June 1993.

scalb() is designated Level 2, September 30, 1993.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/scalb
svid

Page: 446

scanf (BA_LIB) scanf (BA_LIB)

b, o, u, x
The default argument type is pointer to u n s i g n e d i n t; an h changes
it to be a pointer to u n s i g n e d s h o r t i n t, and l to pointer to
u n s i g n e d l o n g i n t.

c, s, [. . .]
The default argument type is pointer to character; an l changes it to a
pointer to w c h a r _ t. l c (l s) is a synonym for C (S).

d, i, n The default argument type is pointer to i n t; an h changes it to be a
pointer to s h o r t i n t, and l to pointer to l o n g i n t.

If a size appears other than in these combinations, the behavior is undefined.

fmt A conversion character or sequence (described below) that shows the type of
conversion to be applied.

A conversion specification directs the matching and conversion of the next input
item; the result is placed in the object pointed to by the corresponding arg unless
assignment suppression was indicated by the ∗ flag. The suppression of assignment
provides a way of describing an input item that is to be skipped. For all conversion
specifiers except c, C, n and [. . .], leading single-byte white-space characters are
skipped. An input item is usually defined as a sequence of non-white-space single-
byte characters that extends to the next inappropriate single-byte character or until
the maximum field width (if one is specified) is exhausted. For C, S and l [. . .], the
field width instead specifies the number of multibyte characters.

The conversion specifiers and their meanings are:

a, e, f, g
Matches an optionally signed floating number, whose format is the same as
expected for the subject string of the s t r t o d function see s t r t o l(BA_LIB).

b, o, u, x
Matches an optionally signed integer, whose format is the same as expected
for the subject sequence of the s t r t o u l function (see s t r t o l(BA_LIB)) with
the respective values of 2, 8, 10 or 16 for the base argument.

c Matches a sequence of single-byte characters of the number specified by the
field width (1 if no field width is present in the directive). The correspond-
ing argument should be a pointer to the initial element of a character array
large enough to accept the sequence. No null character is added. The nor-
mal skip over white space is suppressed.

C, l c Matches a sequence of multibyte characters of the number specified by the
field width (1 if no field width is present in the directive). The correspond-
ing argument should be a pointer to the initial element of a w c h a r _ t array
large enough to accept the sequence of generated wide characters. No null
wide character is added. The normal skip over white space is suppressed.

d, i Matches an optionally signed integer, whose format is the same as expected
for the subject sequence of the s t r t o l(BA_LIB) function with the respective
values of 10 or 0 for the base argument.

Page 2

FINAL COPY
June 15, 1995

File: ba_lib/scanf
svid

Page: 448

scanf (BA_LIB) scanf (BA_LIB)

n No input is consumed. The number of characters so far read by this call is
written into the integer pointed to by the corresponding argument. Execu-
tion of a % n directive does not increment the assignment count returned at
the completion of this call.

p Matches a sequence of printable characters as is produced by the
p r i n t f(BA_LIB) functions’ % p conversion. The corresponding argument
should be a pointer to a pointer to v o i d. If the input matched is a value
converted earlier (during the same program execution), the pointer that
results will compare equal to that value; otherwise, the behavior is
undefined.

s Matches a sequence of single-byte characters, optionally delimited by
single-byte white-space characters. The corresponding argument should be
a pointer to the initial element of a character array large enough to accept
the sequence and a terminating null character, which will be added
automatically.

S, l s Matches a sequence of multibyte characters, optionally delimited by single-
byte white-space characters. The corresponding argument should be a
pointer to the initial element of a w c h a r _ t array large enough to accept the
sequence of generated wide characters and a terminating null wide charac-
ter, which will be added automatically.

[. . .] Matches a nonempty sequence of single-byte characters from a set of
expected characters (the scanset) as designated by the characters between the
brackets (the scanlist), see below. The corresponding argument should be a
pointer to the initial element of a character array large enough to accept the
sequence and a terminating null character, which will be added automati-
cally.

l [. . .]
Matches a nonempty sequence of multibyte characters from a set of
expected multibyte characters (the scanset) as designated by the multibyte
characters between the brackets (the scanlist), see below. The corresponding
argument should be a pointer to the initial element of a w c h a r _ t array large
enough to accept the sequence of generated wide characters and a terminat-
ing null wide character, which will be added automatically.

% Matches a single %; no assignment is done.

For [. . .] and l [. . .], the scanlist consists of all characters up to, but not includ-
ing, the matching right bracket (]). The first right bracket matches unless the
specifier begins with [] or [̂], in which case the scanlist includes a] and the
matching one is the second right bracket. The scanset is those characters described
by the scanlist unless it begins with a circumflex (ˆ), in which case the scanset is
those characters not described by the scanlist that follows the circumflex. The scan-
list can describe an inclusive range of characters by low–high where low is not lexi-
cally greater than high (and where these endpoints are in the same codeset for
l [. . .] in locales whose multibyte characters have such); otherwise, a dash (–) will
stand for itself, as it will when it occurs last in the scanlist, or the first, or the second
when a circumflex is first.

Page 3

FINAL COPY
June 15, 1995

File: ba_lib/scanf
svid

Page: 449

scanf (BA_LIB) scanf (BA_LIB)

If the form of the conversion specification does not match any of the above, the
results of the conversion are undefined. Similarly, the results are undefined if there
are insufficient pointer args for the format. If the format is exhausted while args
remain, the excess args are ignored.

When matching floating numbers, the locale’s decimal point character is taken to
introduce a fractional portion, the sequences i n f and i n f i n i t y (case ignored) are
taken to represent infinities, and the sequence n a n[(m)] (case ignored), where the
optional parenthesized m consists of zero or more alphanumeric or underscore (_)
characters, are taken to represent NaNs (not-a-numbers). Note, however, that the
locale’s thousands’ separator character will not be recognized as such.

If conversion terminates on a conflicting input character, the offending input char-
acter is left unread in the input stream. Trailing white space (including newline
characters) is left unread unless matched by a directive.

If end-of-file is encountered during input, conversion is terminated. If end-of-file
occurs before any characters matching the current directive have been read (other
than leading white space where permitted), execution of the current directive ter-
minates with an input failure; otherwise, unless execution of the current directive is
terminated with a matching failure, execution of the following directive (other than
% n, if any) is terminated with an input failure.

If a truncated sequence (due to reaching end-of-file or a conflicting input character,
or because a field width is exhausted) does not form a valid match for the current
directive, the directive is terminated with a matching failure.

The success of literal matches and suppressed assignments is not directly determin-
able other than via the % n directive.

Characters from streams (s t d i n or strm) are read as if the g e t c function had been
called repeatedly.

Errors
These routines return the number of successfully matched and assigned input
items; this number can be zero in the event of an early matching failure. If the input
ends before the first matching failure or conversion, E O F is returned.

USAGE
The call to the function s c a n f:

i n t i , n ; f l o a t x ; c h a r n a m e [5 0] ;
n = s c a n f (" % d % f % s " , & i , & x , n a m e) ;

with the input line:

2 5 5 4 . 3 2 E – 1 t h o m p s o n

will assign to n the value 3, to i the value 2 5, to x the value 5 . 4 3 2, and n a m e will
contain t h o m p s o n \ 0.

The call to the function s c a n f:

i n t i ; f l o a t x ; c h a r n a m e [5 0] ;
(v o i d) s c a n f (" % 2 d % f %∗d % [0 – 9] " , & i , & x , n a m e) ;

Page 4

FINAL COPY
June 15, 1995

File: ba_lib/scanf
svid

Page: 450

scanf (BA_LIB) scanf (BA_LIB)

with the input line:

5 6 7 8 9 0 1 2 3 5 6 a 7 2

will assign 5 6 to i, 7 8 9 . 0 to x, skip 0 1 2 3, and place the characters 5 6 \ 0 in n a m e.
The next character read from s t d i n will be a.

The following shows a simple use of v f s c a n f, a function that reads formatted input
from its own connection to / d e v / t t y.

i n c l u d e < s t d a r g . h >
i n c l u d e < s t d i o . h >

s t a t i c F I L E * i n s t r e a m ;

i n t s c a n (c o n s t c h a r * f m t , . . .)
{

v a _ l i s t a p ;
i n t r e t ;

v a _ s t a r t (a p , f m t) ;
i f (i n s t r e a m = = 0) {

i f ((i n s t r e a m = f o p e n (" / d e v / t t y " , " r ")) = = 0)
r e t u r n E O F ;

}
r e t = v f s c a n f (i n s t r e a m , f m t , a p) ;
v a _ e n d (a p) ;
r e t u r n r e t ;

}

SEE ALSO
p r i n t f(BA_LIB), f w p r i n t f(BA_LIB), f w s c a n f(BA_LIB), g e t c(BA_LIB),
s t d i o(BA_LIB), s t r t o l(BA_LIB)

LEVEL
Level 1.

Page 5

FINAL COPY
June 15, 1995

File: ba_lib/scanf
svid

Page: 451

setbuf (BA_LIB) setbuf (BA_LIB)

NAME
setbuf, setvbuf – assign buffering to a stdio-stream

SYNOPSIS
#include <stdio.h>

void setbuf(FILE *strm, char *buf);

int setvbuf(FILE *strm, char *buf, int type, size_t size);

DESCRIPTION
The function setbuf() may be used after a stdio-stream has been opened, but
before it is read or written. It causes the array pointed to by buf to be used instead
of an automatically allocated buffer. If buf is NULL, input/output will be com-
pletely unbuffered.

A constant BUFSIZ, defined by the <stdio.h> header file, tells how big an array is
needed:

char buf[BUFSIZ];

The function setvbuf() may be used after strm has been opened, but before it is
read or written. The value of type determines how strm will be buffered. Legal
values for type, defined by the <stdio.h> header file, are:

_IOFBF causes input/output to be fully buffered.

_IOLBF causes output to be line buffered; the buffer will be flushed when a new-
line is written, the buffer is full, or input is requested.

_IONBF causes input/output to be completely unbuffered.

If buf is not NULL, the array it points to will be used for buffering instead of an
automatically allocated buffer. The value of size specifies the size of the buffer to be
used. The constant BUFSIZ, in the <stdio.h> header file, is suggested as a good
buffer size. If input/output is unbuffered, buf and size are ignored.

When strm is unbuffered, characters are intended to appear from the source or at
the destination as soon as possible. Otherwise, characters may be accumulated and
transmitted to and from the host environment as a block. When strm is fully buf-
fered, characters are intended to be transmitted to or from the host environment as
a block when the buffer is filled. When strm is line buffered, characters are intended
to be transmitted to or from the host environment as a block when a newline char-
acter is encountered. Furthermore, characters are intended to be transmitted as a
block to the host environment when a buffer is filled, when input is requested on a
line-buffered strm that requires the transmission of characters from the host
environment.

By default, output to a terminal is line buffered and all other input/output is fully
buffered, except the standard error stream stderr, which is normally not buffered.

RETURN VALUE
If an illegal value for type or size is provided, the function setvbuf() returns a
non-zero value; otherwise, the value returned will be zero.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/setbuf
svid

Page: 452

setbuf (BA_LIB) setbuf (BA_LIB)

USAGE
A common source of error is allocating buffer space as an automatic variable in a
code block, and then failing to close the stdio-stream in the same block.

SEE ALSO
fopen(BA_OS), malloc(BA_OS), getc(BA_LIB), putc(BA_LIB).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ba_lib/setbuf
svid

Page: 453

setcat (BA_LIB) setcat (BA_LIB)

NAME
setcat – define default catalog

SYNOPSIS
#include <pfmt.h>

char *setcat(const char *catalog);

DESCRIPTION
The routine setcat() defines the default message catalog to be used by subse-
quent calls to pfmt(), vpfmt(), lfmt(),vlfmt(), or gettxt() that do not
explicitly specify a message catalog.

catalog must be limited to 14 characters. These characters must be selected from a
set of all characters values, excluding \0 (null) and the ASCII codes for / (slash)
and : (colon).

setcat() assumes that the catalog exists. No checking is done on the argument.

A NULL pointer passed as an argument will result in the return of a pointer to the
current default message catalog name. A pointer to an empty string passed as an
argument will cancel the default catalog.

If no default catalog is specified, or if catalog is an invalid catalog name, subsequent
calls to gettxt(), pfmt(), vpfmt(), lfmt(), or vlfmt() that do not explicitly
specify a catalog name will use Message not found!!\n as the default string.

RETURN VALUE
Upon success, setcat() returns a pointer to the catalog name. Upon failure,
setcat() returns a NULL pointer.

EXAMPLE
setcat("test");
gettxt(":10", "hello world\n");

SEE ALSO
envvar(BA_ENV), gettxt(BA_LIB), lfmt(BA_LIB), pfmt(BA_LIB), setlocale(BA_LIB).

LEVEL
Level 2: April 1991.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/setcat
svid

Page: 454

setjmp (BA_LIB) setjmp (BA_LIB)

NAME
setjmp, longjmp – non-local goto

SYNOPSIS
#include <setjmp.h>

int setjmp(jmp_buf env);

void longjmp(jmp_buf env, int val);

DESCRIPTION
These functions are useful for dealing with errors and interrupts encountered in a
low-level subroutine of a program.

The function setjmp() saves its stack environment in env (whose type, jmp_buf,
is defined by the <setjmp.h> header file) for later use by the function
longjmp(). The function setjmp() returns the value 0.

The function longjmp() restores the environment saved by the last call to the
function setjmp() with the corresponding argument env.

After the function longjmp() is completed, program execution continues as if the
corresponding call to the function setjmp() (the caller of which must not itself
have returned in the interim) had just returned the value val. All accessible vari-
ables of storage class static or external have values as of the time the function
longjmp() was called. The values of variables of storage class automatic or regis-
ter are indeterminate.

RETURN VALUE
When the function setjmp() has been called by the calling process, it returns 0.

The function longjmp() does not return from where it was called, but rather, pro-
gram execution continues as if the previous call to the function setjmp() returned
with a return value of val. That is, when the function setjmp() returns as a result
of the function longjmp() being called, the function setjmp() returns val. How-
ever, the function longjmp() cannot cause the function setjmp() to return the
value 0. If the function longjmp() is invoked with a val of 0, the function
setjmp() will return 1.

USAGE
If the function longjmp() is called even though the argument env was never
primed by a call to the function setjmp(), or when the last such call was in a func-
tion which has since returned, the behavior is undefined.

SEE ALSO
signal(BA_OS), sigsetjmp(BA_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/setjmp
svid

Page: 455

setlabel (BA_LIB) setlabel (BA_LIB)

NAME
setlabel – define the label for pfmt() and lfmt().

SYNOPSIS
#include <pfmt.h>

int setlabel(const char *label);

DESCRIPTION
The routine setlabel() defines the label for messages produced in standard for-
mat by subsequent calls to pfmt(),vpfmt(), lfmt(), and vlfmt().

label is a character string no more than 25 characters in length.

No label is defined before setlabel() is called. A NULL pointer or an empty
string passed as argument will reset the definition of the label to no label.

RETURN VALUE
setlabel() returns 0 in case of success, non-zero otherwise.

USAGE
The label should be set once at the beginning of a utility and remain constant.

If setlabel() is called before getopt(), getopt() will use that label. Other-
wise, getopt() will use the name of the utility.

EXAMPLE
The following code (without previous call to setlabel()):

pfmt(stderr, MM_ERROR, "test:2:Cannot open file\n");
setlabel("UX:test");
pfmt(stderr, MM_ERROR, "test:2:Cannot open file\n");

will produce the following output:
ERROR: Cannot open file
UX:test: ERROR: Cannot open file

SEE ALSO
getopt(BA_LIB), lfmt(BA_LIB), pfmt(BA_LIB).

LEVEL
Level 2: April 1991.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/setlabel
svid

Page: 456

sigsetjmp (BA_LIB) sigsetjmp (BA_LIB)

NAME
sigsetjmp, siglongjmp – a non-local goto with signal state

SYNOPSIS
#include <setjmp.h>

int sigsetjmp(sigjmp_buf env, int savemask);

void siglongjmp(sigjmp_buf env, int val);

DESCRIPTION
These functions are useful for dealing with errors and interrupts encountered in a
low-level subroutine of a program.

The function sigsetjmp() saves the calling process’s registers, stack environment
[see sigaltstack(BA_OS)] and, if savemask is non-zero, signal mask [see
sigprocmask(BA_OS)] in env (whose type, sigjmp_buf, is defined in the
<setjmp.h> header file) for later use by siglongjmp().

The function siglongjmp() restores the environment saved by the last call of
sigsetjmp() with the corresponding env argument. After siglongjmp() is
completed, program execution continues as if the corresponding call of sig-
setjmp() (which must not itself have returned in the interim) had just returned
the value val . siglongjmp() cannot cause sigsetjmp() to return the value 0.
If siglongjmp() is invoked with a second argument of 0, sigsetjmp() will
return 1. At the time of the second return from sigsetjmp(), all external and
static variables have values as of the time siglongjmp() was called. The values
of register and automatic variables are undefined.

If a signal-catching function interrupts sleep() and calls siglongjmp() to
restore an environment saved prior to the sleep() call, the action associated with
SIGALRM and time it is scheduled to be generated are unspecified. It is also
unspecified whether the SIGALRM signal is blocked, unless the process’s signal
mask is restored as part of the environment.

The function siglongjmp() restores the saved signal mask if and only if the env
argument was initialized by a call to the sigsetjmp() function with a non-zero
savemask argument.

RETURN VALUE
The function sigsetjmp() returns the value 0 when env is originally established,
and val when env is restored by a subsequent call to siglongjmp().

The function siglongjmp() does not return.

SEE ALSO
sigaction(BA_OS), sigaltstack(BA_OS), sigprocmask(BA_OS), setjmp(BA_LIB).
sleep(BA_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/sigsetjmp
svid

Page: 457

stdio (BA_LIB) stdio (BA_LIB)

NAME
stdio – standard buffered input/output package

SYNOPSIS
#include <stdio.h>

FILE ∗stdin, ∗stdout, ∗stderr;
DESCRIPTION

The functions described as Standard I/O routines (stdio) constitute an efficient,
user-level I/O buffering scheme. The functions getc() and putc() handle char-
acters quickly. The functions getchar() and putchar(), and the higher-level
routines fgetc(), fgets(), fprintf(), fputc(), fputs(), fread(),
fscanf(), fwrite(), gets(), getw(), printf(), puts(), putw(), and
scanf() all use or act as if they use getc() and putc(); they can be freely
intermixed.

A file with associated buffering is called a stdio-stream and is declared to be a
pointer to a defined type FILE. fopen() creates certain descriptive data for a
stdio-stream and returns a pointer to designate the stdio-stream in all further tran-
sactions. Normally, there are three open stdio-streams with constant pointers
declared in the <stdio.h> header file and associated with the standard open files:

stdin standard input file
stdout standard output file
stderr standard error file

When opened, the standard error stdio-stream is not fully buffered [see
setbuf(BA_LIB)]; the standard input and standard output stdio-streams are fully
buffered if and only if the stdio-stream can be determined not to refer to an interac-
tive device.

The following symbolic values in <unistd.h> define the file descriptors that will
be associated with the C-language stdin, stdout and stderr when the applica-
tion is started:

STDIN_FILENO Standard input value, stdin. It has a value of 0.
STDOUT_FILENO Standard output value, stdout. It has a value of 1.
STDERR_FILENO Standard error value, stderr. It has a value of 2.

A constant NULL designates a nonexistent pointer.

An integer constant EOF is returned upon end-of-file or error by most integer func-
tions that deal with streams (see the individual descriptions for details).

An integer constant BUFSIZ specifies the size of the buffers used by the particular
implementation.

Any program that uses this package must include the header file of pertinent macro
definitions, as follows:

#include <stdio.h>

The Standard I/O related functions and constants are declared in that header file
and need no further declaration. The constants and the following ‘‘functions’’ may
be implemented as macros, hence, redeclaration of these names is

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/stdio
svid

Page: 458

stdio (BA_LIB) stdio (BA_LIB)

perilous: getc(), getchar(), putc(), putchar(), ferror(),
feof(), clearerr(), and fileno().

RETURN VALUE
Invalid stdio-stream pointers will usually cause grave disorder, possibly including
program termination. Individual function descriptions describe the possible error
conditions.

SEE ALSO
fclose(BA_OS), ferror(BA_OS), fopen(BA_OS), fread(BA_OS), fseek(BA_OS),
getc(BA_LIB), gets(BA_LIB), popen(BA_LIB), printf(BA_LIB), putc(BA_LIB),
puts(BA_LIB), scanf(BA_LIB), setbuf(BA_LIB), tmpfile(BA_LIB), ungetc(BA_LIB),
unistd.h(BA_ENV).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ba_lib/stdio
svid

Page: 459

strcoll (BA_LIB) strcoll (BA_LIB)

NAME
strcoll – string collation

SYNOPSIS
#include <string.h>

int strcoll(const char *s1, const char *s2);

DESCRIPTION
The function strcoll() returns an integer greater than, equal to, or less than zero
in direct correlation to whether string s1 is greater than, equal to, or less than the
string s2. The comparison is based on strings interpreted as appropriate to the
program’s locale for category LC_COLLATE [see setlocale(BA_OS)].

Both strcoll() and strxfrm() provide for locale-specific string sorting.
strcoll() is intended for applications in which the number of comparisons per
string is small. When strings are to be compared a number of times, strxfrm() is
a more appropriate utility because the transformation process occurs only once.

RETURN VALUE
Upon successful completion, the strcoll() function returns an integer greater
than, equal to or less than zero to indicate whether the string pointed to by s1 is
greater than, equal to or less than the string pointed to by s2, when both are inter-
preted as appropriate for the current locale.

SEE ALSO
setlocale(BA_OS), string(BA_LIB), strxfrm(BA_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/strcoll
svid

Page: 460

strerror (BA_LIB) strerror (BA_LIB)

NAME
strerror – get error message string

SYNOPSIS
#include <string.h>

char ∗strerror (int errnum);

DESCRIPTION
The function strerror() maps the error number in errnum to an error message
string, and returns a pointer to that string. strerror() uses the same set of
error messages as perror(). The returned string should not be overwritten.

The message database uxsyserr is provided to make messages consistent. The
messages for strerror() are obtained from this file via the System V messaging
mechanism. Translated messages may be obtained by selecting the appropriate
locale variables. [See setlocale(BA_OS)].

FILES
Message catalog: uxsyserr

SEE ALSO
perror(BA_LIB), setlocale(BA_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/strerror
svid

Page: 461

strfmon (BA_LIB) strfmon (BA_LIB)

NAME
s t r f m o n – convert monetary value to string

SYNOPSIS
i n c l u d e < m o n e t a r y . h >

s s i z e _ t ∗s t r f m o n (c h a r ∗s, s i z e _ t max, c o n s t c h a r ∗format, . . .) ;

DESCRIPTION
s t r f m o n is part of the X/Open Portability Guide Issue 4 optional Enhanced Inter-
nationalization feature group.

s t r f m o n places characters into the array pointed to by s as controlled by the string
pointed to by f o r m a t. No more than m a x bytes are placed into the array.

f o r m a t contains plain characters that are copied to the output stream, and conver-
sion specifications, that result in the fetching of zero or more arguments which are
converted and formatted. The results are undefined if there are insufficient argu-
ments for the format. If the format is exhausted while arguments remain, the excess
arguments are ignored.

A conversion specification consists of the following:

% character

optional flags

optional field width

optional precision

optional left precision

a conversion character that determines the conversion to be performed.

Options
The following flags can be specified to control the conversion:

=f An = followed by a single byte character f which is used as the numeric fill
character. The default numeric fill character is the space character. This flag
does not affect field width filling which always uses the space character.
This flag is ignored unless a left precision is specified.

ˆ Do not format the currency amount with grouping characters. The default is
to insert the grouping characters if defined for the current locale.

+ Specify the style of representing positive and negative amounts. You can
only specify one of these. If + is specified, the locale’s equivalent of + and -
are used. If (is specified, negative amounts are enclosed within
parentheses. + is the default.

! Suppress the currency symbol from the output conversion.

- Specify the alignment. If this flag is present all fields are left-justified rather
than right-justified.

w A decimal digit string w specifying a minimum field width in bytes in which
the result of the conversion is right-justified, or left-justified if the - flag is
specified. The default is zero.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/strfmon
svid

Page: 462

strfmon (BA_LIB) strfmon (BA_LIB)

n a # followed by a decimal digit string n specifying the maximum number of
digits expect to be formatted to the left of the radix character. Use this
option to keep the formatted output from multiple calls to the s t r f m o n
aligned in the same column. You can also use it to fill unused positions with
a special character as in $ * * * 1 2 3 . 4 5. This option causes an amount to be
formatted as if it has the number of digits specified by n. If more than n
digit positions are required, this conversion specification is ignored. Digit
positions in excess of those actually required are filled with the numeric fill
character.

If grouping has not been suppressed with the ˆ flag, and it is defined for the
current locale, grouping separators are inserted before the fill characters (if
any) are added. Grouping separators are not applied to fill characters even
if the fill character is a digit.

To ensure alignment, any characters appearing before or after the number in
the formatted output such as currency or sign symbols are padded as neces-
sary with space characters to make their positive and negative formats an
equal length.

. p A period followed by a decimal digit string p specifying the number of
digits after the radix character. If the value of the right precision p is zero, no
radix character appears. If the right precision is not included, a default
specified by the current locale is used. The amount being formatted is
rounded to the specified number of digits before formatting.

The conversion characters and their meanings are:

i The double argument is formatted according to the locale’s international
currency format, for example, U S D 1 , 2 3 4 . 5 6 for the USA.

n The double argument is formatted according to the locale’s national currency
format, for example, U S D $ 1 , 2 3 4 . 5 6 for the USA.

% Convert to a %. No argument is converted. The entire conversion
specification must be % %.

USAGE
The L C _ M O N E T A R Y category of the program’s locale affects the behavior of this func-
tion including the monetary radix character which may be different from the
numeric radix character affected by this category. It also affects the grouping
separator, the currency symbols, and formats. The international currency symbols
used conform to I S O 4 2 1 7 : 1 9 8 7 standard.

Return Values
If the total number of resulting bytes including the terminating null byte is not
more than m a x s i z e, s t r f m o n returns the number of bytes placed into the array
pointed to by s, not including the terminating null byte. Otherwise, - 1 is returned,
the contents of the array is indeterminate, and e r r n o is set to show the error.

Errors
In the following conditions, s t r f m o n fails and sets e r r n o to:

Page 2

FINAL COPY
June 15, 1995

File: ba_lib/strfmon
svid

Page: 463

strfmon (BA_LIB) strfmon (BA_LIB)

E N O S Y S The function is not supported

E 2 B I G Conversion stopped because of lack of space in the buffer.

FUTURE DIRECTIONS
This interface will be mandatory in the future. Lowercase conversion characters are
reserved for future use and uppercase for implementation- dependent use.

SEE ALSO
m o n e t a r y(BA_OS)

LEVEL
Level 1.

Page 3

FINAL COPY
June 15, 1995

File: ba_lib/strfmon
svid

Page: 464

strftime (BA_LIB) strftime (BA_LIB)

NAME
s t r f t i m e – convert date and time to string

SYNOPSIS
i n c l u d e < t i m e . h >

s i z e _ t s t r f t i m e (c h a r ∗s, s i z e _ t maxsize, c o n s t c h a r ∗format,
c o n s t s t r u c t t m ∗timeptr) ;

DESCRIPTION
s t r f t i m e, places characters into the array pointed to by s as controlled by the
string pointed to by format. The format string consists of zero or more directives and
ordinary characters. All ordinary characters (including the terminating null charac-
ter) are copied unchanged into the array. For s t r f t i m e, no more than maxsize char-
acters are placed into the array. For s t r f t i m e the default format is the same as
" % c ", for c f t i m e and a s c f t i m e the default format is the same as " % C ". c f t i m e
and a s c f t i m e first try to use the value of the environment variable C F T I M E, and if
that is undefined or empty, the default format is used.

Each directive is replaced by appropriate characters as described by the following
list. The appropriate characters are determined by the L C _ T I M E category of the
program’s locale and by the values contained in the structure pointed to by timeptr
for s t r f t i m e

% % same as %
% a abbreviated weekday name
% A full weekday name
% b abbreviated month name
% B full month name
% c basic date and time representation
% C number of the century (00 - 99)
% d day of month (01 - 31)
% D date as % m / % d / % y
% e day of month (1-31; single digits are preceded by a blank)
% h abbreviated month name.
% H hour (00 - 23)
% I hour (01 - 12)
% j day number of year (001 - 366)
% m month number (01 - 12)
% M minute (00 - 59)
% n same as new-line
% N date and time representation as used by d a t e.
% p equivalent of either AM or PM
% r time in the a.m. and p.m. in the C locale it is equivalent to, % I : % M : 1 P)
% R same as % H : % M
% S seconds (00 - 61), allows for leap seconds
% t same as a tab
% T same as % H : % M : % S
% u weekday number (1 - 7), Monday = 1

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/strftime
svid

Page: 465

strftime (BA_LIB) strftime (BA_LIB)

% U week number of year (00 - 53), Sunday is the first day of week 1
% V week number of the year
% w weekday number (0 - 6), Sunday = 0
% W week number of year (00 - 53), Monday is the first day of week 1
% x locale’s appropriate date representation
% X locale’s appropriate time representation
% y year within century (00 - 99)
% Y year as ccyy (for example, 1986)
% Z time zone name or no characters if no time zone exists

The difference between % U and % W lies in which day is counted as the first of the
week. Week number 01 is the first week in January starting with a Sunday for % U or
a Monday for % W. Week number 00 contains those days before the first Sunday or
Monday in January for % U and % W, respectively.

For % V, if the week containing January 1st has four or more days in the new year, it
is week 1; otherwise, it is week 53 of the preceding year.

Modified Conversion Specifiers
O modifies the behavior of the following conversion specifiers. The decimal value is
generated using the locale’s alternate digit symbols.
% O d the day of the month, using alternative digit symbols filled as needed with

leading zeros if available; otherwise, filled with spaces.
% O e the day of the month, using alternative digit symbols filled with leading

spaces as needed.
% O H the hour (24 hour clock), using alternative digit symbols.
% O I the hour (12 hour clock), using alternative digit symbols.
% O m the month using alternative digit symbols.
% O M the minutes using alternative digit symbols.
% O S the seconds using alternative digit symbols.
% O u the weekday as a number using alternative digit symbols (Monday = 1).
% O U the week number using alternative digit symbols (see rules for % U).
% O V the week number using alternative digit symbols (see rules for % V).
% O w the weekday as a number using alternative digit symbols (Sunday = 0).
% O W the week number using alternative digit symbols (see rules for % W).
% O y the year (offset from % C) using alternative digit symbols.

E also modifies the behavior of the following conversion specifiers. An Era-specific
value is generated instead of the normal value.ile.
% E c Era-specific representation for date and time, as in d a t e(1).
% E C Era-specific representation for the name of the base year (period).
% E x Era-specific representation for the date.
% E X Era-specific representation for the time.
% E y the offset from % E in the locale’s alternative representation (year only).
% E Y the full alternative year representation.

If the alternative format or specification for the above specifiers does not exist for
the current locale, the behavior will be as if the unmodified specifier was used.

Selecting the Output’s Language
By default, the output of s t r f t i m e, appears as in the C locale. The user can request
that the output of s t r f t i m e, c f t i m e, or a s c f t i m e be in a specific language by set-
ting the locale for category L C _ T I M E in s e t l o c a l e.

Page 2

FINAL COPY
June 15, 1995

File: ba_lib/strftime
svid

Page: 466

strftime (BA_LIB) strftime (BA_LIB)

Timezone
The timezone is taken from the environment variable T Z [see c t i m e(BA_LIB) for a
description of T Z].

Return Values
s t r f t i m e returns the number of characters placed into the array pointed to by s not
including the terminating null character. Otherwise, zero is returned and the con-
tents of the array are indeterminate. If more than maxsize characters would have
been placed into the array, s t r f t i m e returns zero and the array content is indeter-
minate.

Files
L C _ T I M E file containing locale-specific date and time information

USAGE
The example illustrates the use of s t r f t i m e. It shows what the string in s t r would
look like if the structure pointed to by tmptr contains the values corresponding to
Thursday, August 28, 1986 at 12:44:36 in New Jersey.

s t r f t i m e (s t r , s t r s i z e , " % A % b % d % j " , t m p t r)

This results in s t r containing T h u r s d a y A u g 2 8 2 4 0, in the C locale.

For the following Era related definitions for L C _ T I M E:

e r a _ d _ f m t " % E Y % m g a t s u % d n i c h i (% a) "
e r a _ d _ f m t " T h e a l t e r n a t i v e t i m e f o r m a t i s % h (% S) i n % E C "
e r a _ d _ t _ f m t " % E Y % m g a t s u % d n i c h i (% a) % T "
e r a " + : 2 : 1 9 9 0 / 0 1 / 0 1 : + * : H e i s e i : % E C % E y n e n " ;

" + : 1 : 1 9 8 9 / 0 1 / 0 8 : 1 9 8 9 / 1 2 / 3 1 : H e i s e i : % E C g a n n e n " ;
" + : 2 : 1 9 2 7 / 0 1 / 0 1 : 1 9 8 9 / 0 1 / 0 7 : S h o u w a : % E C % E y n e n " ;
" + : 1 : 1 9 2 6 / 1 2 / 2 5 : 1 9 2 6 / 1 2 / 3 1 : S h o u w a : % E C g a n n e n " ;
" + : 2 : 1 9 1 3 / 0 1 / 0 1 : 1 9 2 6 / 1 2 / 2 4 : T a i s h o u : % E C % E y n e n " ;
" + : 1 : 1 9 1 2 / 0 7 / 3 0 : 1 9 1 2 / 1 2 / 3 1 : T a i s h o u : % E C g a n n e n " ;
" + : 2 : 1 8 6 9 / 0 1 / 0 1 : 1 9 1 2 / 0 7 / 2 9 : M e i j i : % E C % E y n e n " ;
" + : 1 : 1 8 6 8 / 0 9 / 0 8 : 1 8 6 8 / 1 2 / 3 1 : M e i j i : % E C g a n n e n " ;
" - : 1 8 6 8 : 1 8 6 8 / 0 9 / 0 7 : - * : : % E y "

For August 1st 1912, with the L C _ T I M E locale category set as above:

s t r f t i m e (s t r , s t r s i z e , " % E y " , t m p t r) ;

would result in s t r containing " 0 1 ".

s t r f t i m e (s t r , s t r s i z e , " % E y % E C % E x " , t m p t r) ;

would result in s t r containing " T a i s h o u g a n n e n T a i s h o u
T a i s h o u g a n n e n 0 8 g a t s u 0 1 n i c h i (S u n) ".

s t r f t i m e (s t r , s t r s i z e , " % E X " , t m p t r) ;

would result in s t r containing " T h e a l t e r n a t i v e t i m e f o r m a t i s A u g (0 1)
i n T a i s h o u ".

SEE ALSO
c t i m e(BA_LIB), g e t e n v(BA_LIB)

Page 3

FINAL COPY
June 15, 1995

File: ba_lib/strftime
svid

Page: 467

strftime (BA_LIB) strftime (BA_LIB)

LEVEL
Level 1.

Page 4

FINAL COPY
June 15, 1995

File: ba_lib/strftime
svid

Page: 468

string (BA_LIB) string (BA_LIB)

NAME
s t r i n g: s t r c a t, s t r n c a t, s t r c m p, s t r n c m p, s t r c p y, s t r n c p y, s t r d u p, s t r l e n,
s t r c h r, s t r r c h r, s t r p b r k, s t r s p n, s t r c s p n, s t r t o k, s t r s t r – string operations

SYNOPSIS
i n c l u d e < s t r i n g . h >

c h a r ∗s t r c a t (c h a r ∗s1, c o n s t c h a r ∗s2) ;

c h a r ∗s t r n c a t (c h a r ∗s1, c o n s t c h a r ∗s2, s i z e _ t n) ;

i n t s t r c m p (c o n s t c h a r ∗s1, c o n s t c h a r ∗s2) ;

i n t s t r n c m p (c o n s t c h a r ∗s1, c o n s t c h a r ∗s2, s i z e _ t n) ;

c h a r ∗s t r c p y (c h a r ∗s1, c o n s t c h a r ∗s2) ;

c h a r ∗s t r n c p y (c h a r ∗s1, c o n s t c h a r ∗s2, s i z e _ t n) ;

c h a r ∗s t r d u p (c o n s t c h a r ∗s1) ;

s i z e _ t s t r l e n (c o n s t c h a r ∗s) ;

c h a r ∗s t r c h r (c o n s t c h a r ∗s, i n t c) ;

c h a r ∗s t r r c h r (c o n s t c h a r ∗s, i n t c) ;

c h a r ∗s t r p b r k (c o n s t c h a r ∗s1, c o n s t c h a r ∗s2) ;

s i z e _ t s t r s p n (c o n s t c h a r ∗s1, c o n s t c h a r ∗s2) ;

s i z e _ t s t r c s p n (c o n s t c h a r ∗s1, c o n s t c h a r ∗s2) ;

c h a r ∗s t r t o k (c h a r ∗s1, c o n s t c h a r ∗s2) ;

c h a r ∗s t r s t r (c o n s t c h a r ∗s1, c o n s t c h a r ∗s2) ;

DESCRIPTION
The arguments s, s1, and s2 point to strings (arrays of characters terminated by a
null character). The functions s t r c a t, s t r n c a t, s t r c p y, s t r n c p y, and s t r t o k
alter s1. These functions do not check for overflow of the array pointed to by s1.

s t r c a t appends a copy of string s2, including the terminating null character, to the
end of string s1. s t r n c a t appends at most n characters. Each returns a pointer to
the null-terminated result. The initial character of s2 overrides the null character at
the end of s1.

s t r c m p compares its arguments and returns an integer less than, equal to, or
greater than 0, based upon whether s1 is lexicographically less than, equal to, or
greater than s2. s t r n c m p makes the same comparison but looks at most n charac-
ters. Characters following a null character are not compared.

s t r c p y copies string s2 to s1 including the terminating null character, stopping
after the null character has been copied. s t r n c p y copies exactly n characters, trun-
cating s2 or adding null characters to s1 if necessary. The result will not be null-
terminated if the length of s2 is n or more. Each function returns s1.

s t r d u p returns a pointer to a new string which is a duplicate of the string pointed
to by s1. The space for the new string is obtained using m a l l o c(BA_OS). If the new
string can not be created, a N U L L pointer is returned.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/string
svid

Page: 469

string (BA_LIB) string (BA_LIB)

s t r l e n returns the number of characters in s, not including the terminating null
character.

s t r c h r (or s t r r c h r) returns a pointer to the first (last) occurrence of c (converted
to a c h a r) in string s, or a N U L L pointer if c does not occur in the string. The null
character terminating a string is considered to be part of the string.

s t r p b r k returns a pointer to the first occurrence in string s1 of any character from
string s2, or a N U L L pointer if no character from s2 exists in s1.

s t r s p n (or s t r c s p n) returns the length of the initial segment of string s1 which
consists entirely of characters from (not from) string s2.

s t r t o k considers the string s1 to consist of a sequence of zero or more text tokens
separated by spans of one or more characters from the separator string s2. The first
call (with pointer s1 specified) returns a pointer to the first character of the first
token, and will have written a null character into s1 immediately following the
returned token. The function keeps track of its position in the string between
separate calls, so that subsequent calls (which must be made with the first argument
a N U L L pointer) will work through the string s1 immediately following that token.
In this way subsequent calls will work through the string s1 until no tokens remain.
The separator string s2 may be different from call to call. When no token remains
in s1, a N U L L pointer is returned.

s t r s t r locates the first occurrence in string s1 of the sequence of characters (exclud-
ing the terminating null character) in string s2. s t r s t r returns a pointer to the
located string, or a null pointer if the string is not found. If s2 points to a string
with zero length (that is, the string " "), the function returns s1.

SEE ALSO
m a l l o c(BA_OS), s e t l o c a l e(BA_OS), s t r x f r m(BA_LIB),

LEVEL
Level 1.

NOTICES
All of these functions assume the default locale ‘‘C.’’ For some locales, s t r x f r m
should be applied to the strings before they are passed to the functions.

Page 2

FINAL COPY
June 15, 1995

File: ba_lib/string
svid

Page: 470

strptime (BA_LIB) strptime (BA_LIB)

NAME
s t r p t i m e – date and time conversion

SYNOPSIS
i n c l u d e < t i m e . h >

c h a r ∗s t r p t i m e (c o n s t c h a r ∗buf, c o n s t c h a r ∗format, s t r u c t t m ∗tm) ;

DESCRIPTION
s t r p t i m e converts the character string pointed to by buf to values stored in the
structure pointed to by tm, using the format specified by format.

format is composed of zero or more directives where each directive is composed of
one of the following:

one or more white-space characters as specified by the i s s p a c e function,

an ordinary character (neither % or non white-space character), or

a conversion specification.

Conversion Specifications
Each conversion specification is composed of a % character followed by an optional
modifier and then by a conversion character which specifies the replacement
required. Usually, there should be white-space or other non-alphanumeric charac-
ters between any two conversion specifications. The following conversion
specifications are supported:

% a locale’s full or abbreviated weekday name
% A same as % a
% b locale’s full or abbreviated month name
% B same as % b
% c locale’s appropriate date and time representation (for example, % x % X)
% C number of the century (00 - 99), leading zeros are optional
% d day of month (01 - 31), leading zeros are optional
% D date as % m / % d / % y
% e same as % d
% h same as % b
% H hour (00 - 23), leading zeros are optional
% I hour (01 - 12), leading zeros are optional
% j day number of year (001 - 366), leading zeros are optional
% m month number (01 - 12), leading zeros are optional
% M minute (00 - 59), leading zeros are optional
% N date and time
% n any white space
% p locale’s equivalent of either AM or PM
% r locale’s time with 12-hour clock
% R time as % H : % M
% S seconds (00 - 61), allows for leap seconds, leading zeros are optional
% t any white space
% T time as % H : % M : % S
% U week number of year (00 - 53), Sunday is the first day of week 1, leading

zeros are optional

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/strptime
svid

Page: 471

strptime (BA_LIB) strptime (BA_LIB)

% w weekday number (0 - 6), Sunday = 0, leading zeros are optional
% W week number of year (00 - 53), Monday is the first day of week 1, leading

zeros are optional
% x locale’s appropriate date representation
% X locale’s appropriate time representation
% y year within century (00 - 99), leading zeros are optional
% Y year as ccyy (for example, 1986)
% % same as %

Modified Conversion Specifiers
Some directives can be modified by the O and E modifier characters to indicate that
an alternative format or specification should be used instead of the normal direc-
tives. % O is the modifier used in association with the following conversion specifiers
to specify that the locale’s alternative digits be matched. The second letter has a
similar effect as the letter excluding the O modifier.

% O d the day of the month, using the locale’s alternative digit symbols filled as
needed with leading zeros if available, otherwise, filled with spaces.

% O e same as % O d
% O H the hour (24 hour clock), using the locale’s alternative digit symbols.
% O I the hour (12 hour clock), using the locale’s alternative digit symbols.
% O m the month using the locale’s alternative digit symbols.
% O M the minutes using the locale’s alternative digit symbols.
% O S the seconds using the locale’s alternative digit symbols.
% O U the week number using the locale’s alternative digit symbols (see rules for % U).
% O w the weekday as a number using the locale’s alternative digit symbols (Sunday

= 0).
% O W the week number using the locale’s alternative digit symbols (see rules for % W).
% O y the year (offset from % C) using the locale’s alternative digit symbols.

% E is a modifier used to match the date using different era information as specified
in the L C _ T I M E locale data file.

% E c the locale’s alternative representation for date and time.
% E C the locale’s alternative representation for the name of the base year (period).
% E x the locale’s alternative representation for the date.
% E X the locale’s alternative representation for the time.
% E y the offset from % E C in the locale’s alternative representation (year only).
% E Y the full alternative year representation.

A directive comprised of white-space characters is executed by scanning input up to
the first character that is not white space which remains unscanned, or until no
more characters can be scanned.

A directive that is an ordinary character is executed by scanning the next character
from the buffer. If the character scanned from the buffer differs from the one
comprising the directive, the directive fails, and the differing and subsequent char-
acters remain unscanned.

A series of directives composed of % n , % t, white-space characters or any combina-
tion is executed by scanning up to the first character that is not white space which
remains unscanned, or until no more characters can be scanned.

Page 2

FINAL COPY
June 15, 1995

File: ba_lib/strptime
svid

Page: 472

strptime (BA_LIB) strptime (BA_LIB)

Any other conversion specification is executed by scanning characters until a char-
acter matching the next directive is scanned, or until no more characters can be
scanned. These characters, except the one matching the next directive, are then
compared to the locale values associated with the conversion specifier. If a match is
found, values for the appropriate tm structure members are set to values
corresponding to the locale information. Case is ignored when matching items are
month or weekday names. If no match is found, s t r p t i m e fails and no more char-
acters are scanned.

Return Values
Upon successful completion, s t r p t i m e returns a pointer to the character following
the last character parsed. Otherwise, it returns a null pointer. If not implemented,
s t r p t i m e returns a null pointer and and sets e r r n o to E N O S Y S.

USAGE
Several ‘‘s a m e a s’’ format and the special processing of white-space characters are
provided in order to ease the use of identical format strings for s t r f t i m e and
s t r p t i m e.

SEE ALSO
s t r f t i m e(BA_LIB), t i m e(BA_ENV)

LEVEL
Level 1.

Page 3

FINAL COPY
June 15, 1995

File: ba_lib/strptime
svid

Page: 473

strtod (BA_LIB) strtod (BA_LIB)

NAME
strtod, strtold, atof – convert string to double-precision number

SYNOPSIS
#include <stdlib.h>
double strtod(const char *str, char **ptr);
long double strtold(const char *str, char **ptr);
double atof(const char *str);

DESCRIPTION
The function strtod() returns as a double-precision floating-point number the
value represented by the character string pointed to by str. The string is scanned up
to the first unrecognized character.

The function strtod() recognizes an optional string of white-space characters [as
defined by isspace() in ctype(BA_LIB)], then an optional sign, then a string of
digits optionally containing a decimal point character, then an optional exponent
part consisting of an e or E followed by an optional sign, followed by one or more
decimal digits.

If the value of ptr is not (char **)0, a pointer to the character terminating the
scan is returned in the location pointed to by ptr. If no number can be formed, *ptr
is set to str, and 0 is returned.

On the processors that support strtold, this function is equivalent to strtod,
except that it returns a long double-precision floating-point number.

The function call atof(str) is equivalent to:
strtod(str, (char **)0)

RETURN VALUE
A macro HUGE_VAL will be defined by the <math.h> header file. This macro
evaluates to a positive double expression, not necessarily representable as a float.
On implementations that support the IEEE 754 standard, HUGE_VAL evalutates to
+∞.

If the correct value would cause overflow, ±HUGE_VAL is returned (according to the
sign of the value) and errno is set to ERANGE.

If the correct value would cause underflow, zero is returned and errno is set to
ERANGE.

SEE ALSO
ctype(BA_LIB), scanf(BA_LIB), strtol(BA_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/strtod
svid

Page: 474

strtol (BA_LIB) strtol (BA_LIB)

NAME
strtol, strtoul, atol, atoi – convert string to integer

SYNOPSIS
#include <stdlib.h>

long strtol(const char *str, char **ptr, int base);

unsigned long strtoul(const char *str, char **ptr,
int base);

long atol(const char *str);

int atoi(const char *str);

DESCRIPTION
The function strtol() returns as a long integer the value represented by the char-
acter string pointed to by str. The string is scanned up to the first character incon-
sistent with the base. Leading white-space characters [as defined by isspace() in
ctype(BA_LIB)] are ignored.

If the value of ptr is not (char **)0, a pointer to the character terminating the
scan is returned in the location pointed to by ptr. If no integer can be formed, that
location is set to str and zero is returned.

If base is positive (and not greater than 36), it is used as the base for conversion.
After an optional leading sign, leading zeros are ignored and 0x or 0X is ignored if
base is 16.

If base is zero, the string itself determines the base in the following way: After an
optional leading sign, a leading zero indicates octal conversion and a leading 0x or
0X hexadecimal conversion. Otherwise, decimal conversion is used.

Truncation from long to int can, of course, take place upon assignment or by an
explicit cast.

strtoul() is similar to strtol() except that strtoul() returns as an unsigned
long integer the value represented by str, and there can be no leading sign in str.

Except for the behavior on errors, the function call atol(str) is equivalent to:

strtol(str, (char **)0, 10)

Except for the behavior on errors, the function call atoi(str) is equivalent to:

(int)strtol(str, (char **)0, 10)

RETURN VALUE
If the argument ptr is a null pointer, the function strtol() will return the value of
the string str as a long integer.

If the argument ptr is not NULL, the function strtol() will return the value of the
string str as a long integer, and a pointer to the character terminating the scan will
be returned in the location pointed to by ptr. If no integer can be formed, that loca-
tion is set to the argument str and the function strtol() returns 0.

For strtol(), if the value represented by str would cause overflow, LONG_MAX or
LONG_MIN is returned (according to the sign of the value), and errno is set to the
value ERANGE.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/strtol
svid

Page: 475

strtol (BA_LIB) strtol (BA_LIB)

For strtoul(), if the value represented by str would cause overflow, ULONG_MAX
is returned, and errno is set to the value ERANGE.

SEE ALSO
ctype(BA_LIB), scanf(BA_LIB), strtod(BA_LIB).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ba_lib/strtol
svid

Page: 476

strxfrm (BA_LIB) strxfrm (BA_LIB)

NAME
strxfrm – string transformation

SYNOPSIS
#include <string.h>

size_t strxfrm(char *s1, const char *s2, size_t n);

DESCRIPTION
The function strxfrm() transforms the string s2 and places the resulting string
into the array s1. The transformation is such that if the strcmp() function [see
string(BA_LIB)] is applied to the two transformed strings, it returns a value greater
than, equal to, or less than zero, corresponding to the result of the strcoll()
function [see strcoll(BA_LIB)] applied to the same two original strings. The
transformation is based on the program’s locale for category LC_COLLATE [see
setlocale(BA_OS)].

No more than n characters will be placed into the resulting array pointed to by s1,
including the terminating null character. If n is zero, s1 is permitted to be a null
pointer. If copying takes place between objects that overlap, the behavior is
undefined.

RETURN VALUE
The function strxfrm() returns the length of the transformed string (not includ-
ing the terminating null character). If the value returned is n or more, the contents
of the array s1 are indeterminate.

USAGE
The transformation is such that two strings transformed by strxfrm() can be
ordered by memcmp() or strcmp() and the results will be appropriate in terms of
the collating sequence information in the program’s locale.

EXAMPLE
The value of the following expression is the size of the array needed to hold the
transformation of the string pointed to by s.

1 + strxfrm((char *)NULL, s, 0);

SEE ALSO
memory(BA_LIB), setlocale(BA_OS), strcoll(BA_LIB), string(BA_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/strxfrm
svid

Page: 477

swab (BA_LIB) swab (BA_LIB)

NAME
swab – swap bytes

SYNOPSIS
void swab (const char *from, char *to; int nbytes);

DESCRIPTION
The function swab() copies nbytes bytes pointed to by from to the array pointed to
by to, exchanging adjacent even and odd bytes. This routine is useful for carrying
binary data between machines with different low-order/high-order byte arrange-
ments.

The argument nbytes should be even and non-negative. If the argument nbytes is
odd and positive, the function swab() uses nbytes–1 instead. If the argument nbytes
is negative, the function swab() does nothing.

USAGE
Character movement is performed differently on different implementations; over-
lapping moves may yield unexpected results.

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/swab
svid

Page: 478

t_accept (BA_LIB) t_accept (BA_LIB)

NAME
t _ a c c e p t – accept a connect request

SYNOPSIS
i n c l u d e < x t i . h >

i n t t _ a c c e p t (i n t fd, i n t resfd, s t r u c t t _ c a l l ∗call)

i n c l u d e < t i u s e r . h >

i n t t _ a c c e p t (i n t fd, i n t resfd, s t r u c t t _ c a l l ∗call)

Parameters
fd the file descriptor for the local transport endpoint where the connect request

arrived.

resfd file descriptor for the local transport endpoint on which the connection is to
be established.

call points to the t _ c a l l structure used to complete the connection.

DESCRIPTION
This function is one of the TLI/XTI routines used to establish a transport connec-
tion. It is invoked by an active transport user, following a call to t _ l i s t e n, to
accept a connection request from the transport interface and provide the informa-
tion needed to complete a virtual connection.

It may also be used to pass a connection to another endpoint.

This function is a service of connection-mode transport providers and is supported
only if the provider returned service type T _ C O T S or T _ C O T S _ O R D on t _ o p e n or
t _ g e t i n f o.

A transport user may accept a connection on either the same or local transport end-
point or on an endpoint different than the one on which the connect indication
arrived. Before the connection can be accepted on the same endpoint (resfd==fd),
the user must have responded to any previous connect indications received on that
endpoint (via t _ a c c e p t or t _ s n d d i s). Otherwise, t _ a c c e p t will fail and set
t _ e r r n o to T _ I N D O U T.

If a different transport endpoint is specified (fs!=resfd), then the user may or may
not choose to bind the endpoint before t _ a c c e p t is issued. If the endpoint is not
bound, then the transport provider will automatically bind it to the same protocol
address that f d is bound to. If the user chooses to bind to a local address, then glen
must be zero for that protocol address, and the state of the endpoint must be
T _ I D L E. t _ a c c e p t will change the address of resfd to be the same as that of fd. For
portability, the first alternative is recommended.

Structure Definitions
The t _ c a l l structure contains the following members:

s t r u c t n e t b u f a d d r ; / * a d d r e s s * /
s t r u c t n e t b u f o p t ; / * o p t i o n s * /
s t r u c t n e t b u f u d a t a ; / * u s e r d a t a * /
i n t s e q u e n c e ; / * s e q u e n c e n u m b e r * /

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/t_accept
svid

Page: 479

t_accept (BA_LIB) t_accept (BA_LIB)

The n e t b u f structure contains the following members:

u n s i g n e d i n t m a x l e n ;
u n s i g n e d i n t l e n ;
c h a r * b u f ;

In t _ c a l l, a d d r is the address of the caller, o p t indicates any protocol-specific
options associated with the connection, u d a t a points to any user data to be
returned to the caller, and s e q u e n c e is the value returned by t _ l i s t e n that
uniquely associates the response with a previously received connect indication.

The values of parameters specified by o p t and the syntax of those values are proto-
col specific. The u d a t a argument enables the called transport user to send user
data to the caller and the amount of user data must not exceed the limits supported
by the transport provider as returned in the c o n n e c t field of the i n f o argument of
t _ o p e n or t _ g e t i n f o. If the l e n field of u d a t a is 0, no data will be sent to the
caller.

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is
returned and t _ e r r n o is set to indicate the error.

Errors
On failure, t _ e r r n o may be set to one of the following:

T B A D F The specified file descriptor does not refer to a transport end-
point, or the user is invalidly accepting a connection on the same
transport endpoint on which the connect indication arrived.

T O U T S T A T E The function was issued in the wrong sequence on the transport
endpoint referenced by fd, or the transport endpoint referred to
by resfd is not in the T _ I D L E state.

T A C C E S The user does not have permission to accept a connection on the
responding transport endpoint or use the specified options.

T B A D O P T The specified options were in an incorrect format or contained
invalid information.

T B A D D A T A The amount of user data specified was not within the bounds
supported by the transport provider as returned in the c o n n e c t
field of the i n f o argument of t _ o p e n or t _ g e t i n f o.

T B A D S E Q An invalid sequence number was specified.

T B A D A D D R The specified protocol address was in an incorrect format or con-
tained illegal information.

T L O O K An asynchronous event has occurred on the transport endpoint
referenced by fd and requires immediate attention. t _ a c c e p t will
fail and set t _ e r r n o to T L O O K when fd is not the same as resfd and
there are indications (for example, a connect or disconnect) wait-
ing to be received on that endpoint.

T N O T S U P P O R T This function is not supported by the underlying transport pro-
vider.

Page 2

FINAL COPY
June 15, 1995

File: ba_lib/t_accept
svid

Page: 480

t_accept (BA_LIB) t_accept (BA_LIB)

T S Y S E R R A system error has occurred during execution of this function.

T I N D O U T The function was called with fd equal to resfd but there are out-
standing connection indications on the endpoint. The other con-
nection indications must be handled either by rejecting them via
t _ s n d d i s or accepting them via t _ a c c e p t.

T P R O V M I S M A T C H The file descriptors fd and resfd do not refer to the same transport
provider.

T R E S Q L E N The endpoint referenced by resfd where resfd!=fd was bound to a
protocol address with a q l e n greater than 0.

T R E S A D D R This transport provider requires that both fd and resfd be bound
to the same address.

T P R O T O A communication problem has been detected with the transport
provider and there is no other value of t _ e r r n o to describe the
error condition.

State Transitions
fd T _ I N C O N on entry. T _ I N C O N, T _ I D L E or T _ D A T A X F E R on exit.
resfd T _ I D L E, T _ U N B I N D on entry.

USAGE
When t _ a c c e p t fails with a client timeout, this may be an indication that the client
connection needs to be extended or that the server delay (between t _ l i s t e n and
t _ a c c e p t) should be reduced.

A server application may retry t _ a c c e p t unless a T O U T S T A T E or T S Y S E R R error is
received.

If the user does not specify protocol-specific options (the l e n field of opt is 0), it is
assumed that the connection should accepted unconditionally. Options other than
the defaults may be selected by the transport provider to ensure that the connection
is accepted successfully.

SEE ALSO
t _ c o n n e c t(BA_LIB), t _ g e t i n f o(BA_LIB) t _ l i s t e n(BA_LIB), t _ o p e n(BA_LIB),
t _ r c v c o n n e c t(BA_LIB), t _ s n d d i s(BA_LIB)

FUTURE DIRECTIONS
The inclusion of the header t i u s e r . h has been moved to Level 2 due to the migra-
tion from TLI routines to the X/Open XTI routines. Replace t i u s e r . h with x t i . h.

LEVEL
Level 1.

The inclusion of the header t i u s e r . h is Level 2 effective January 1995.

Page 3

FINAL COPY
June 15, 1995

File: ba_lib/t_accept
svid

Page: 481

t_alloc (BA_LIB) t_alloc (BA_LIB)

NAME
t _ a l l o c – allocate a data structure

SYNOPSIS
i n c l u d e < x t i . h >

c h a r * t _ a l l o c (i n t fd, i n t struct_type, i n t fields) ;

i n c l u d e < t i u s e r . h >

c h a r * t _ a l l o c (i n t fd, i n t struct_type, i n t fields) ;

Parameters
fd the file descriptor for the transport endpoint.

struct_type identifies the type of structure for which memory should be allocated.

fields indicates fields for which buffers should be allocated.

DESCRIPTION
The t _ a l l o c function is an TLI/XTI local management routine used to allocate
data structures associated with the endpoint specified by fd. For struct_type T _ I N F O,
fd is ignored, so that T _ I N F O structures may be allocated for use in calls to t _ o p e n.

t _ a l l o c dynamically allocates memory for the various transport function argu-
ment structures as specified below. This function will allocate memory for the
specified structure, and will also allocate memory for buffers referenced by the
structure.

The structure to allocate is specified by s t r u c t _ t y p e, and can be one of the follow-
ing:

T _ B I N D / * s t r u c t t _ b i n d * /
T _ O P T M G M T / * s t r u c t t _ o p t m g m t * /
T _ C A L L / * s t r u c t t _ c a l l * /
T _ D I S / * s t r u c t t _ d i s c o n * /
T _ U N I T D A T A / * s t r u c t t _ u n i t d a t a * /
T _ U D E R R O R / * s t r u c t t _ u d e r r * /
T _ I N F O / * s t r u c t t _ i n f o * /

where each of these structures may subsequently be used as an argument to one or
more transport functions.

Structure Definitions
Each of the above structures, except T _ I N F O, contains at least one field of type
s t r u c t n e t b u f. The n e t b u f structure contains the following members:

u n s i g n e d i n t m a x l e n ;
u n s i g n e d i n t l e n ;
c h a r * b u f ;

For each field of this type, the user may specify that the buffer for that field should
be allocated as well. The f i e l d s argument specifies this option, where the argu-
ment is the bitwise-OR of any of the following:

T _ A D D R The a d d r field of the t _ b i n d, t _ c a l l, t _ u n i t d a t a, or t _ u d e r r
structures.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/t_alloc
svid

Page: 482

t_alloc (BA_LIB) t_alloc (BA_LIB)

T _ O P T The o p t field of the t _ o p t m g m t, t _ c a l l, t _ u n i t d a t a, or t _ u d e r r
structures.

T _ U D A T A The u d a t a field of the t _ c a l l, t _ d i s c o n, or t _ u n i t d a t a structures.

T _ A L L All relevant fields of the given structure.

For each field specified in fields, t _ a l l o c will allocate memory for the buffer associ-
ated with the field, initialize the l e n field to 0 and initialize the b u f pointer and
m a x l e n field accordingly. The length of the buffer allocated will be based on the
same size information that is returned to the user on t _ o p e n and t _ g e t i n f o. Thus,
fd must refer to the transport endpoint through which the newly allocated structure
will be passed, so that the appropriate size information can be accessed.

If the size value associated with any specified field is –1, or –2, t _ a l l o c will be
unable to determine the size of the buffer to allocate and will fail with t _ e r r n o set
to T S Y S E R R, unless when T _ A L L is specified, in which case unsupported fields are
ignored silently.

For any field not specified in fields, b u f will be set to N U L L and m a x l e n will be set to
0. If the fields argument is set to T _ A L L, fields that are not supported by the tran-
sport provider specified by fd are not allocated.

Return Values
On successful completion, t _ a l l o c returns a pointer to the newly allocated struc-
ture. On failure, N U L L is returned, and t _ e r r n o is set to indicate the error.

Errors
On failure, t _ e r r n o may be set to one of the following:

T B A D F The specified file descriptor does not refer to a transport endpoint.

T S Y S E R R A system error has occurred during execution of this function.

T N O S T R U C T Y P E The argument that specifies struct_type is invalid, for example,
because the type of structure requested is inconsistent with the
transport provider (connection mode or connectionless) indicated
by fd.

T P R O T O A communication problem has been detected with the transport
provider and there is no other value of t _ e r r n o to describe the
error condition.

State Transitions
t _ a l l o c has no effect on state. Valid states are T _ U N B N D , T _ I D L E , T _ O U T C O N ,
T _ I N C O N , T _ D A T A X F E R , T _ O U T R E L and T _ I N R E L on entry. On exit, they are
unchanged.

USAGE
Use of t _ a l l o c to allocate structures will help ensure the compatibility of user pro-
grams with future releases of the transport interface.

Buffers and memory that have been allocated with t _ a l l o c may be freed with
t _ f r e e.

Page 2

FINAL COPY
June 15, 1995

File: ba_lib/t_alloc
svid

Page: 483

t_alloc (BA_LIB) t_alloc (BA_LIB)

SEE ALSO
t _ f r e e(BA_LIB), t _ g e t i n f o(BA_LIB), t _ o p e n(BA_LIB)

FUTURE DIRECTIONS
The inclusion of the header t i u s e r . h has been moved to Level 2 due to the migra-
tion from TLI routines to the X/Open XTI routines. Replace t i u s e r . h with x t i . h.

LEVEL
Level 1.

The inclusion of the header t i u s e r . h is Level 2 effective January 1995.

Page 3

FINAL COPY
June 15, 1995

File: ba_lib/t_alloc
svid

Page: 484

t_bind (BA_LIB) t_bind (BA_LIB)

NAME
t _ b i n d – bind an address to a transport endpoint

SYNOPSIS
i n c l u d e < x t i . h >

i n t t _ b i n d (i n t fd, s t r u c t t _ b i n d *req, s t r u c t t _ b i n d *ret)

i n c l u d e < t i u s e r . h >

i n t t _ b i n d (i n t fd, s t r u c t t _ b i n d *req, s t r u c t t _ b i n d *ret)

Parameters
fd the file descriptor for the transport endpoint

req points to the t _ b i n d structure used to identify the request.

ret points to the t _ b i n d structure used to identify the return.

DESCRIPTION
This function is an TLI/XTI local management routine that associates a protocol
address with the transport endpoint specified by fd and activates the endpoint.

If fd refers to a connection-mode service, the transport provider may then begin
listening for connect indications on that endpoint (t _ l i s t e n), or the provider may
begin sending connection requests from that transport endpoint (t _ c o n n e c t).

If fd refers to a connectionless service, the transport user may then proceed with
sending or receiving data units through the transport endpoint (t _ s n d , t _ r c v).

Structure Definitions
The req and ret arguments point to a t _ b i n d structure containing the following
members:

s t r u c t n e t b u f a d d r ; / * a d d r e s s * /
u n s i g n e d q l e n ; / * c o n n e c t i n d i c a t i o n s * /

The n e t b u f structure contains the following members:

u n s i g n e d i n t m a x l e n ;
u n s i g n e d i n t l e n ;
c h a r * b u f ;

l e n specifies the number of bytes in the address, b u f points to the address buffer,
and m a x l e n is the maximum size of the address buffer. The q l e n field, in connec-
tion mode only, is used to indicate the maximum number of outstanding connect
indications.

In req, l e n and b u f are used to specify the protocol address to be bound to the tran-
sport endpoint. m a x l e n has no meaning for the req argument.

In ret, the user specifies m a x l e n (which is the maximum size of the address buffer)
and b u f (which points to the buffer where the address is to be placed).

On return, ret contains the bound address. This is the same as the address specified
by the user in req. l e n specifies the number of bytes in the bound address and b u f
points to the bound address. If m a x l e n is not large enough to hold the returned
address, an error will result. If the requested address is not available, t _ b i n d fails
with an error and t _ e r r n o is set to T A D D R B U S Y.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/t_bind
svid

Page: 485

t_bind (BA_LIB) t_bind (BA_LIB)

If no address is specified in req (the l e n field in a d d r is 0 or req is NULL), the tran-
sport provider will assign an appropriate address to be bound, and will return that
address in ret.

req may be N U L L if the user does not want to specify the protocol address to be
bound. Here, the value of q l e n is assumed to be zero, and the transport provider
must assign an address to the transport endpoint. Similarly, ret may be N U L L if the
user does not care what address was bound by the provider and is not interested in
the negotiated value of q l e n.

It is also valid to set req and ret to N U L L for the same call, in which case the provider
chooses the address to bind to the transport endpoint and does not return that
information to the user.

The q l e n field has meaning only when initializing a connection-mode service. It
specifies the number of outstanding connect indications the transport provider
should support for the given transport endpoint. An outstanding connect indica-
tion is one that has been passed to the transport user by the transport provider. A
value of q l e n greater than 0 is only meaningful when issued by a passive transport
user that expects other users to call it. The value of q l e n will be negotiated by the
transport provider and may be changed if the transport provider cannot support
the specified number of outstanding connect indications. On return, the q l e n field
in ret will contain the negotiated value.

Return Values
t _ b i n d returns 0 on success and –1 on failure and t _ e r r n o is set to indicate the
error.

Errors
On failure, t _ e r r n o may be set to one of the following:

T B A D F The specified file descriptor does not refer to a transport endpoint.

T O U T S T A T E The function was issued in the wrong sequence.

T B A D A D D R The specified protocol address was in an incorrect format or con-
tained illegal information.

T N O A D D R The transport provider could not allocate an address.

T A C C E S The user does not have permission to use the specified address.

T B U F O V F L W The number of bytes (m a x l e n) allocated for an incoming argument
is greater than zero but not sufficient to store the value of that argu-
ment. The provider’s state will change to T _ I D L E and the informa-
tion to be returned in ret will be discarded.

T S Y S E R R A system error has occurred during execution of this function.

T A D D R B U S Y In connection mode, the requested address has already been bound
to another transport endpoint.

T P R O T O A communication problem has been detected with the transport
provider and there is no other value of t _ e r r n o to describe the
error condition.

Page 2

FINAL COPY
June 15, 1995

File: ba_lib/t_bind
svid

Page: 486

t_bind (BA_LIB) t_bind (BA_LIB)

State Transitions
On entry, T _ U N B N D; T _ I D L E on exit.

USAGE
The following notes are for connection-mode service.

This function allows more than one transport endpoint to be bound to the same
protocol address (however, the transport provider must support this capability
also), but it is not allowable to bind more than one protocol address to the same
transport endpoint.

If a user binds more than one transport endpoint to the same protocol address, only
one endpoint can be used to listen for connect indications associated with that pro-
tocol address., In other words, only one t _ b i n d for a given protocol address may
specify a value of g e n greater than 0. In this way, the transport provider can iden-
tify which transport endpoint should be notified of an incoming connect indication.

If a user attempts to bind a protocol address to a second transport endpoint with a
value of g l e n greater than 0, t _ b i n d will fail with T A D D R B U S Y.

A transport provider may not allow an explicit binding of more than one endpoint
to the same protocol address, although it allows more than one connection to be
recommended not to bind transport endpoints that are used as responding end-
points (resfd) in a call to t _ a c c e p t, if the responding address is to be the same as
the called address.

If a user accepts a connection on the transport endpoint that is being used as the
listening endpoint, the bound protocol address will be found to be busy for the
duration of that connection. No other transport endpoints may be bound for listen-
ing while that initial listening endpoint is in the data transfer phase. This will
prevent more than one transport endpoint bound to the same protocol address
from accepting connection indications.

Warnings
Note that the behavior of t _ b i n d has changed in order to conform to X/OPEN’s
TLI/XTI specifications. Previously, if req was specified t _ b i n d returned an alter-
nate address if the one requested was busy. Now, t _ b i n d will fail and t _ e r r o r
will be set to T A D D R B U S Y. Thus now, in case of failure, applications need to check
the value of e _ e r r n o and repeat the call with a different address if the one
requested is busy (or not requested a specific address). Also, applications need not
verify the address they were bound to if they requested an address and t _ b i n d suc-
ceeded.

SEE ALSO
t _ a l l o c(BA_LIB), t _ c o n n e c t(BA_LIB), t _ l i s t e n(BA_LIB), t _ o p e n(BA_LIB),
t _ u n b i n d(BA_LIB)

FUTURE DIRECTIONS
The inclusion of the header t i u s e r . h has been moved to Level 2 due to the migra-
tion from TLI routines to the X/Open XTI routines. Replace t i u s e r . h with x t i . h.

LEVEL
Level 1.

The inclusion of the header t i u s e r . h is Level 2 effective January 1995.

Page 3

FINAL COPY
June 15, 1995

File: ba_lib/t_bind
svid

Page: 487

t_close (BA_LIB) t_close (BA_LIB)

NAME
t _ c l o s e – close a transport endpoint

SYNOPSIS
i n c l u d e < x t i . h >

i n t t _ c l o s e (i n t fd) ;

i n c l u d e < t i u s e r . h >

i n t t _ c l o s e (i n t fd) ;

Parameters
fd the file descriptor for the transport endpoint specified by fd.

DESCRIPTION
This function is an TLI/XTI local management routine used to close a transport
endpoint. The t _ c l o s e function indicates to the transport provider that the user is
finished with the transport endpoint specified by fd. In addition, t _ c l o s e closes
the file associated with the transport endpoint and frees any local library resources
associated with the endpoint.

Return Values
t _ c l o s e returns 0 on success and –1 on failure and t _ e r r n o is set to indicate the
error.

Errors
On failure, t _ e r r n o may be set to the following:

T B A D F The specified file descriptor does not refer to a transport endpoint.

T P R O T O A communication problem has been detected with the transport pro-
vider and there is no other value of t _ e r r n o to describe the error
condition.

State Transitions
On entry, any except T _ U N I N I T; T _ U N I N I T on exit.

USAGE
t _ c l o s e should be called from the T _ U N B N D state. However, this function does not
check state information, so it may be called from any valid state to close a transport
endpoint. If this occurs, the local library resources associated with the endpoint
will be freed automatically.

Warnings
If t _ c l o s e is issued while a transport address is bound to an endpoint, the address
will be unbound.

If t _ c l o s e is called when the transport connection is still active, the connection will
be aborted, the file descriptor will be closed, and the transport connection associ-
ated with that endpoint will be broken for any process that references that end-
point.

t _ c l o s e should not be issued on a connection endpoint before data has been suc-
cessfully transmitted and received or data may be lost.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/t_close
svid

Page: 488

t_close (BA_LIB) t_close (BA_LIB)

SEE ALSO
t _ g e t s t a t e(BA_LIB) t _ o p e n(BA_LIB), t _ u n b i n d(BA_LIB)

FUTURE DIRECTIONS
The inclusion of the header t i u s e r . h has been moved to Level 2 due to the migra-
tion from TLI routines to the X/Open XTI routines. Replace t i u s e r . h with x t i . h.

LEVEL
Level 1.

The inclusion of the header t i u s e r . h is Level 2 effective January 1995.

Page 2

FINAL COPY
June 15, 1995

File: ba_lib/t_close
svid

Page: 489

t_connect (BA_LIB) t_connect (BA_LIB)

NAME
t _ c o n n e c t – establish a connection with another transport user

SYNOPSIS
i n c l u d e < x t i . h >

i n t t _ c o n n e c t (i n t fd, s t r u c t t _ c a l l ∗sndcall s t r u c t t _ c a l l ∗rcvcall)

i n c l u d e < t i u s e r . h >

i n t t _ c o n n e c t (i n t fd, s t r u c t t _ c a l l ∗sndcall s t r u c t t _ c a l l ∗rcvcall)

Parameters
fd the file descriptor for the transport endpoint where the connection will be

established.

sndcall points to the t _ c a l l structure used to identify the transport user sending
the connection indication.

rcvcall points to the t _ c a l l structure used to identify the transport user that will
receive the connection indication.

DESCRIPTION
This TLI/XTI routine enables a transport user to request a connection to the
specified destination transport user.

This function is a service of connection-mode transport providers and is supported
only if the provider returned service type T _ C O T S or T _ C O T S _ O R D on t _ o p e n or
t _ g e t i n f o.

sndcall specifies information needed by the transport provider to establish a connec-
tion and rcvcall specifies information that is associated with the newly established
connection.

Structure Definitions
The pointers sndcall and rcvcall refer to a t _ c a l l structure that contains the follow-
ing members:

s t r u c t n e t b u f a d d r ; / * a d d r e s s * /
s t r u c t n e t b u f o p t ; / * o p t i o n s * /
s t r u c t n e t b u f u d a t a ; / * u s e r d a t a * /
i n t s e q u e n c e ; / * s e q u e n c e n u m b e r * /

The n e t b u f structure contains the following members:

u n s i g n e d i n t m a x l e n ;
u n s i g n e d i n t l e n ;
c h a r * b u f ;

In sndcall, a d d r specifies the protocol address of the destination transport user, o p t
presents any protocol-specific information that might be needed by the transport
provider, u d a t a points to optional user data that may be passed to the destination
transport user during connection establishment, and s e q u e n c e has no meaning for
this function.

On return in rcvcall, a d d r returns the protocol address associated with the respond-
ing transport endpoint, o p t presents any protocol-specific information associated
with the connection, u d a t a points to optional user data that may be returned by the
destination transport user during connection establishment, and s e q u e n c e has no

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/t_connect
svid

Page: 490

t_connect (BA_LIB) t_connect (BA_LIB)

T L O O K An asynchronous event has occurred on the transport endpoint
specified by fd and requires immediate attention.

T N O T S U P P O R T This function is not supported by the underlying transport pro-
vider.

T S Y S E R R A system error has occurred during execution of this function.

T A D D R B U S Y The specified connection already exists, and this transport user
does not support multiple connections with the same pair of local
and remote addresses.

T P R O T O A communication problem has been detected with the transport
provider and there is no other value of t _ e r r n o to describe the
error condition.

State Transitions
On entry, T _ I D L E; T _ O U T C O N or T D A T A X F E R (successful) or T _ I D L E (failed) on exit.
If t _ c o n n e c t fails with a T L O O K or T N O D A T A error, a change of state may occur.

USAGE
By default, t _ c o n n e c t executes in synchronous mode, and will wait for the destina-
tion user’s response before returning control to the local user. A successful return
(that is, return value of 0) indicates that the requested connection has been esta-
blished. However, if O _ N O N B L O C K is set (via t _ o p e n or f c n t l), t _ c o n n e c t executes
in asynchronous mode. In this way, the function simply initiates the connection
establishment procedure by sending a connect request to the destination transport
user, and may fail with t _ e r r o r set to T N O D A T A.

Also, in the case of the TCP protocol, the peer TCP, and not the peer transport user,
confirms the connection. One consequence of this fact is that the t _ c o n n e c t can
return success, even though the remote server process may (later) call t _ s n d d i s,
rather than t _ a c c e p t, thus aborting the connection.

SEE ALSO
t _ a c c e p t(BA_LIB), t _ g e t i n f o(BA_LIB) t _ l i s t e n(BA_LIB), t _ o p e n(BA_LIB),
t _ o p t m g m t(BA_LIB), t _ r c v c o n n e c t(BA_LIB)

FUTURE DIRECTIONS
The inclusion of the header t i u s e r . h has been moved to Level 2 due to the migra-
tion from TLI routines to the X/Open XTI routines. Replace t i u s e r . h with x t i . h.

LEVEL
Level 1.

The inclusion of the header t i u s e r . h is Level 2 effective January 1995.

Page 3

FINAL COPY
June 15, 1995

File: ba_lib/t_connect
svid

Page: 492

t_error (BA_LIB) t_error (BA_LIB)

NAME
t _ e r r o r – write an error message

SYNOPSIS
i n c l u d e < x t i . h >

i n t t _ e r r o r (c h a r *errmsg) ;

e x t e r n i n t t _ e r r n o ;
e x t e r n c h a r * t _ e r r l i s t [] ;
e x t e r n i n t t _ n e r r ;

i n c l u d e < t i u s e r . h >

i n t t _ e r r o r (c h a r *errmsg) ;

Parameters
errmsg a user-supplied error message that gives context to the error.

t_errno index to a user-specified message array.

t_errlist points to the array of user-supplied message strings.

t_nerr maximum number of messages in the user-specified message array.

DESCRIPTION
This function is an TLI/XTI local management routine used to generate a message
under error conditions. t _ e r r o r writes a message on the standard error output
describing the last error encountered during a call to a transport function.

The argument string errmsg is user supplied and may be set to give context to the
error. The message returned by t _ e r r o r prints in the following format: the user-
supplied error message followed by a colon and the standard transport function
error message for the current value contained in t _ e r r n o.

t _ e r r l i s t and t _ n e r r are maintained for compatibility and should not be used.
In their place use t _ s t r e r r o r(BA_LIB).

Return Values
Upon completion, a value of 0 is returned. No errors are defined.

State Transitions
t _ e r r o r may be issued from any valid state except T _ U N I N I T and has no effect on
the entry state at exit.

USAGE
On return, t _ e r r n o is set when an error occurs and is not cleared on subsequent
successful calls.

If the returned value of t _ e r r n o has been set to T S Y S E R R, t _ e r r o r will also print
the standard error message for the current value contained in e r r n o

Examples
Following a t _ c o n n e c t function call, which might fail on a transport endpoint fd2
because a bad address was detected, a call to t _ e r r o r might be issued to check for
a possible failure:

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/t_error
svid

Page: 493

t_error (BA_LIB) t_error (BA_LIB)

t _ e r r o r (" t _ c o n n e c t f a i l e d o n f d 2 ") ;

If the t _ c o n n e c t fails, t _ e r r n o is set to the appropriate value, and the diagnostic
message would print as:

t _ c o n n e c t f a i l e d o n f d 2 : I n c o r r e c t t r a n s p o r t a d d r e s s f o r m a t

where "t _ c o n n e c t f a i l e d o n f d 2" tells the user which function failed on which
transport endpoint, and "I n c o r r e c t t r a n s p o r t a d d r e s s f o r m a t" identifies the
specific error that occurred.

SEE ALSO
p f m t(BA_LIB)

FUTURE DIRECTIONS
The inclusion of the header t i u s e r . h has been moved to Level 2 due to the migra-
tion from TLI routines to the X/Open XTI routines. Replace t i u s e r . h with x t i . h.

LEVEL
Level 1.

The inclusion of the header t i u s e r . h is Level 2 effective January 1995.

t _ e r r l i s t and t _ n e r r are Level 2, effective January 1995.

Page 2

FINAL COPY
June 15, 1995

File: ba_lib/t_error
svid

Page: 494

t_free (BA_LIB) t_free (BA_LIB)

NAME
t _ f r e e – free a data structure

SYNOPSIS
i n c l u d e < x t i . h >

i n t t _ f r e e (c h a r *ptr, i n t struct_type) ;

i n c l u d e < t i u s e r . h >

i n t t _ f r e e (c h a r *ptr, i n t struct_type) ;

Parameters
ptr points to the structure referenced by t _ a l l o c.

struct_type identifies the type of structure.

DESCRIPTION
The t _ f r e e function frees memory previously allocated by t _ a l l o c. This function
will free memory for the specified structure, and will also free memory for buffers
referenced by the structure.

ptr points to the structure, previously referenced by t _ a l l o c, which may be one of
six types described by struct_type. One of the following types of structures may be
specified:

T _ B I N D / * s t r u c t t _ b i n d * /
T _ O P T M G M T / * s t r u c t t _ o p t m g m t * /
T _ C A L L / * s t r u c t t _ c a l l * /
T _ D I S / * s t r u c t t _ d i s c o n * /
T _ U N I T D A T A / * s t r u c t t _ u n i t d a t a * /
T _ U D E R R O R / * s t r u c t t _ u d e r r * /
T _ I N F O / * s t r u c t t _ i n f o * /

where each of these structures is used as an argument to one or more transport
functions.

t _ f r e e will check the a d d r, o p t, and u d a t a fields of the given structure (as
appropriate), and free the buffers pointed to by the b u f field of the n e t b u f struc-
ture. If b u f is N U L L, t _ f r e e will not attempt to free memory. After all buffers are
freed, t _ f r e e will free the memory associated with the structure pointed to by ptr.

Undefined results will occur if ptr or any of the b u f pointers points to a block of
memory that was not previously allocated by t _ a l l o c.

Return Values
t _ f r e e returns 0 on success and –1 on failure and t _ e r r n o is set to indicate the
error.

Errors
On failure, t _ e r r n o may be set to the following:

T S Y S E R R A system error has occurred during execution of this function.

T N O S T R U C T Y P E The argument that specifies struct_type is invalid, for example,
because the type of structure requested in inconsistent with the
transport provider (connection mode or connectionless).

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/t_free
svid

Page: 495

t_free (BA_LIB) t_free (BA_LIB)

T P R O T O A communication problem has been detected with the transport
provider and there is no other value of t _ e r r n o to describe the
error condition.

State Transitions
t _ f r e e may be issued from any valid state except T _ U N I N I T and has no effect on
the entry state at exit.

USAGE
After all buffers are freed, t _ f r e e will free the memory associated with the struc-
ture pointed to by ptr.

If b u f is N U L L, t _ f r e e will not attempt to free memory.

Warnings
Undefined results will occur if ptr or any of the b u f pointers points to a block of
memory that was not previously allocated by t _ a l l o c.

SEE ALSO
t _ a l l o c(BA_LIB)

FUTURE DIRECTIONS
The inclusion of the header t i u s e r . h has been moved to Level 2 due to the migra-
tion from TLI routines to the X/Open XTI routines. Replace t i u s e r . h with x t i . h.

LEVEL
Level 1.

The inclusion of the header t i u s e r . h is Level 2 effective January 1995.

Page 2

FINAL COPY
June 15, 1995

File: ba_lib/t_free
svid

Page: 496

t_getinfo (BA_LIB) t_getinfo (BA_LIB)

NAME
t _ g e t i n f o – get protocol-specific service information

SYNOPSIS
i n c l u d e < x t i . h >

i n t t _ g e t i n f o (i n t fd, s t r u c t t _ i n f o *info) ;

i n c l u d e < t i u s e r . h >

i n t t _ g e t i n f o (i n t fd, s t r u c t t _ i n f o *info) ;

Parameters
fd the file descriptor for the transport endpoint

info points to the t _ i n f o structure used to identify a transport provider.

DESCRIPTION
This function is an TLI/XTI local management routine used to return the current
characteristics of the underlying transport protocol associated with file descriptor
fd. The t _ i n f o structure is used to return the same information returned by
t _ o p e n. This function enables a transport user to access this information during
any phase of communication.

Structure Definitions
This argument points to a s t r u c t t _ i n f o which contains the following members:

l o n g a d d r ; / * m a x s i z e o f t h e t r a n s p o r t p r o t o c o l a d d r e s s * /
l o n g o p t i o n s ; / * m a x n u m o f b y t e s o f p r o t o c o l - s p e c i f i c o p t i o n s * /
l o n g t s d u ; / * m a x s i z e o f a t r a n s p o r t s e r v i c e d a t a u n i t (T S D U) * /
l o n g e t s d u ; / * m a x s i z e o f a n e x p e d i t e d T S D U (E T S D U) * /
l o n g c o n n e c t ; / * m a x a m t o f d a t a a l l o w e d o n c o n n e c t e s t a b l i s h m e n t * /
l o n g d i s c o n ; / * m a x a m t o f d a t a a l l o w e d o n t _ s n d d i s , t _ r c v d i s * /
l o n g s e r v t y p e ; / * s e r v i c e t y p e s u p p o r t e d b y t r a n s p o r t p r o v i d e r * /
l o n g f l a g s ; / * p r o v i d e s m o r e i n f o a b o u t t r a n s p o r t p r o v i d e r * /

The values of the fields have the following meanings:

a d d r A value greater than or equal to 0 indicates the maximum size of a
transport protocol address, and a value of –2 specifies that the tran-
sport provider does not provide user access to transport protocol
addresses.

o p t i o n s A value greater than or equal to 0 indicates the maximum number
of bytes of protocol-specific options supported by the provider, and
a value of –2 specifies that the transport provider does not support
user-settable options.

t s d u A value greater than 0 specifies the maximum size of a transport
service data unit (T S D U); a value of 0 specifies that the transport pro-
vider does not support the concept of T S D U, although it does sup-
port the sending of a data stream with no logical boundaries
preserved across a connection; a value of –1 specifies that there is no
limit on the size of a T S D U, and a value of –2 specifies that the
transfer of normal data is not supported by the transport provider.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/t_getinfo
svid

Page: 497

t_getinfo (BA_LIB) t_getinfo (BA_LIB)

e t s d u A value greater than 0 specifies the maximum size of an expedited
transport service data unit (E T S D U); a value of 0 specifies that the
transport provider does not support the concept of E T S D U, although
it does support the sending of an expedited data stream with no
logical boundaries preserved across a connection; a value of –1
specifies that there is no limit on the size of an E T S D U, and a value of
–2 specifies that the transfer of expedited data is not supported by
the transport provider.

c o n n e c t A value greater than 0 specifies the maximum amount of data that
may be associated with connection establishment functions; and a
value of –2 specifies that the transport provider does not allow data
to be sent with connection establishment functions.

d i s c o n A value greater than 0 specifies the maximum amount of data that
may be associated with the t _ s n d d i s and t _ r c v d i s functions, and
a value of –2 specifies that the transport provider does not allow
data to be sent with the abortive release functions.

s e r v t y p e This field specifies the service type supported by the transport pro-
vider. A single transport endpoint may support only one of the fol-
lowing services at one time.

T _ C O T S The transport provider supports a connection-mode
service but does not support the optional orderly
release facility.

T _ C O T S _ O R D The transport provider supports a connection-mode
service with the optional orderly release facility.

T _ C L T S The transport provider supports a connectionless
service. For this service type, t _ o p e n will return –2
for e t s d u, c o n n e c t, and d i s c o n.

f l a g s This field specifies other information in the form of bit indicators as
follows: If T _ S E N D Z E R O is on, this indicates that the underlying tran-
sport provider supports the sending of 0-length TSDUs.

Return Values
t _ g e t i n f o returns 0 on success and –1 on failure and t _ e r r n o is set to indicate the
error.

Errors
On failure, t _ e r r n o may be set to the following:

T S Y S E R R A system error has occurred during execution of this function.

T B A D F The specified file descriptor does not refer to a transport endpoint.

T P R O T O A communication problem has been detected with the transport
provider and there is no other value of t _ e r r n o to describe the
error condition.

State Transitions
t _ g e t i n f o may be issued from any valid state except T _ U N I N I T and has no effect
on the entry state at exit.

Page 2

FINAL COPY
June 15, 1995

File: ba_lib/t_getinfo
svid

Page: 498

t_getinfo (BA_LIB) t_getinfo (BA_LIB)

USAGE
If a transport user is concerned with protocol independence, the sizes specified in
t _ i n f o may be accessed to determine how large the buffers must be to hold each
piece of information. Alternatively, the t _ a l l o c function may be used to allocate
these buffers.

The value of each field may change as a result of protocol option negotiation during
connection establishment. These values will only change from the values presented
to t _ o p e n after the endpoint enters the T _ D A T A F E R state.

Warnings
An error will result if the data size allowed is exceeded by the transport user on any
function.

SEE ALSO
t _ a l l o c(BA_LIB), t _ c l o s e(BA_LIB) t _ o p e n(BA_LIB),

FUTURE DIRECTIONS
The inclusion of the header t i u s e r . h has been moved to Level 2 due to the migra-
tion from TLI routines to the X/Open XTI routines. Replace t i u s e r . h with x t i . h.

LEVEL
Level 1.

The inclusion of the header t i u s e r . h is Level 2 effective January 1995.

Page 3

FINAL COPY
June 15, 1995

File: ba_lib/t_getinfo
svid

Page: 499

t_getprotaddr (BA_LIB) t_getprotaddr (BA_LIB)

NAME
t _ g e t p r o t a d d r – get protocol addresses

SYNOPSIS
i n c l u d e < x t i . h >

i n t t _ g e t p r o t a d d r (i n t fd, s t r u c t t _ b i n d *boundaddr,
s t r u c t t _ b i n d *peeraddr) ;

Parameters
fd the file descriptor for the transport endpoint associated with the proto-

col address.

boundaddr points to the bound address of the local transport endpoint.

peeraddr points to the peer address.

DESCRIPTION
This function is an TLI/XTI local management function used to get protocol
addresses for both the local and remote endpoints. t _ g e t p r o t a d d r returns, for the
transport endpoint specified by fd, the local address of the transport endpoint
(pointed to by boundaddr) and the remote address of the peer (pointed to by
peeraddr).

The local address is available if the endpoint is bound (not in the T _ U N B N D state)
and the peer address is available if the endpoint is in the T _ D A T A X F E R state.

Structure Definitions
boundaddr and peeraddr point to a t _ b i n d structure containing the following
members:

s t r u c t n e t b u f a d d r ; / * a d d r e s s * /
u n s i g n e d q l e n ; / * c o n n e c t i n d i c a t i o n s * /

The n e t b u f structure contains the following members:

u n s i g n e d i n t m a x l e n ;
u n s i g n e d i n t l e n ;
c h a r * b u f ;

l e n specifies the number of bytes in the address, b u f points to the address buffer,
and m a x l e n is the maximum size of the address buffer. The q l e n field, in connec-
tion mode only, is used to indicate the maximum number of outstanding connect
indications.

In boundaddr and peeraddr, the m a x l e n field is the maximum size of the address
buffer, specified by the user, and b u f points to the buffer where the address will be
placed.

On return, if the endpoint specified by fd is currently bound, the b u f field of boun-
daddr points to the address of the transport endpoint and the l e n field indicates the
length of the address. If the endpoint is not bound, the l e n field of boundaddr
returns a value of 0.

If the transport user is in the T _ D A T A X F E R state, the b u f field of peeraddr points to
the address of the peer (currently connected to fd and the l e n field indicates the
length of that address. If the endpoint is not connected, the l e n field of peeraddr
returns a value of 0.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/t_getprotadd
svid

Page: 500

t_getprotaddr (BA_LIB) t_getprotaddr (BA_LIB)

Return Values
t _ g e t p r o t a d d r returns a value of 0 on successful completion and –1 on failure and
t _ e r r n o is set to indicate the error.

Errors
On failure, t _ e r r n o may be set to one of the following:

T B A D F The specified file descriptor does not refer to a transport end-
point.

T B U F O V F L W The number of bytes (m a x l e n) allocated for an incoming argu-
ment is greater than zero but not sufficient to store the value of
that argument.

T S Y S E R R A system error has occurred during execution of this function.

T P R O T O A communication problem has been detected with the transport
provider and there is no other value of t _ e r r n o to describe the
error condition.

State Transitions
t _ g e t p r o t a d d r may be issued from any valid state except T _ U N I N I T and has no
effect on the entry state at exit.

USAGE
This function is applicable for both connection-mode and connectionless transport
services. However, since the remote endpoint is never in the T D A T A X F E R state if the
service is connectionless, only the address of the bound endpoint will be returned.

SEE ALSO
t _ a c c e p t(BA_LIB), t _ b i n d(BA_LIB), t _ c o n n e c t(BA_LIB)

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ba_lib/t_getprotadd
svid

Page: 501

t_getstate (BA_LIB) t_getstate (BA_LIB)

NAME
t _ g e t s t a t e – get the current state

SYNOPSIS
i n c l u d e < x t i . h >

i n t t _ g e t s t a t e (i n t fd) ;

i n c l u d e < t i u s e r . h >

i n t t _ g e t s t a t e (i n t fd) ;

Parameters
fd the file descriptor for the transport endpoint associated with the current

state.

DESCRIPTION
This function is an TLI/XTI local management routine used to return the current
state of the provider associated with the transport endpoint specified by fd.

TLI/XTI states are changed by user events that reflect the success or failure of calls
to the various TLI/XTI functions. Because fewer TLI/XTI user events occur over
connectionless services, there are fewer TLI/XTI states than for connection-mode
services.

The current state may be one of the following:

T _ U N B N D unbound

T _ I D L E idle

T _ O U T C O N outgoing connection pending (connection mode only)

T _ I N C O N incoming connection pending (connection mode only)

T _ D A T A X F E R data transfer (connection mode only)

T _ O U T R E L outgoing orderly release (waiting for an orderly release indication)
(connection mode only)

T _ I N R E L incoming orderly release (waiting for an orderly release request)
(connection mode only)

Return Values
t _ g e t s t a t e returns the current state on successful completion and –1 on failure
and t _ e r r n o is set to indicate the error.

Errors
On failure, t _ e r r n o may be set to one of the following:

T B A D F The specified file descriptor does not refer to a transport endpoint.

T S T A T E C H N G The transport provider is undergoing a state change.

T S Y S E R R A system error has occurred during execution of this function.

T P R O T O A communication problem has been detected with the transport
provider and there is no other value of t _ e r r n o to describe the
error condition.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/t_getstate
svid

Page: 502

t_getstate (BA_LIB) t_getstate (BA_LIB)

State Transitions
t _ g e t s t a t e may be issued from any valid state except T _ U N I N I T and has no effect
on the entry state.

USAGE
The t _ g e t s t a t e function is applicable to both connection-mode and connectionless
transport services.

Warnings
If the provider is undergoing a state transition when t _ g e t s t a t e is called, the
function will fail.

SEE ALSO
t _ g e t i n f o(BA_LIB), t _ o p e n(BA_LIB),

FUTURE DIRECTIONS
The inclusion of the header t i u s e r . h has been moved to Level 2 due to the migra-
tion from TLI routines to the X/Open XTI routines. Replace t i u s e r . h with x t i . h.

LEVEL
Level 1.

The inclusion of the header t i u s e r . h is Level 2 effective January 1995.

Page 2

FINAL COPY
June 15, 1995

File: ba_lib/t_getstate
svid

Page: 503

t_listen (BA_LIB) t_listen (BA_LIB)

NAME
t _ l i s t e n – listen for a connect request

SYNOPSIS
i n c l u d e < x t i . h >

i n t t _ l i s t e n (i n t fd, s t r u c t t _ c a l l ∗call) ;

i n c l u d e < t i u s e r . h >

i n t t _ l i s t e n (i n t fd, s t r u c t t _ c a l l ∗call) ;

Parameters
fd the file descriptor for the transport endpoint where connect indications

arrive.

call points to the t _ c a l l structure used to describe the connect indications.

DESCRIPTION
This function is an TLI/XTI routine for use in establishing a transport connection.
t _ l i s t e n listens for a connect request from a calling transport user and is designed
for use by server applications using connection-mode transport services.

fd identifies the local transport endpoint where connect indications arrive, and on
return, call contains information describing the connect indication.

Structure Definitions
call points to a t _ c a l l structure, which contains the following members:

s t r u c t n e t b u f a d d r ; / * a d d r e s s * /
s t r u c t n e t b u f o p t ; / * o p t i o n s * /
s t r u c t n e t b u f u d a t a ; / * u s e r d a t a * /
i n t s e q u e n c e ; / * s e q u e n c e n u m b e r * /

The n e t b u f structure contains the following members:

u n s i g n e d i n t m a x l e n ;
u n s i g n e d i n t l e n ;
c h a r * b u f ;

In call, a d d r returns the protocol address of the calling transport user, o p t returns
protocol-specific parameters associated with the connect request, u d a t a returns any
user data sent by the caller on the connect request, and s e q u e n c e is a number that
uniquely identifies the returned connect indication. The value of s e q u e n c e enables
the user to listen for multiple connect indications before responding to any of them.

Since this function returns values for the a d d r, o p t, and u d a t a fields of call, the
m a x l e n field of each must be set before issuing t _ l i s t e n to indicate the maximum
size of the buffer for each.

Return Values
t _ l i s t e n returns 0 on success and –1 on failure and t _ e r r n o is set to indicate the
error.

Errors
On failure, t _ e r r n o may be set to one of the following:

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/t_listen
svid

Page: 504

t_listen (BA_LIB) t_listen (BA_LIB)

T B A D F The specified file descriptor does not refer to a transport end-
point.

T B A D Q L E N The argument q l e n of the endpoint specified by fd is 0.

T B U F O V F L W The number of bytes (m a x l e n) allocated for an incoming argu-
ment is greater than zero but not sufficient to store the value of
that argument. The provider’s state, as seen by the user, changes
to T _ I N C O N, and the connect indication information to be
returned in c a l l is discarded.

T N O D A T A O _ N O N B L O C K was set, but no connect indications had been
queued.

T L O O K An asynchronous event has occurred on this transport endpoint
and requires immediate attention.

T N O T S U P P O R T This function is not supported by the underlying transport pro-
vider.

T S Y S E R R A system error has occurred during execution of this function.

T Q F U L L The maximum number of connect indications has been reached
for the endpoint specified by fd.

T O U T S T A T E The function was issued in the wrong sequence on the transport
endpoint referenced by f d.

T P R O T O A communication problem has been detected with the transport
provider and there is no other value of t _ e r r n o to describe the
error condition.

State Transitions
T _ I D L E on entry. T _ I N C O N (successful) or T _ I D L E (no requests) on exit.

SEE ALSO
t _ a c c e p t(BA_LIB), t _ b i n d(BA_LIB), t _ c o n n e c t(BA_LIB), t _ o p e n(BA_LIB),
t _ r c v c o n n e c t(BA_LIB)

FUTURE DIRECTIONS
The inclusion of the header t i u s e r . h has been moved to Level 2 due to the migra-
tion from TLI routines to the X/Open XTI routines. Replace t i u s e r . h with x t i . h.

LEVEL
Level 1.

The inclusion of the header t i u s e r . h is Level 2 effective January 1995.

Page 2

FINAL COPY
June 15, 1995

File: ba_lib/t_listen
svid

Page: 505

t_look (BA_LIB) t_look (BA_LIB)

NAME
t _ l o o k – check for asynchronous event

SYNOPSIS
i n c l u d e < x t i . h >

i n t t _ l o o k (i n t fd) ;

i n c l u d e < t i u s e r . h >

i n t t _ l o o k (i n t fd) ;

Parameters
fd the file descriptor for the local transport endpoint associated with the current

event.

DESCRIPTION
This function is an TLI/XTI local management routine used to return the current
asynchronous event on the transport endpoint specified by fd. The event indicated
reflects the service type of the transport provider. t _ l o o k enables a transport pro-
vider to notify a transport user, when the user is issuing functions in synchronous
mode, if an asynchronous event has occurred on the specified endpoint.

Certain events require immediate notification of the user and are indicated by a
specific error, T L O O K, on the current or next function to be executed.

This function also enables a transport user to poll a transport endpoint periodically
for asynchronous events.

Values returned by t _ l o o k include the following:

T _ L I S T E N A request for a connection (connect indication) has arrived at the
transport endpoint.

T _ C O N N E C T A connect confirmation (confirmation of connect indication) has
arrived at the transport endpoint. (When the server accepts a
connect request, the confirmation is generated.)

T _ D A T A User data has arrived at the transport endpoint.

T _ E X D A T A Expedited user data has arrived at the transport endpoint.

T _ D I S C O N N E C T A notification that the connection was aborted or that the server
did not accept a connect request (disconnect indication) has
arrived at the transport endpoint.

T _ U D E R R Notification that a datagram error occurred (unitdata error indi-
cation) has arrived at the transport endpoint.

T _ O R D R E L A request for the orderly release of a connection (orderly release
indication) has arrived at the transport endpoint.

T _ G O D A T A Notification that it is again possible to send user data has arrived
at the transport endpoint.

T _ G O E X D A T A Notification that it is again possible to send expedited user data
has arrived at the transport endpoint.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/t_look
svid

Page: 506

t_look (BA_LIB) t_look (BA_LIB)

Return Values
On success, t _ l o o k returns 0 if no event exists or the value that indicates which
event exists. On failure, –1 is returned and t _ e r r n o is set to indicate the error.

Errors
On failure, t _ e r r n o may be set to one of the following:

T B A D F The specified file descriptor does not refer to a transport end-
point.

T S Y S E R R A system error has occurred during execution of this function.

T P R O T O A communication problem has been detected with the transport
provider and there is no other value of t _ e r r n o to describe the
error condition.

State Transitions
t _ l o o k may be issued from any valid state except T _ U N I N I T and has no effect on
the state.

SEE ALSO
t _ o p e n(BA_LIB), t _ s n d(BA_LIB) t _ s n d u d a t a(BA_LIB)

FUTURE DIRECTIONS
The inclusion of the header t i u s e r . h has been moved to Level 2 due to the migra-
tion from TLI routines to the X/Open XTI routines. Replace t i u s e r . h with x t i . h.

LEVEL
Level 1.

The inclusion of the header t i u s e r . h is Level 2 effective January 1995.

Page 2

FINAL COPY
June 15, 1995

File: ba_lib/t_look
svid

Page: 507

t_open (BA_LIB) t_open (BA_LIB)

NAME
t _ o p e n – establish a transport endpoint

SYNOPSIS
i n c l u d e < x t i . h >

i n c l u d e < f c n t l . h >

i n t t _ o p e n (c o n s t c h a r *path, i n t oflag, s t r u c t t _ i n f o ∗info)

i n c l u d e < t i u s e r . h >

i n c l u d e < f c n t l . h >

i n t t _ o p e n (c o n s t c h a r *path, i n t oflag, s t r u c t t _ i n f o ∗info)

Parameters
path points to the path name of the file to open.

oflag identifies any open flags. oflag may be constructed from O _ N O N B L O C K O R-ed
with O _ R D W R. These flags are defined in the header file < f c n t l . h >.

info points to the t _ i n f o structure used to identify a transport provider.

DESCRIPTION
The t _ o p e n function is an TLI/XTI local management routine that must be called as
the first step in the initialization of a transport endpoint. This function opens a
UNIX file that identifies a transport endpoint connected to a chosen transport pro-
vider (that is, transport protocol). The file descriptor (fd) for the opened file
identifies the provider and establishes the endpoint. For example, a call to t _ o p e n
may be used to open the file/ d e v / i s o _ c o t s to specify an OSI connection-oriented
transport layer protocol as the transport provider.

The file descriptor returned by t _ o p e n is be used by all subsequent functions to
identify the particular local transport endpoint.

t _ o p e n also returns various default characteristics of the underlying transport pro-
tocol by setting fields in the t _ i n f o structure.

Structure Definitions
This argument points to a s t r u c t t _ i n f o which contains the following members:

l o n g a d d r ; / * m a x s i z e o f t h e t r a n s p o r t p r o t o c o l a d d r e s s * /
l o n g o p t i o n s ; / * m a x n u m o f b y t e s o f p r o t o c o l - s p e c i f i c o p t i o n s * /
l o n g t s d u ; / * m a x s i z e o f a t r a n s p o r t s e r v i c e d a t a u n i t (T S D U) * /
l o n g e t s d u ; / * m a x s i z e o f a n e x p e d i t e d T S D U (E T S D U) * /
l o n g c o n n e c t ; / * m a x a m t o f d a t a a l l o w e d o n c o n n e c t e s t a b l i s h m e n t * /
l o n g d i s c o n ; / * m a x a m t o f d a t a a l l o w e d o n t _ s n d d i s , t _ r c v d i s * /
l o n g s e r v t y p e ; / * s e r v i c e t y p e s u p p o r t e d b y t r a n s p o r t p r o v i d e r * /
l o n g f l a g s ; / * p r o v i d e s m o r e i n f o a b o u t t r a n s p o r t p r o v i d e r * /

The values of the fields have the following meanings:

a d d r A value greater than or equal to 0 indicates the maximum size of a
transport protocol address, and a value of –2 specifies that the tran-
sport provider does not provide user access to transport protocol
addresses.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/t_open
svid

Page: 508

t_open (BA_LIB) t_open (BA_LIB)

o p t i o n s A value greater than or equal to 0 indicates the maximum number
of bytes of protocol-specific options supported by the provider, and
a value of –2 specifies that the transport provider does not support
user-settable options.

t s d u A value greater than 0 specifies the maximum size of a transport
service data unit (T S D U); a value of 0 specifies that the transport pro-
vider does not support the concept of T S D U, although it does sup-
port the sending of a data stream with no logical boundaries
preserved across a connection; a value of –1 specifies that there is no
limit on the size of a T S D U, and a value of –2 specifies that the
transfer of normal data is not supported by the transport provider.

e t s d u A value greater than 0 specifies the maximum size of an expedited
transport service data unit (E T S D U); a value of 0 specifies that the
transport provider does not support the concept of E T S D U, although
it does support the sending of an expedited data stream with no
logical boundaries preserved across a connection; a value of –1
specifies that there is no limit on the size of an E T S D U, and a value of
–2 specifies that the transfer of expedited data is not supported by
the transport provider.

c o n n e c t A value greater than or equal to 0 specifies the maximum amount of
data that may be associated with connection establishment func-
tions, and a value of –2 specifies that the transport provider does
not allow data to be sent with connection establishment functions.

d i s c o n A value greater than or equal to 0 specifies the maximum amount of
data that may be associated with the t _ s n d d i s and t _ r c v d i s func-
tions, and a value of –2 specifies that the transport provider does
not allow data to be sent with the abortive release functions.

s e r v t y p e This field specifies the service type supported by the transport pro-
vider. A single transport endpoint may support only one of the fol-
lowing services at one time.

T _ C O T S The transport provider supports a connection-mode
service but does not support the optional orderly
release facility.

T _ C O T S _ O R D The transport provider supports a connection-mode
service with the optional orderly release facility.

T _ C L T S The transport provider supports a connectionless
service. For this service type, t _ o p e n will return –2
for e t s d u, c o n n e c t, and d i s c o n.

f l a g s This bit field is used to specify other information about the tran-
sport provider. If the T _ S E N D Z E R O bit is set in f l a g s, this indicates
the underlying transport provider supports the sending of zero-
length TSDUs.

Page 2

FINAL COPY
June 15, 1995

File: ba_lib/t_open
svid

Page: 509

t_open (BA_LIB) t_open (BA_LIB)

A single transport endpoint may support only one of the above services at one time.

If info is set to N U L L by the transport user, no protocol information is returned by
t _ o p e n.

Return Values
t _ o p e n returns a valid file descriptor on success and –1 on failure and t _ e r r n o is
set to indicate the error.

Errors
On failure, t _ e r r n o may be set to the following:

T S Y S E R R A system error has occurred during execution of this function.

T B A D F L A G An invalid flag is specified.

T B A D N A M E An invalid path is specified for the transport provider name.

T P R O T O A communication problem has been detected with the transport
provider and there is no other value of t _ e r r n o to describe the
error condition.

State Transitions
On entry, T _ U N I N I T; T _ U N B N D (successful) or T _ U N I N I T (failed) on exit.

USAGE
If a transport user is concerned with protocol independence, the sizes specified in
t _ i n f o may be accessed to determine how large the buffers must be to hold each
piece of information. Alternatively, the t _ a l l o c function may be used to allocate
these buffers. An error will result if a transport user exceeds the allowed data size
on any function.

If i n f o is set to N U L L by the transport user, no protocol information is returned by
t _ o p e n.

Warnings
If t _ o p e n is used on a non-XTI-conforming STREAMS device, unpredictable events
may occur.

The c l o s e() system call should not be used directly on the file descriptor returned
by t _ o p e n(BA_LIB). The t_close(BA_LIB) routine should be used to close a file
descriptor opened by t _ o p e n(BA_LIB).

SEE ALSO
t _ a l l o c(BA_LIB), t _ c l o s e(BA_LIB), t _ g e t i n f o(BA_LIB)

FUTURE DIRECTIONS
The inclusion of the header t i u s e r . h has been moved to Level 2 due to the migra-
tion from TLI routines to the X/Open XTI routines. Replace t i u s e r . h with x t i . h.

LEVEL
Level 1.

The inclusion of the header t i u s e r . h is Level 2 effective January 1995.

Page 3

FINAL COPY
June 15, 1995

File: ba_lib/t_open
svid

Page: 510

t_optmgmt (BA_LIB) t_optmgmt (BA_LIB)

NAME
t _ o p t m g m t – manage options for a transport endpoint

SYNOPSIS
i n c l u d e < t i u s e r . h >

i n t t _ o p t m g m t (i n t fd, s t r u c t t _ o p t m g m t ∗req, s t r u c t t _ o p t m g m t ∗ret) ;

Parameters
fd the file descriptor for the transport endpoint

req points to the t _ o p t m g m t structure used to identify the request.

info points to the t _ o p t m g m t structure used to identify the return.

DESCRIPTION
The t _ o p t m g m t function enables a transport user to retrieve, verify, or negotiate
protocol options with the transport provider associated with the bound transport
endpoint specified by fd. t _ o p t m g m t is a TLI local management routine that may be
used with both connection-mode and connectionless protocol services.

Structure Definitions
The req and ret arguments point to a t _ o p t m g m t structure containing the following
members:

s t r u c t n e t b u f o p t ; / * p r o t o c o l o p t i o n s * /
l o n g f l a g s ; / * a c t i o n s * /

The o p t field identifies protocol options and the f l a g s field is used to specify the
action to take with those options.

The options are represented by a n e t b u f structure in a manner similar to the
address used in t _ b i n d. The n e t b u f structure contains the following members:

u n s i g n e d i n t m a x l e n ;
u n s i g n e d i n t l e n ;
c h a r * b u f ;

req is used to request a specific action of the provider and to send options to the
provider. l e n specifies the number of bytes in the options, b u f points to the
options buffer, and m a x l e n has no meaning for the req argument.

The transport provider may return options and flag values to the user through ret.
For ret, m a x l e n specifies the maximum size of the options buffer and b u f points to
the buffer where the options are to be placed. On return, l e n specifies the number
of bytes of options returned. m a x l e n has no meaning for the req argument, but
must be set in the ret argument to specify the maximum number of bytes the
options buffer can hold.

The actual structure and content of the options is imposed by the transport pro-
vider.

The f l a g s field of req can specify one of the following actions:

T _ N E G O T I A T E This action enables the user to negotiate the values of the options
specified in req with the transport provider. The provider will
evaluate the requested options and negotiate the values, returning
the negotiated values through ret.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/t_optmgmt
svid

Page: 511

t_optmgmt (BA_LIB) t_optmgmt (BA_LIB)

T _ C H E C K This action enables the user to verify whether the options specified
in req are supported by the transport provider. On return, the
f l a g s field of ret will have either T _ S U C C E S S or T _ F A I L U R E set to
indicate to the user whether the options are supported. These flags
are only meaningful for the T _ C H E C K request.

T _ D E F A U L T This action enables a user to retrieve the default options supported
by the transport provider into the o p t field of ret. In req, the l e n
field of o p t must be zero and the b u f field may be N U L L.

Return Values
t _ o p t m g m t returns 0 on success and –1 on failure and t _ e r r n o is set to indicate the
error.

Errors
On failure, t _ e r r n o may be set to one of the following:

T B A D F The specified file descriptor does not refer to a transport endpoint.

T O U T S T A T E The function was issued in the wrong sequence.

T A C C E S The user does not have permission to negotiate the specified
options.

T B A D O P T The specified protocol options were in an incorrect format or con-
tained illegal information.

T B A D F L A G An invalid flag was specified.

T B U F O V F L W The number of bytes (m a x l e n) allocated for an incoming argument
is greater than zero but not sufficient to store the value of that
argument. The information to be returned in r e t will be dis-
carded.

T S Y S E R R A system error has occurred during execution of this function.

T P R O T O A communication problem has been detected with the transport
provider and there is no other value of t _ e r r n o to describe the
error condition.

T N O T S U P P O R T The action is not supported by the transport provider.

State Transitions
t _ o p t m g m t may be issued from any valid state except T _ U N I N I T and has no effect
on the state.

USAGE
If issued as part of a connectionless service, t _ o p t m g m t may block due to flow con-
trol constraints. The function will not complete until the transport provider has
processed all previously sent data units.

Warnings
The transport provider interface may not support the functionality for
T _ N E G O T I A T E and/or T _ C H E C K, causing t _ o p t m g m t to fail with a T N O T S U P P O R T
error.

Page 2

FINAL COPY
June 15, 1995

File: ba_lib/t_optmgmt
svid

Page: 512

t_optmgmt (BA_LIB) t_optmgmt (BA_LIB)

SEE ALSO
t _ a c c e p t(BA_LIB), t _ a l l o c(BA_LIB), t _ b i n d(BA_LIB), t _ c o n n e c t(BA_LIB),
t _ g e t i n f o(BA_LIB), t _ l i s t e n(BA_LIB), t _ o p e n(BA_LIB),
t _ r c v c o n n e c t(BA_LIB)

FUTURE DIRECTIONS
To allow conformance to X/Open Transport Interface (XTI), t _ o p t m g m t will be
modified to support XPG4 options management. Application writers and protocol
providers must be aware of this migration due to the incompatibilities it will pro-
duce. In addition, the inclusion of the header t i u s e r . h has been moved to Level 2
to accommodate this migration from TLI routines to XTI routines.

LEVEL
Level 1.

The inclusion of the header t i u s e r . h is Level 2 effective January 1995.

Page 3

FINAL COPY
June 15, 1995

File: ba_lib/t_optmgmt
svid

Page: 513

t_rcv (BA_LIB) t_rcv (BA_LIB)

NAME
t _ r c v – receive normal or expedited data sent over a connection

SYNOPSIS
i n c l u d e < x t i . h >

i n t t _ r c v (i n t fd, c h a r ∗buf, u n s i g n e d i n t nbytes, i n t ∗flags) ;

i n c l u d e < t i u s e r . h >

i n t t _ r c v (i n t fd, c h a r ∗buf, u n s i g n e d i n t nbytes, i n t ∗flags) ;

Parameters
fd the file descriptor for the transport endpoint through which data will

arrive.

buf points to the receive buffer where user data will be placed.

nbytes specifies the size of the receive buffer.

flags specifies optional flags on return.

DESCRIPTION
This function is an TLI/XTI connection-mode data transfer routine which is issued
to notify a transport user that there is normal or expedited data to be received over
a connection. The messages sent to the transport user may be 0-length.

By default, t _ r c v operates in synchronous mode and will wait for data to arrive if
none is currently available. However, if O _ N O N B L O C K is set (via t _ o p e n or f c n t l),
t _ r c v will execute in asynchronous mode and will fail if no data is available. (See
T N O D A T A below.)

On return from the call, if T _ M O R E is set in f l a g s, this indicates that there is more
data and the current transport service data unit (T S D U) or expedited transport ser-
vice data unit (E T S D U) must be received in multiple t _ r c v calls.

Each t _ r c v with the T _ M O R E flag set indicates that another t _ r c v must follow to
get more data for the current T S D U. The end of the T S D U is identified by the return
of a t _ r c v call with the T _ M O R E flag not set.

If the transport provider does not support the concept of a T S D U as indicated in the
info argument on return from t _ o p e n or t _ g e t i n f o, the T _ M O R E flag is not mean-
ingful and will be ignored.

On return from the call, if T _ E X P E D I T E D is set in f l a g s the data returned is
expedited data. If the number of bytes of expedited data exceeds nbytes, t _ r c v will
set T _ E X P E D I T E D and T _ M O R E on return from the initial call. Subsequent calls to
retrieve the remaining E T S D U will have T _ E X P E D I T E D set on return. The end of the
E T S D U is identified by the return of a t _ r c v call with the T _ M O R E flag not set.

If expedited data arrives after part of a T S D U has been retrieved, receipt of the
remainder of the T S D U will be suspended until the E T S D U has been processed. Only
after the full E T S D U has been retrieved (T _ M O R E not set) will the remainder of the
T S D U be available to the user.

Return Values
On successful completion, t _ r c v returns the number of bytes received. On failure,
it returns –1 and t _ e r r n o is set to indicate the error.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/t_rcv
svid

Page: 514

t_rcv (BA_LIB) t_rcv (BA_LIB)

Errors
On failure, t _ e r r n o may be set to one of the following:

T B A D F The specified file descriptor does not refer to a transport endpoint.

T N O D A T A O _ N O N B L O C K was set, but no data is currently available from the
transport provider.

T L O O K An asynchronous event has occurred on this transport endpoint
and requires immediate attention.

T N O T S U P P O R T This function is not supported by the underlying transport pro-
vider.

T S Y S E R R A system error has occurred during execution of this function.

T O U T S T A T E The function was issued in the wrong sequence on the transport
endpoint referenced by f d.

T P R O T O A communication problem has been detected with the transport
provider and there is no other value of t _ e r r n o to describe the
error condition.

State Transitions
On entry, T _ D A T A X F E R or T _ O U T R E L; unchanged (successful) on exit.

USAGE
t _ r c v is applicable only for connection-mode transport services.

In synchronous mode, t _ l o o k may alternatively be used to notify the transport
user that normal or expedited data has been received or that flow control restric-
tions have been lifted. Additional functionality is provided by the Event Manage-
ment Interface.

SEE ALSO
t _ g e t i n f o(BA_LIB), t _ l o o k(BA_LIB), t _ o p e n(BA_LIB), t _ s n d(BA_LIB)

FUTURE DIRECTIONS
The inclusion of the header t i u s e r . h has been moved to Level 2 due to the migra-
tion from TLI routines to the X/Open XTI routines. Replace t i u s e r . h with x t i . h.

LEVEL
Level 1.

The inclusion of the header t i u s e r . h is Level 2 effective January 1995.

Page 2

FINAL COPY
June 15, 1995

File: ba_lib/t_rcv
svid

Page: 515

t_rcvconnect (BA_LIB) t_rcvconnect (BA_LIB)

NAME
t _ r c v c o n n e c t – receive the confirmation from a connect request

SYNOPSIS
i n c l u d e < x t i . h >

i n t t _ r c v c o n n e c t (i n t fd, s t r u c t t _ c a l l ∗call)

i n c l u d e < t i u s e r . h >

i n t t _ r c v c o n n e c t (i n t fd, s t r u c t t _ c a l l ∗call)

Parameters
fd the file descriptor for the transport endpoint where communication will be

established.

call points to the t _ c a l l structure used to identify the transport user that will
receive the connection indication.

DESCRIPTION
t _ r c v c o n n e c t enables a calling transport user to determine the status of a connect
request that it issued to a responding transport endpoint. On successful completion
of t _ r c v c o n n e c t, the connection is established.

By default, t _ r c v c o n n e c t executes in synchronous mode and waits for the connec-
tion to be established before returning. In asynchronous mode, this function is used
in conjunction with t _ c o n n e c t to establish a connection.

f d identifies the responding transport endpoint, and call contains information asso-
ciated with the newly established connection.

Structure Definitions
The call argument points to a t _ c a l l structure which contains the following
members:

s t r u c t n e t b u f a d d r ; / * a d d r e s s * /
s t r u c t n e t b u f o p t ; / * o p t i o n s * /
s t r u c t n e t b u f u d a t a ; / * u s e r d a t a * /
i n t s e q u e n c e ; / * s e q u e n c e n u m b e r * /

The n e t b u f structure contains the following members:

u n s i g n e d i n t m a x l e n ;
u n s i g n e d i n t l e n ;
c h a r * b u f ;

In call, a d d r returns the protocol address associated with the responding transport
endpoint, o p t presents any protocol-specific information associated with the con-
nection, u d a t a points to optional user data that may be returned by the destination
transport user during connection establishment, and s e q u e n c e has no meaning for
this function.

The m a x l e n field of each argument must be set before issuing this function to indi-
cate the maximum size of the buffer for each. However, call may be N U L L, in which
case no information is given to the user on return from t _ r c v c o n n e c t.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/t_rcvconnect
svid

Page: 516

t_rcvconnect (BA_LIB) t_rcvconnect (BA_LIB)

On return, the a d d r, o p t, and u d a t a fields reflect values associated with the con-
nection.

If O _ N O N B L O C K is set (via t _ o p e n or f c n t l), t _ r c v c o n n e c t executes in asynchro-
nous mode, and reduces to a poll for existing connect confirmations. If none are
available, t _ r c v c o n n e c t fails on a T N O D A T A error and returns immediately without
waiting for the connection to be established.

Return Values
t _ r c v c o n n e c t returns 0 on success and –1 on failure and t _ e r r n o is set to indicate
the error.

Errors
On failure, t _ e r r n o may be set to one of the following:

T B A D F The specified file descriptor does not refer to a transport end-
point.

T B U F O V F L W The number of bytes (m a x l e n) allocated for an incoming argu-
ment is greater than zero but not sufficient to store the value of
that argument. The connect information to be returned in c a l l
will be discarded. The provider’s state, as seen by the user, will
be changed to D A T A X F E R.

T N O D A T A O _ N O N B L O C K was set, but a connect confirmation has not yet
arrived.

T L O O K An asynchronous event has occurred on the transport connection
specified by fd and requires immediate attention.

T N O T S U P P O R T This function is not supported by the underlying transport pro-
vider.

T S Y S E R R A system error has occurred during execution of this function.

T O U T S T A T E The function was issued in the wrong sequence on the transport
endpoint referenced by f d.

T P R O T O A communication problem has been detected with the transport
provider and there is no other value of t _ e r r n o to describe the
error condition.

State Transitions
On entry, T _ O U T C O N; T _ D A T A X F E R (successful) or T _ O U T C O N (failed) on exit.

USAGE
A subsequent call to t _ r c v c o n n e c t is required to complete the connection estab-
lishment phase and retrieve the information returned in call.

SEE ALSO
t _ a c c e p t(BA_LIB), t _ b i n d(BA_LIB), t _ c o n n e c t(BA_LIB), t _ l i s t e n(BA_LIB),
t _ o p e n(BA_LIB), t _ o p t m g m t(BA_LIB)

FUTURE DIRECTIONS
The inclusion of the header t i u s e r . h has been moved to Level 2 due to the migra-
tion from TLI routines to the X/Open XTI routines. Replace t i u s e r . h with x t i . h.

Page 2

FINAL COPY
June 15, 1995

File: ba_lib/t_rcvconnect
svid

Page: 517

t_rcvconnect (BA_LIB) t_rcvconnect (BA_LIB)

LEVEL
Level 1.

The inclusion of the header t i u s e r . h is Level 2 effective January 1995.

Page 3

FINAL COPY
June 15, 1995

File: ba_lib/t_rcvconnect
svid

Page: 518

t_rcvdis (BA_LIB) t_rcvdis (BA_LIB)

NAME
t _ r c v d i s – retrieve information from disconnect

SYNOPSIS
i n c l u d e < x t i . h >

i n t t _ r c v d i s (i n t fd, s t r u c t t _ d i s c o n ∗discon) ;

i n c l u d e < t i u s e r . h >

i n t t _ r c v d i s (i n t fd, s t r u c t t _ d i s c o n ∗discon) ;

Parameters
fd the file descriptor for the transport endpoint where the connection had

been established.

discon points to the t _ d i s c o n structure associated with the disconnect informa-
tion.

DESCRIPTION
This function is an TLI/XTI connection release routine used to identify the cause of
a disconnect and to retrieve any user data sent with the disconnect.

fd is used by the calling transport user to identify the local transport endpoint
where the connection existed, and discon points to a t _ d i s c o n structure associated
with the disconnection.

Structure Definitions
The discon argument points to a t _ d i s c o n structure containing the following
members:

s t r u c t n e t b u f u d a t a ; / * u s e r d a t a * /
i n t r e a s o n ; / * r e a s o n c o d e * /
i n t s e q u e n c e ; / * c o n n e c t i n d . * /

The n e t b u f structure contains the following members:

u n s i g n e d i n t m a x l e n ;
u n s i g n e d i n t l e n ;
c h a r * b u f ;

r e a s o n specifies the reason for the disconnect through a protocol-dependent reason
code, u d a t a identifies any user data that was sent with the disconnect, and
s e q u e n c e may identify an outstanding connect indication with which the discon-
nect is associated. s e q u e n c e is only meaningful when t _ r c v d i s is issued by a pas-
sive transport user who has executed one or more t _ l i s t e n functions and is pro-
cessing the resulting connect indications.

If a disconnect indication occurs, s e q u e n c e can be used to identify which of the
outstanding connect indications is associated with the disconnect.

If a user does not care if there is incoming data and does not need to know the
value of r e a s o n or s e q u e n c e, d i s c o n may be N U L L, and any user data associated
with the disconnect will be discarded. However, if a user has retrieved more than
one outstanding connect indication (via t _ l i s t e n) and d i s c o n is N U L L, the user
will be unable to identify which connect indication the disconnect is associated
with.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/t_rcvdis
svid

Page: 519

t_rcvdis (BA_LIB) t_rcvdis (BA_LIB)

Return Values
t _ r c v d i s returns 0 on success and –1 on failure and t _ e r r n o is set to indicate the
error.

Errors
On failure, t _ e r r n o may be set to one of the following:

T B A D F The specified file descriptor does not refer to a transport end-
point.

T N O D I S No disconnect indication currently exists on the specified tran-
sport endpoint.

T B U F O V F L W The number of bytes (m a x l e n) allocated for an incoming argu-
ment is greater than zero but not sufficient to store the value of
that argument. The provider’s state, as seen by the user, will
change to T _ I D L E, and the disconnect indication information to
be returned in d i s c o n will be discarded.

T N O T S U P P O R T This function is not supported by the underlying transport pro-
vider.

T S Y S E R R A system error has occurred during execution of this function.

T O U T S T A T E The function was issued in the wrong sequence on the transport
endpoint referenced by fd, or the transport endpoint referred to
by resfd is not in the T _ I D L E state.

T P R O T O A communication problem has been detected with the transport
provider and there is no other value of t _ e r r n o to describe the
error condition.

State Transitions
t _ r c v d i s may be issued from any valid state except T _ U N I N I T, T _ U N B N D, or
T _ I D L E. Valid states on exit are T _ I D L E (successful) and T _ I N C O N (successful but
there are connect indications outstanding).

SEE ALSO
t _ c o n n e c t(BA_LIB), t _ l i s t e n(BA_LIB), t _ o p e n(BA_LIB), t _ s n d d i s(BA_LIB)

FUTURE DIRECTIONS
The inclusion of the header t i u s e r . h has been moved to Level 2 due to the migra-
tion from TLI routines to the X/Open XTI routines. Replace t i u s e r . h with x t i . h.

LEVEL
Level 1.

The inclusion of the header t i u s e r . h is Level 2 effective January 1995.

Page 2

FINAL COPY
June 15, 1995

File: ba_lib/t_rcvdis
svid

Page: 520

t_rcvrel (BA_LIB) t_rcvrel (BA_LIB)

NAME
t _ r c v r e l – acknowledge receipt of an orderly release indication

SYNOPSIS
i n c l u d e < x t i . h >

i n t t _ r c v r e l (i n t fd) ;

i n c l u d e < t i u s e r . h >

i n t t _ r c v r e l (i n t fd) ;

Parameters
fd the file descriptor for the transport endpoint where the connect indication is

received.

DESCRIPTION
This function is an TLI/XTI connection release routine used to acknowledge receipt
of an orderly release indication. In t _ r c v r e l, fd identifies the local transport end-
point where the connection exists. After receipt of this indication, the user should
not attempt to receive more data because such an attempt will block forever. How-
ever, the user may continue to send data over the connection if t _ s n d r e l has not
been issued by the user.

This function is an optional service of the transport provider, and is only supported
if the transport provider returned service type T _ C O T S _ O R D on t _ o p e n or
t _ g e t i n f o.

Return Values
t _ r c v r e l returns 0 on success and –1 on failure t _ e r r n o is set to indicate the error.

Errors
On failure, t _ e r r n o may be set to one of the following:

T B A D F The specified file descriptor does not refer to a transport end-
point.

T N O R E L No orderly release indication currently exists on the specified
transport endpoint.

T L O O K An asynchronous event has occurred on the transport endpoint
specified by fd and requires immediate attention.

T N O T S U P P O R T This function is not supported by the underlying transport pro-
vider.

T S Y S E R R A system error has occurred during execution of this function.

T O U T S T A T E The function was issued in the wrong sequence on the transport
endpoint referenced by fd.

T P R O T O A communication problem has been detected with the transport
provider and there is no other value of t _ e r r n o to describe the
error condition.

State Transitions
T _ D A T A X F E R on entry and T _ I N R E L on exit; or T _ O U T R E L on entry and T _ I D L E on
exit.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/t_rcvrel
svid

Page: 521

t_rcvrel (BA_LIB) t_rcvrel (BA_LIB)

SEE ALSO
t _ o p e n(BA_LIB), t _ s n d r e l(BA_LIB)

FUTURE DIRECTIONS
The inclusion of the header t i u s e r . h has been moved to Level 2 due to the migra-
tion from TLI routines to the X/Open XTI routines. Replace t i u s e r . h with x t i . h.

LEVEL
Level 1.

The inclusion of the header t i u s e r . h is Level 2 effective January 1995.

Page 2

FINAL COPY
June 15, 1995

File: ba_lib/t_rcvrel
svid

Page: 522

t_rcvudata (BA_LIB) t_rcvudata (BA_LIB)

NAME
t _ r c v u d a t a – receive a data unit

SYNOPSIS
i n c l u d e < x t i . h >

i n t t _ r c v u d a t a (i n t fd, s t r u c t t _ u n i t d a t a ∗unitdata, i n t ∗flags) ;
i n c l u d e < t i u s e r . h >

i n t t _ r c v u d a t a (i n t fd, s t r u c t t _ u n i t d a t a ∗unitdata, i n t ∗flags) ;

Parameters
fd the file descriptor for the transport endpoint through which the data will

be received.

unitdata points to the t _ u n i t d a t a structure associated with the received data
unit.

flags points to a value set on return if the complete data unit was not
received.

DESCRIPTION
This function is an TLI/XTI connection release routine used in connectionless mode
to receive a data unit from another transport user. Data is received through the
transport endpoint specified by fd and unitdata points to information associated
with the data unit.

On return, flags points to a value that indicates whether the complete data unit was
received.

This function is a service of connectionless transport providers and is supported
only if the provider returned service type T _ C L T S on t _ o p e n or t _ g e t i n f o.

Structure Definitions
The unitdata argument points to a t _ u n i t d a t a structure containing the following
members:

s t r u c t n e t b u f a d d r ; / * a d d r e s s * /
s t r u c t n e t b u f o p t ; / * o p t i o n s * /
s t r u c t n e t b u f u d a t a ; / * u s e r d a t a * /

The n e t b u f structure contains the following members:

u n s i g n e d i n t m a x l e n ;
u n s i g n e d i n t l e n ;
c h a r * b u f ;

The m a x l e n field of a d d r, o p t, and u d a t a must be set before issuing this function to
indicate the maximum size of the buffer for each.

On return from this call, a d d r specifies the protocol address of the sending user,
o p t identifies protocol-specific options that were associated with this data unit, and
u d a t a specifies the user data that was received.

If the buffer defined in the u d a t a field of u n i t d a t a is not large enough to hold the
current data unit, the buffer will be filled and T _ M O R E will be set in f l a g s on return
to indicate that another t _ r c v u d a t a should be issued to retrieve the rest of the data
unit. Subsequent t _ r c v u d a t a call(s) will return 0 for the length of the address and
options until the full data unit has been received.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/t_rcvudata
svid

Page: 523

t_rcvudata (BA_LIB) t_rcvudata (BA_LIB)

Return Values
t _ r c v u d a t a returns 0 on successful completion and –1 on failure and t _ e r r n o is
set to indicate the error.

Errors
On failure, t _ e r r n o may be set to one of the following:

T B A D F The specified file descriptor does not refer to a transport end-
point.

T N O D A T A O _ N O N B L O C K was set, but no data units are currently available
from the transport provider.

T B U F O V F L W The number of bytes (m a x l e n) allocated for an incoming argu-
ment is greater than zero but not sufficient to store the value of
that argument. The unit data information to be returned in u n i t -
d a t a will be discarded.

T L O O K An asynchronous event has occurred on the transport endpoint
specified by fd and requires immediate attention.

T N O T S U P P O R T This function is not supported by the underlying transport pro-
vider.

T O U T S T A T E The function was issued in the wrong sequence on the transport
endpoint referenced by fd.

T S Y S E R R A system error has occurred during execution of this function.

T P R O T O A communication problem has been detected with the transport
provider and there is no other value of t _ e r r n o to describe the
error condition.

State Transitions
On entry, T _ I D L E; unchanged on exit.

USAGE
By default, t _ r c v u d a t a operates in synchronous mode and will wait for a data unit
to arrive if none is currently available. However, if O _ N O N B L O C K is set (via t _ o p e n
or f c n t l), t _ r c v u d a t a will execute in asynchronous mode and will fail if no data
units are available.

SEE ALSO
t _ g e t i n f o(BA_LIB), t _ o p e n(BA_LIB), t _ r c v u d e r r(BA_LIB),
t _ s n d u d a t a(BA_LIB)

FUTURE DIRECTIONS
The inclusion of the header t i u s e r . h has been moved to Level 2 due to the migra-
tion from TLI routines to the X/Open XTI routines. Replace t i u s e r . h with x t i . h.

LEVEL
Level 1.

The inclusion of the header t i u s e r . h is Level 2 effective January 1995.

Page 2

FINAL COPY
June 15, 1995

File: ba_lib/t_rcvudata
svid

Page: 524

t_rcvuderr (BA_LIB) t_rcvuderr (BA_LIB)

NAME
t_rcvuderr – receive a unit data error indication

SYNOPSIS
#include <xti.h>

int t_rcvuderr(int fd, struct t_uderr *uderr);

#include <tiuser.h>

int t_rcvuderr(int fd, struct t_uderr *uderr);

DESCRIPTION
The function t_rcvuderr() is used in connectionless mode to receive information
concerning an error on a previously sent data unit, and should only be issued fol-
lowing a unit data error indication. It informs the transport user that a data unit
with a specific destination address and protocol options produced an error. fd
identifies the local transport endpoint through which the error report will be
received, and uderr points to a t_uderr structure containing the following
members:

struct netbuf addr;
struct netbuf opt;
long error;

The maxlen field of addr and opt must be set before issuing this function to
indicate the maximum size of the buffer for each.

On return from this call, the addr structure specifies the destination protocol
address of the erroneous data unit, the opt structure identifies protocol-specific
options that were associated with the data unit, and error specifies a protocol-
dependent error code.

If the user does not care to identify the data unit that produced an error, uderr may
be set to NULL, and t_rcvuderr() will simply clear the error indication without
reporting any information to the user.

RETURN VALUE
Upon successful completion, the function t_rcvuderr() returns a value of 0; oth-
erwise, it returns a value of –1 and sets t_errno to indicate an error.

ERRORS
Under the following conditions, the function t_rcvuderr() fails and sets
t_errno to:

TBADF if the specified file descriptor does not refer to a transport end-
point.

TNOUDERR if no unit data error indication currently exists on the specified
transport endpoint.

TBUFOVFLW if the number of bytes allocated for the incoming protocol
address or options is not sufficient to store the information. The
unit data error information to be returned in uderr will be dis-
carded.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/t_rcvuderr
svid

Page: 525

t_rcvuderr (BA_LIB) t_rcvuderr (BA_LIB)

TNOTSUPPORT if this function is not supported by the underlying transport pro-
vider.

TSYSERR if a system error has occurred during execution of this function.

SEE ALSO
t_look(BA_LIB), t_rcvudata(BA_LIB), t_sndudata(BA_LIB).

FUTURE DIRECTIONS
The inclusion of the header tiuser.h has been moved to Level 2 due to the migra-
tion from TLI routines to the X/Open XTI routines. Replace tiuser.h with xti.h.

LEVEL
Level 1. The inclusion of the header tiuser.h is Level 2 effective January 1995.

Page 2

FINAL COPY
June 15, 1995

File: ba_lib/t_rcvuderr
svid

Page: 526

t_snd (BA_LIB) t_snd (BA_LIB)

NAME
t _ s n d – send normal or expedited data over a connection

SYNOPSIS
i n c l u d e < x t i . h >

i n t t _ s n d (i n t fd, v o i d ∗buf, u n s i g n e d i n t nbytes, i n t flags) ;

i n c l u d e < t i u s e r . h >

i n t t _ s n d (i n t fd, v o i d ∗buf, u n s i g n e d i n t nbytes, i n t flags) ;

Parameters
fd the file descriptor for the transport endpoint over which data will be sent.

buf points to the user data.

nbytes specifies the number of bytes of user data to be sent.

flags specifies optional flags on return.

DESCRIPTION
This function is an TLI/XTI data transfer routine used to send either normal or
expedited data over a connection.

By default, t _ s n d operates in synchronous mode and may wait if flow control res-
trictions prevent the data from being accepted by the local transport provider at the
time the call is made. However, if O _ N O N B L O C K is set (via t _ o p e n or f c n t l), t _ s n d
will execute in asynchronous mode, and will fail immediately if there are flow con-
trol restrictions.

Even when there are no flow control restrictions, t _ s n d will wait if S T R E A M S inter-
nal resources are not available, regardless of the state of O _ N O N B L O C K.

On successful completion, t _ s n d returns the number of bytes accepted by the tran-
sport provider. Normally this will equal the number of bytes specified in nbytes.
However, if O _ N O N B L O C K is set, it is possible that only part of the data will be
accepted by the transport provider. In this case, t _ s n d will set T _ M O R E for the data
that was sent (see below) and will return a value less than nbytes. If nbytes is 0 and
the sending of 0 bytes is not supported by the underlying transport provider, t _ s n d
will return –1 with t _ e r r n o set to T B A D D A T A. A return value of 0 indicates that the
request to send a 0-length data message was sent to the provider.

If T _ E X P E D I T E D is set in flags, the data will be sent as expedited data, and will be
subject to the interpretations of the transport provider.

If T _ M O R E is set in flags, or is set as described above, an indication is sent to the tran-
sport provider that the transport service data unit (T S D U) or expedited transport
service data unit (E T S D U) is being sent through multiple t _ s n d calls. Each t _ s n d
with the T _ M O R E flag set indicates that another t _ s n d will follow with more data for
the current T S D U. The end of the T S D U (or E T S D U) is identified by a t _ s n d call with
the T _ M O R E flag not set. Use of T _ M O R E enables a user to break up large logical data
units without losing the boundaries of those units at the other end of the connec-
tion. The flag implies nothing about how the data is packaged for transfer below
the transport interface. If the transport provider does not support the concept of a
T S D U as indicated in the info argument on return from t _ o p e n or t _ g e t i n f o, the
T _ M O R E flag is not meaningful and should be ignored.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/t_snd
svid

Page: 527

t_snd (BA_LIB) t_snd (BA_LIB)

The size of each T S D U or E T S D U must not exceed the limits of the transport provider
as returned by t _ o p e n or t _ g e t i n f o. If the size is exceeded, a T S Y S E R R with sys-
tem error E P R O T O will occur. However, the t _ s n d may not fail because E P R O T O
errors may not be reported immediately. In this case, a subsequent call that
accesses the transport endpoint will fail with the associated T S Y S E R R.

Return Values
On successful completion, t _ s n d returns the number of bytes accepted by the tran-
sport provider. On failure, it returns –1 and t _ e r r n o is set to indicate the error.

Errors
On failure, t _ e r r n o may be set to one of the following:

T B A D F The specified file descriptor does not refer to a transport end-
point.

T F L O W O _ N O N B L O C K was set, but the flow control mechanism prevented
the transport provider from accepting data at this time.

T N O T S U P P O R T This function is not supported by the underlying transport pro-
vider.

T S Y S E R R A system error has been detected during execution of this func-
tion.

T B A D D A T A nbytes is 0 and sending 0 bytes is not supported by the transport
provider; or, the number of bytes on a single send was greater
than the number specified for nbytes by the info argument on the
t _ o p e n or f c n t l; or, the maximum size was exceeded during
multiple sends.

T L O O K An asynchronous event has occurred on the transport endpoint
specified by fd and requires immediate attention.

T B A D F L A G An invalid flag was specified.

T O U T S T A T E The function was issued in the wrong sequence on the transport
endpoint referenced by f d.

T P R O T O A communication problem has been detected with the transport
provider and there is no other value of t _ e r r n o to describe the
error condition.

State Transitions
On entry, T _ D A T A X F E R or T _ I N R E L; unchanged on exit.

USAGE
t _ s n d is applicable only for connection-mode transport services that return a ser-
vice type of T _ C O T S or T _ C O T S _ O R D in response to t _ o p e n or t _ g e t i n f o.

Warnings
The t _ s n d routine does not look for a disconnect indication (showing that the con-
nection was broken) before passing data to the provider.

In asynchronous mode, if the number of bytes accepted exceeds the number
requested by the transport provider, the provider may be blocked because of flow
control.

Page 2

FINAL COPY
June 15, 1995

File: ba_lib/t_snd
svid

Page: 528

t_snd (BA_LIB) t_snd (BA_LIB)

If several processes issue concurrent calls to t _ s n d (multiple sends), the data from
those processes may be intermixed (since several users of the same endpoint are
treated as a single user by the transport provider).

If the maximum size of a T S D U or E T S D U is exceeded as a result of multiple sends,
XTI may not detect the error. If the error is detected, t _ s n d fails with T B A D D A T A. If
the error is not detected, t _ s n d or a subsequent call fails on an error indicating that
the connection has been aborted.

SEE ALSO
f c n t l(BA_OS), p o l l(BA_OS), t _ g e t i n f o(BA_LIB), t _ l o o k(BA_LIB),
t _ o p e n(BA_LIB), t _ r c v(BA_LIB)

FUTURE DIRECTIONS
The inclusion of the header t i u s e r . h has been moved to Level 2 due to the migra-
tion from TLI routines to the X/Open XTI routines. Replace t i u s e r . h with x t i . h.

LEVEL
Level 1.

The inclusion of the header t i u s e r . h is Level 2 effective January 1995.

Page 3

FINAL COPY
June 15, 1995

File: ba_lib/t_snd
svid

Page: 529

t_snddis (BA_LIB) t_snddis (BA_LIB)

NAME
t _ s n d d i s – send user-initiated disconnect request

SYNOPSIS
i n c l u d e < x t i . h >

i n t t _ s n d d i s (i n t fd, s t r u c t t _ c a l l ∗call) ;

i n c l u d e < t i u s e r . h >

i n t t _ s n d d i s (i n t fd, s t r u c t t _ c a l l ∗call) ;

Parameters
fd the file descriptor for the transport endpoint where the connection exits.

call points to the t _ c a l l structure associated with information about the connec-
tion.

DESCRIPTION
This function is issued by a transport user to initiate a release on an already esta-
blished connection with a responding transport endpoint, specified by fd. It may
also be issued to to reject a connect request.

The values pointed to by call have different semantics that vary with the context of
the call.

This function is a service of connection-mode transport providers and is supported
only if the provider returned service type T _ C O T S or T _ C O T S _ O R D on t _ o p e n or
t _ g e t i n f o.

Structure Definitions
The call argument points to a t _ c a l l structure that contains the following
members:

s t r u c t n e t b u f a d d r ; / * a d d r e s s * /
s t r u c t n e t b u f o p t ; / * o p t i o n s * /
s t r u c t n e t b u f u d a t a ; / * u s e r d a t a * /
i n t s e q u e n c e ; / * s e q u e n c e n u m b e r * /

The n e t b u f structure contains the following members:

u n s i g n e d i n t m a x l e n ;
u n s i g n e d i n t l e n ;
c h a r * b u f ;

When rejecting a connect request, c a l l must be non-N U L L and contain a valid value
of s e q u e n c e to identify uniquely the rejected connect indication to the transport
provider. The a d d r and o p t fields of c a l l are ignored.

In all other cases, c a l l need only be used when data is being sent with the discon-
nect request. The a d d r, o p t, and s e q u e n c e fields of the t _ c a l l structure are
ignored. If the user does not want to send data to the remote user, the value of
c a l l may be N U L L.

u d a t a specifies the user data to be sent to the remote user. The amount of user data
must not exceed the limits supported by the transport provider as returned in the
d i s c o n field of the info argument of t _ o p e n or t _ g e t i n f o. If the l e n field of
u d a t a is zero, no data will be sent to the remote user.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/t_snddis
svid

Page: 530

t_snddis (BA_LIB) t_snddis (BA_LIB)

Return Values
t _ s n d d i s returns 0 on success and –1 on failure and t _ e r r n o is set to indicate the
error.

Errors
On failure, t _ e r r n o may be set to one of the following:

T B A D F The specified file descriptor does not refer to a transport end-
point.

T O U T S T A T E The function was issued in the wrong sequence. The transport
provider’s outgoing queue may be flushed, so data may be lost.

T B A D D A T A The amount of user data specified was not within the bounds
supported by the transport provider as returned in the d i s c o n
field of the i n f o argument of t _ o p e n or t _ g e t i n f o. The tran-
sport provider’s outgoing queue will be flushed, so data may be
lost.

T B A D S E Q An invalid sequence number was specified, or a N U L L call struc-
ture was specified when rejecting a connect request. The tran-
sport provider’s outgoing queue will be flushed, so data may be
lost.

T L O O K An asynchronous event has occurred on the transport endpoint
specified by fd and requires immediate attention.

T N O T S U P P O R T This function is not supported by the underlying transport pro-
vider.

T S Y S E R R A system error has occurred during execution of this function.

T P R O T O A communication problem has been detected with the transport
provider and there is no other value of t _ e r r n o to describe the
error condition.

State Transitions
t _ s n d d i s may be issued from any valid state except T _ U N I N I T, T _ U N B N D, or
T _ I D L E. Valid states on exit are T _ I D L E (successful) and T _ I N C O N (successful but
there are connect indications outstanding).

USAGE
After issuing t_snddis, the user may not send any more data over the connection.
However, a user may continue to receive data if a disconnect request has not been
received (see t _ r c v d i s).

Warnings
When executed, t _ s n d d i s causes an abortive disconnect, which may result in a loss
of data sent by t _ s n d but not yet received. The return of an error does not preclude
loss of data.

SEE ALSO
t _ c o n n e c t(BA_LIB), t _ g e t i n f o(BA_LIB), t _ l i s t e n(BA_LIB), t _ o p e n(BA_LIB),
t _ r c v d i s(BA_LIB), t _ r c v r e l(BA_LIB), t _ s n d(BA_LIB), t _ s n d r e l(BA_LIB)

Page 2

FINAL COPY
June 15, 1995

File: ba_lib/t_snddis
svid

Page: 531

t_snddis (BA_LIB) t_snddis (BA_LIB)

FUTURE DIRECTIONS
The inclusion of the header t i u s e r . h has been moved to Level 2 due to the migra-
tion from TLI routines to the X/Open XTI routines. Replace t i u s e r . h with x t i . h.

LEVEL
Level 1.

The inclusion of the header t i u s e r . h is Level 2 effective January 1995.

Page 3

FINAL COPY
June 15, 1995

File: ba_lib/t_snddis
svid

Page: 532

t_sndrel (BA_LIB) t_sndrel (BA_LIB)

NAME
t _ s n d r e l – initiate an orderly release

SYNOPSIS
i n c l u d e < x t i . h >

i n t t _ s n d r e l (i n t fd) ;

i n c l u d e < t i u s e r . h >

i n t t _ s n d r e l (i n t fd) ;

Parameters
fd the file descriptor for the transport endpoint where the connection exists.

DESCRIPTION
This function is an TLI/XTI connection release routine used to initiate an orderly
release of a transport connection associated with the transport endpoint specified
by fd. t _ s n d r e l indicates to the transport provider that the transport user has no
more data to send.

This function is an optional service of the transport provider and is only supported
if the transport provider returned service type T _ C O T S or T _ C O T S _ O R D on t _ o p e n or
t _ g e t i n f o.

Return Values
t _ s n d r e l returns 0 on success and –1 on failure and t _ e r r n o is set to indicate the
error.

Errors
On failure, t _ e r r n o may be set to one of the following:

T B A D F The specified file descriptor does not refer to a transport end-
point.

T F L O W O _ N O N B L O C K was set, but the flow control mechanism prevented
the transport provider from accepting the function at this time.

T N O T S U P P O R T This function is not supported by the underlying transport pro-
vider.

T S Y S E R R A system error has occurred during execution of this function.

T L O O K An asynchronous even has occurred on the transport endpoint
referenced by fd and requires immediate attention.

T O U T S T A T E The function was issued in the wrong sequence on the transport
endpoint referenced by f d.

T P R O T O A communication problem has been detected with the transport
provider and there is no other value of t _ e r r n o to describe the
error condition.

State Transitions
T _ D A T A X F E R on entry and T _ O U T R E L on exit; or T _ I N R E L on entry and T _ I D L E on
exit.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/t_sndrel
svid

Page: 533

t_sndrel (BA_LIB) t_sndrel (BA_LIB)

USAGE
After issuing t _ s n d r e l, the user may not send any more data over the connection.
However, a user may continue to receive data if an orderly release indication has
not been received.

If t _ s n d r e l is issued from an invalid state, the provider will generate an E P R O T O
protocol error; however, this error may not occur until a subsequent reference to
the transport endpoint.

SEE ALSO
t _ o p e n(BA_LIB), t _ r c v r e l(BA_LIB)

FUTURE DIRECTIONS
The inclusion of the header t i u s e r . h has been moved to Level 2 due to the migra-
tion from TLI routines to the X/Open XTI routines. Replace t i u s e r . h with x t i . h.

LEVEL
Level 1.

The inclusion of the header t i u s e r . h is Level 2 effective January 1995.

Page 2

FINAL COPY
June 15, 1995

File: ba_lib/t_sndrel
svid

Page: 534

t_sndudata (BA_LIB) t_sndudata (BA_LIB)

NAME
t _ s n d u d a t a – send a data unit

SYNOPSIS
i n c l u d e < x t i . h >

i n t t _ s n d u d a t a (i n t fd, s t r u c t t _ u n i t d a t a ∗unitdata) ;

i n c l u d e < t i u s e r . h >

i n t t _ s n d u d a t a (i n t fd, s t r u c t t _ u n i t d a t a ∗unitdata) ;

Parameters
fd the file descriptor for the transport endpoint through which data will be

sent.

unitdata points to the t _ u n i t d a t a structure associated with the transmitted data
unit.

DESCRIPTION
This function is used in connectionless mode to send a data unit to another tran-
sport user. Data is sent through the transport endpoint specified by fd, which must
be bound, and unitdata points to information associated with the data unit.

This function is a service of connectionless mode transport providers and is sup-
ported only if the provider returned service type T _ C L T S on t _ o p e n or t _ g e t i n f o.

Structure Definitions
The unitdata argument points to a t _ u n i t d a t a structure containing the following
members:

s t r u c t n e t b u f a d d r ; / * a d d r e s s * /
s t r u c t n e t b u f o p t ; / * o p t i o n s * /
s t r u c t n e t b u f u d a t a ; / * u s e r d a t a * /

The n e t b u f structure contains the following members:

u n s i g n e d i n t m a x l e n ;
u n s i g n e d i n t l e n ;
c h a r * b u f ;

In unitdata, a d d r specifies the protocol address of the destination user, o p t
identifies protocol-specific options that the user wants associated with this request,
and u d a t a specifies the user data to be sent. The user may choose not to specify
what protocol options are associated with the transfer by setting the l e n field of
o p t to 0. In this case, the provider may use default options.

If the l e n field of u d a t a is 0, and the sending of 0 bytes is not supported by the
underlying transport provider, t _ s n d u d a t a will return –1 with t _ e r r n o set to
T B A D D A T A.

Return Values
t _ s n d u d a t a returns 0 on successful completion and –1 on failure t _ e r r n o is set to
indicate the error.

Errors
On failure, t _ e r r n o may be set to one of the following:

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/t_sndudata
svid

Page: 535

t_sndudata (BA_LIB) t_sndudata (BA_LIB)

T B A D F The specified file descriptor does not refer to a transport end-
point.

T F L O W O _ N O N B L O C K was set, but the flow control mechanism prevented
the transport provider from accepting data at this time.

T N O T S U P P O R T This function is not supported by the underlying transport pro-
vider.

T S Y S E R R A system error has occurred during execution of this function.
(An E P R O T O error may not cause t _ s n d u d a t a to fail until subse-
quent access of the transport endpoint.)

T B A D D A T A n b y t e s is 0 and sending 0 bytes is not supported by the transport
provider.

T L O O K An asynchronous event has occurred on the transport endpoint
specified by fd and requires immediate attention.

T B A D A D D R The specified protocol address was in an incorrect format or con-
tained invalid information. (This error may alternatively be
returned by t _ r c v u d e r r.)

T B A D O P T The specified protocol options were in an incorrect format or con-
tained invalid information. (This error may alternatively be
returned by t _ r c v u d e r r.)

T O U T S T A T E The function was issued in the wrong sequence on the transport
endpoint referenced by f d.

T P R O T O A communication problem has been detected with the transport
provider and there is no other value of t _ e r r n o to describe the
error condition.

State Transitions
On entry, T _ I D L E; unchanged on exit.

USAGE
By default, t _ s n d u d a t a operates in synchronous mode and may wait if flow con-
trol restrictions prevent the data from being accepted by the local transport pro-
vider at the time the call is made. However, if O _ N O N B L O C K is set (via t _ o p e n or
f c n t l), t _ s n d u d a t a will execute in asynchronous mode and will fail under such
conditions.

The calling process can use t _ l o o k or the Event Management Interface to deter-
mine when flow control restrictions, if any, have been cleared.

Warnings
If t _ s n d u d a t a is issued before the destination user has activated its transport end-
point (see t _ b i n d), the data unit may be discarded.

If t _ s n d u d a t a is issued from an invalid state, or if the amount of data specified in
u d a t a exceeds the T S D U size as returned in the t s d u field of the info argument of
t _ o p e n or t _ g e t i n f o, the provider will generate an E P R O T O protocol error. If the
state is invalid, this error may not occur until a subsequent reference is made to the
transport endpoint.

Page 2

FINAL COPY
June 15, 1995

File: ba_lib/t_sndudata
svid

Page: 536

t_sndudata (BA_LIB) t_sndudata (BA_LIB)

If a unit data error is received, a subsequent call should be made to t _ r c v u d e r r to
check for conditions indicated by T B A D A D D R and T B A D O P T, which are not always
returned by t _ s n d u d a t a.

SEE ALSO
t _ b i n d(BA_LIB), t _ g e t i n f o(BA_LIB), t _ o p e n(BA_LIB), t _ r c v u d a t a(BA_LIB),
t _ r c v u d e r r(BA_LIB)

FUTURE DIRECTIONS
The inclusion of the header t i u s e r . h has been moved to Level 2 due to the migra-
tion from TLI routines to the X/Open XTI routines. Replace t i u s e r . h with x t i . h.

LEVEL
Level 1.

The inclusion of the header t i u s e r . h is Level 2 effective January 1995.

Page 3

FINAL COPY
June 15, 1995

File: ba_lib/t_sndudata
svid

Page: 537

t_strerror (BA_LIB) t_strerror (BA_LIB)

NAME
t _ s t r e r r o r – get error message string

SYNOPSIS
i n c l u d e < x t i . h >

c h a r ∗t _ s t r e r r o r (i n t errnum) ;

Parameters
errnum the TLI/XTI number for the language-dependent error message string.

DESCRIPTION
The t _ s t r e r r o r function is an TLI/XTI local management routine that returns, for
the error number specified by errnum, the pointer to a language dependent error
message string.

When t _ s t r e r r o r is issued, the contents of the string pointed to on return are not
modified, but may be modified by a subsequent call to t _ s t r e r r o r.

The comments used in the header file x t i . h to describe the values in t _ e r r n o are
identical to the error message string pointed to by t _ s t r e r r o r on return. If the
language is not English, the text provided is equivalent.

The error message string itself is not ended by a newline character.

If the value supplied in errnum is not recognized, the response from t _ s t r e r r o r is
a pointer to the following string:

< e r r n u m > : e r r o r u n k n o w n

where < e r r n u m > is the value supplied on the call.

Return Values
t _ s t r e r r o r returns a string pointer to the requested error. No errors are defined.

State Transitions
t _ s t r e r r o r may be issued from any valid state except T _ U N I N I T and has no effect
on the entry state at exit.

SEE ALSO
t _ e r r o r(BA_LIB),

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/t_strerror
svid

Page: 538

t_sync (BA_LIB) t_sync (BA_LIB)

T _ I N R E L incoming orderly release (waiting for an orderly release request)
(connection mode only)

Errors
On failure, t _ e r r n o may be set to one of the following:

T B A D F The specified file descriptor does not refer to a transport end-
point.

T S T A T E C H N G The transport provider is undergoing a state change.

T S Y S E R R A system error has occurred during execution of this function.

T P R O T O A communication problem has been detected with the transport
provider and there is no other value of t _ e r r n o to describe the
error condition.

State Transitions
t _ s y n c may be issued from any valid state except T _ U N I N I T and has no effect on
the entry state at exit.

USAGE
It is important to remember that the transport provider treats all users of a tran-
sport endpoint as a single user. If multiple processes are using the same endpoint,
those activities should be coordinated so as not to violate the state of the provider.

Warnings
If the transport endpoint specified by fd is undergoing a state transition when
t _ s y n c is called, the function will fail.

SEE ALSO
t _ g e t s t a t e(BA_LIB)

FUTURE DIRECTIONS
The inclusion of the header t i u s e r . h has been moved to Level 2 due to the migra-
tion from TLI routines to the X/Open XTI routines. Replace t i u s e r . h with x t i . h.

LEVEL
Level 1.

The inclusion of the header t i u s e r . h is Level 2 effective January 1995.

Page 2

FINAL COPY
June 15, 1995

File: ba_lib/t_sync
svid

Page: 540

t_unbind (BA_LIB) t_unbind (BA_LIB)

NAME
t_unbind – disable a transport endpoint

SYNOPSIS
#include <xti.h>

int t_unbind(int fd);

DESCRIPTION
The function t_unbind() disables the transport endpoint specified by fd which
was previously bound by t_bind() [see t_bind(BA_LIB)]. On completion of this
call, no further data or events destined for this transport endpoint will be accepted
by the transport provider.

RETURN VALUE
Upon successful completion, the function t_unbind() returns a value of 0; other-
wise, it returns a value of –1 and sets t_errno to indicate an error.

ERRORS
Under the following conditions, the function t_unbind() fails and sets t_errno
to:

TBADF if the specified file descriptor does not refer to a transport end-
point.

TOUTSTATE if the function was issued in the wrong sequence.

TLOOK if an asynchronous event has occurred on this transport endpoint.

TSYSERR if a system error has occurred during execution of this function.

SEE ALSO
t_bind(BA_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/t_unbind
svid

Page: 541

tmpfile (BA_LIB) tmpfile (BA_LIB)

NAME
tmpfile – create a temporary file

SYNOPSIS
#include <stdio.h>

FILE *tmpfile(void);

DESCRIPTION
The function tmpfile() creates a temporary file using a name generated by the
tmpnam() routine [see tmpnam(BA_LIB)], and returns a corresponding pointer to
the FILE structure associated with the stream. The temporary file will automati-
cally be deleted when the process that opened it terminates or the temporary file is
closed. The temporary file is opened for update (w+) [see fopen(BA_OS)].

RETURN VALUE
If the temporary file cannot be opened, a NULL pointer is returned.

ERRORS
Under the following conditions, the function tmpfile() fails and sets errno to:

EMFILE if {OPEN_MAX} file descriptors are currently open in the calling pro-
cess.

ENFILE if the system file table is full.

ENOSPC if the directory or file system that would contain the new file cannot
be expanded.

SEE ALSO
creat(BA_OS), fopen(BA_OS), mktemp(BA_LIB), tmpnam(BA_LIB), unlink(BA_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/tmpfile
svid

Page: 542

tmpnam (BA_LIB) tmpnam (BA_LIB)

NAME
tmpnam, tempnam – create a name for a temporary file

SYNOPSIS
#include <stdio.h>

char *tmpnam(char *s);

char *tempnam(const char *dir, const char *pfx);

DESCRIPTION
These functions generate filenames that can safely be used for a temporary file.

The function tmpnam() always generates a filename using the path-prefix defined
by the <stdio.h> header file as P_tmpdir. If the argument s is NULL, the func-
tion tmpnam() leaves its result in an internal static area and returns a pointer to
that area. The next call to the function tmpnam() will destroy the contents of the
area. If the argument s is not NULL, it is assumed to be the address of an array of at
least L_tmpnam bytes, where L_tmpnam is a constant defined by the <stdio.h>
header file; the function tmpnam() places its result in that array and returns s.

The function tempnam() allows the user to control the choice of a directory. If
defined in the user’s environment, the value of the environmental variable TMPDIR
is used as the name of the desired temporary file directory. The argument dir points
to the name of the directory in which the file is to be created. If the argument dir is
NULL or points to a string that is not a name for an appropriate directory, the path-
prefix defined by the <stdio.h> header file as P_tmpdir is used. If that directory
is not accessible, the directory /tmp will be used.

The function tempnam() uses the malloc() routine [see malloc(BA_OS)] to get
space for the constructed filename, and returns a pointer to this area. Thus, any
pointer value returned from the function tempnam() may serve as an argument to
the function free() [see free() in malloc(BA_OS)]. If the function tempnam()
cannot return the expected result for any reason, for example, the malloc() rou-
tine failed or none of the above-mentioned attempts to find an appropriate direc-
tory were successful, NULL will be returned.

ERRORS
Under the following conditions, the function tempnam() fails, and sets errno to:

ENOMEM if there is not enough space.

USAGE
Many applications prefer their temporary-files to have certain favorite initial letter
sequences in their names. The pfx argument is used for this. This argument may be
NULL or point to a string of up to five characters to be used as the first few charac-
ters of the temporary-filename.

The functions tmpnam() and tempnam() generate a different filename each time
they are called.

Files created using these functions and either the fopen() routine [see
fopen(BA_OS)] or the creat() routine [see creat(BA_OS)] are temporary only in
the sense that they reside in a directory intended for temporary use, and their
names are unique. It is the user’s responsibility to remove the file when its use is
ended.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/tmpnam
svid

Page: 543

tmpnam (BA_LIB) tmpnam (BA_LIB)

If called more than {TMP_MAX} times in a single process, these functions will start
recycling previously used names.

Between the time a filename is created and the file is opened, it is possible for some
other process to create a file with the same name. This can never happen if that
other process is using these functions or mktemp() [see mktemp(BA_LIB)], and the
filenames are chosen so as to render duplication by other means unlikely. The func-
tion tmpnam() uses access() [see access(BA_OS)] to determine whether the
user is permitted to create a file in the named directory. This means that a
setuid/setgid program trying to create a temporary file under a protected directory
(one that the real UID/GID has no access to) will fail.

SEE ALSO
access(BA_OS), creat(BA_OS), fopen(BA_OS), malloc(BA_OS), mktemp(BA_LIB),
tmpfile(BA_LIB), unlink(BA_OS).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ba_lib/tmpnam
svid

Page: 544

trig (BA_LIB) trig (BA_LIB)

NAME
trig: sin, cos, tan, asin, acos, atan, atan2 – trigonometric functions

SYNOPSIS
#include <math.h>

double sin(double x);

double cos(double x);

double tan(double x);

double asin(double x);

double acos(double x);

double atan(double x);

double atan2(double y, double x);

DESCRIPTION
The functions sin(), cos(), and tan() return respectively the sine, cosine, and
tangent of their argument, x, measured in radians.

The function asin() returns the arcsine in the range –π/2 to π/2 radians, of the
argument x.

The function acos() returns the arccosine in the range 0 to π radians, of the argu-
ment x.

The function atan() returns the arctangent in the range –π/2 to π/2 radians, of the
argument x.

The function atan2() returns the arctangent of y/x in the range –π to π radians,
using the signs of both arguments to determine the quadrant of the return value.

RETURN VALUE
If an input parameter is NaN, then the function will return NaN and set errno to
EDOM.

When the absolute value of the argument to the functions asin() and acos() is
greater than one and the value of the argument is not +-∞ or NaN, the return value
will be an implementation-defined value (IEEE NaN or equivalent if available) and
errno is set to EDOM.

When both arguments to the atan2() function are zero, the return value is
implementation-defined and errno may be set to EDOM.

On a system that supports the IEEE 754 standard, if the value of x for cos(), sin(),
tan(), asin(), or acos() is +-∞, these functions will return IEEE NaN and set errno to
EDOM.

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995
File: ba_lib/trig

svid

Page: 545

tsearch (BA_LIB) tsearch (BA_LIB)

NAME
tsearch, tfind, tdelete, twalk – manage binary search trees

SYNOPSIS
#include <search.h>

void *tsearch(const void *key, void **rootp,
int(*compar)(const void *, const void *));

void *tfind(const void *key, void *const *rootp,
int(*compar)(const void *, const void *));

void *tdelete(const void *key, void **rootp,
int(*compar)(const void *, const void *));

void twalk(void *root, void(*action)(void **, VISIT, int));

DESCRIPTION
The functions tsearch(), tfind(), tdelete(), and twalk() manipulate
binary search trees. All comparisons are done with a user-supplied function, com-
par. The comparison function is called with two arguments, the pointers to the ele-
ments being compared. It returns an integer less than, equal to or greater than 0,
according to whether the first argument is to be considered less than, equal to or
greater than the second argument, respectively. The comparison function need not
compare every byte, so arbitrary data may be contained in the elements in addition
to the values being compared.

The function tsearch() is used to build and access the tree. The value of key is a
pointer to a datum to be accessed or stored. If there is a datum in the tree equal to
*key (the value pointed to by key), a pointer to this found datum is returned. Other-
wise, *key is inserted, and a pointer to it returned. Only pointers are copied, so the
calling routine must store the data. The value of rootp points to a variable that
points to the root of the tree. A NULL value for the variable pointed to by rootp
denotes an empty tree; in this case, the variable will be set to point to the datum
which will be at the root of the new tree.

Like tsearch(), tfind() will search for a datum in the tree, returning a pointer
to it if found. However, if it is not found, tfind() will return NULL. The argu-
ments for tfind() are the same as for tsearch().

The function tdelete() deletes a node from a binary search tree. The arguments
are the same as for tsearch(). The variable pointed to by rootp will be changed if
the deleted node was the root of the tree.

The function twalk() traverses a binary search tree. The value of root is the root of
the tree to be traversed. (Any node in a tree may be used as the root for a walk
below that node.) The value of action is the name of a user-defined routine to be
invoked at each node. This routine is, in turn, called with three arguments.

The first argument is the address of the node being visited.

The second argument is a value from an enumeration data type, VISIT defined by
the <search.h> header file. The values preorder, postorder, and endorder,
indicate whether this is the first, second or third time that the node has been visited
(during a depth-first, left-to-right traversal of the tree), or the value leaf indicates
that the node is a leaf.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/tsearch
svid

Page: 546

tsearch (BA_LIB) tsearch (BA_LIB)

if (order == preorder || order == leaf) {
printf("length=%d, string=%20s\n",
(*(struct node **)node)->length,
(*(struct node **)node)->string);

}
}

main() {
char *strptr = string_space;
struct node *nodeptr = nodes;
int i = 0;

while (gets(strptr) != NULL && i++ < 500) {
nodeptr->string = strptr;
nodeptr->length = strlen(strptr);
(void) tsearch((void *)nodeptr,

&root, node_compare);
strptr += nodeptr->length + 1;
nodeptr++;

}
twalk(root, print_node);

}

SEE ALSO
bsearch(BA_LIB), hsearch(BA_LIB), lsearch(BA_LIB).

LEVEL
Level 1.

Page 3

FINAL COPY
June 15, 1995

File: ba_lib/tsearch
svid

Page: 548

ttyname (BA_LIB) ttyname (BA_LIB)

NAME
t t y n a m e, i s a t t y – find name of a terminal

SYNOPSIS
i n c l u d e < s t d l i b . h >

c h a r ∗t t y n a m e (i n t fildes) ;

i n t i s a t t y (i n t fildes) ;

DESCRIPTION
t t y n a m e returns a pointer to a string containing the null-terminated path name of
the terminal device associated with file descriptor fildes .

i s a t t y returns 1 if fildes is associated with a terminal device, 0 otherwise.

Return Values
t t y n a m e returns a N U L L pointer if fildes does not describe a terminal device in direc-
tory / d e v or one of its subdirectories.

NOTICES
The value returned by t t y n a m e points to static data whose content is overwritten
by each call.

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/ttyname
svid

Page: 549

ungetc (BA_LIB) ungetc (BA_LIB)

NAME
ungetc – push character back into input stdio-stream

SYNOPSIS
#include <stdio.h>

int ungetc(int c, FILE *strm);

DESCRIPTION
The function ungetc() inserts the character specified by c (converted to an
unsigned char) into the buffer associated with an input stdio-stream. That char-
acter, c, will be returned by the next call to the getc() routine on that strm. The
function ungetc() returns c, and leaves the file corresponding to strm unchanged.
A successful call to ungetc() clears the end-of-file indicator for strm.

One character of pushback is guaranteed.

The value of the file position indicator for the stdio-stream after reading or discard-
ing all pushed-back characters will be the same as it was before the characters were
pushed back.

If the argument c equals EOF, the function ungetc() does nothing to the buffer
and returns EOF.

The fseek(), fsetpos(), and rewind() routines [see fseek(BA_OS),
fsetpos(BA_OS), and rewind() in fseek(BA_OS), respectively] erase all memory of
inserted characters for the stdio-stream.

RETURN VALUE
Upon successful completion, the function ungetc() returns c; otherwise, it returns
EOF if the character cannot be inserted.

SEE ALSO
fseek(BA_OS), fsetpos(BA_OS), getc(BA_LIB), setbuf(BA_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/ungetc
svid

Page: 550

ungetwc (BA_LIB) ungetwc (BA_LIB)

NAME
u n g e t w c – push w c h a r _ t character back into input stream

SYNOPSIS
i n c l u d e < s t d i o . h >
i n c l u d e < w i d e c . h >

w i n t _ t u n g e t w c (w i n t _ t c, F I L E ∗stream) ;

DESCRIPTION
u n g e t w c inserts the wide (w c h a r _ t) character c into the buffer associated with the
input stream. That wide character, c, will be returned by the next g e t w c call on that
stream. u n g e t w c returns c.

One wide character of pushback is guaranteed, provided something has already
been read from the stream and the stream is actually buffered.

If c equals (w c h a r _ t) W E O F, u n g e t w c does nothing to the buffer and returns W E O F.

f s e e k erases all memory of inserted characters.

Errors
u n g e t w c returns W E O F if it cannot insert the wide (w c h a r _ t) character.

USAGE
Administrator.

SEE ALSO
f s e e k(BA_OS), s e t b u f(BA_LIB), s t d i o(BA_LIB), g e t w c(BA_LIB)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/ungetwc
svid

Page: 551

unlockpt (BA_LIB) unlockpt (BA_LIB)

NAME
unlockpt – unlock a pseudo-terminal master/slave pair

SYNOPSIS
int unlockpt(int fildes);

DESCRIPTION
The function unlockpt() clears a lock flag associated with the slave pseudo-
terminal device associated with its master pseudo-terminal counterpart so that the
slave pseudo-terminal device can be opened. fildes is a file descriptor returned from
a successful open of a master pseudo-terminal device.

RETURN VALUE
Upon successful completion, the function unlockpt() returns a value of 0; other-
wise, it returns a value of -1. A failure may occur if fildes is not an open file descrip-
tor or is not associated with a master pseudo-terminal device.

SEE ALSO
grantpt(BA_LIB), open(BA_OS), ptsname(BA_LIB).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/unlockpt
svid

Page: 552

vfwprintf (BA_LIB) vfwprintf (BA_LIB)

NAME
v f w p r i n t f, v w p r i n t f, v s w p r i n t f – print formatted wide character output of a
variable argument list

SYNOPSIS
#include <stdarg.h>
#include <wchar.h>

int vfwprintf(FILE *stream, const wchar_t ∗format, va_list arg);

int vwprintf(const wchar_t ∗format, va_list arg);

int vswprintf(wchar_t *s, size_t n, const wchar_t *format, va_list arg);

DESCRIPTION
v f w p r i n t f is equivalent to f w p r i n t f, with the variable argument list replaced by
an a r g that has been initialized by the v a _ s t a r t macro.

v w p r i n t f is equivalent to w p r i n t f, with the variable argument list replaced by an
a r g that has been initialized by the v a _ s t a r t macro.

v s w p r i n t f is equivalent to s w p r i n t f, with the variable argument list replaced by
an a r g that has been initialized by the v a _ s t a r t macro. If copying takes place
between objects that overlap, the behavior is undefined.

None of these functions invoke v a _ e n d or the passed a r g.

Errors
v f w p r i n t f and v w p r i n t f return the number of wide characters transmitted or
return a negative value if an error was encountered. v s w p r i n t f returns the
number of wide characters written in the array, not counting the terminating null
wide character, or returns a negative value if n or more wide character are
requested to be generated.

USAGE
The following example shows the use of the v f w p r i n t f function in a general error
reporting routine:

#include <stdarg.h>
#include <wchar.h>

void error(wchar_t *function_name, wchar_t *format,...)
{

va_list args;
va_start(args, format);
fwprintf(stderr, L"ERROR in %s: ", function_name);
vfwprintf(stderr, format, args);
va_end(args);

}

SEE ALSO
printf(BA_LIB), fwprintf(BA_LIB), putc(BA_LIB), scanf(BA_LIB), setlocale(BA_LIB),
stdio(BA_LIB), write(BA_OS)

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/vfwprintf
svid

Page: 553

vfwprintf (BA_LIB) vfwprintf (BA_LIB)

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ba_lib/vfwprintf
svid

Page: 554

vfwscanf (BA_LIB) vfwscanf (BA_LIB)

NAME
v f w s c a n f, v w s c a n f, v s w s c a n f – convert formatted wide character input of a vari-
able argument list

SYNOPSIS
#include <stdarg.h>
#include <wchar.h>

int vfwscanf(FILE *stream, const wchar_t ∗format, va_list arg);

int vwscanf(const wchar_t ∗format, va_list arg);

int vswscanf(wchar_t *s, const wchar_t *format,va_list arg);

DESCRIPTION
v f w s c a n f is equivalent to f w s c a n f, with the variable argument list replaced by an
a r g that has been initialized by the v a _ s t a r t macro.

v w s c a n f is equivalent to w s c a n f, with the variable argument list replaced by an
a r g that has been initialized by the v a _ s t a r t macro.

v s w s c a n f is equivalent to s w s c a n f, with the variable argument list replaced by an
a r g that has been initialized by the v a _ s t a r t macro.

None of these functions invoke v a _ e n d on the passed arg. If copying takes place
between objects that overlap, the behavior is undefined.

Errors
v f w s c a n f, v w s c a n f and v s w s c a n f1 return the number of wide characters transmit-
ted or return a negative value if an error was encountered.

SEE ALSO
fwscanf(BA_LIB), putc(BA_LIB), scanf(BA_LIB), setlocale(BA_LIB), stdio(BA_LIB),
write(BA_OS)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/vfwscanf
svid

Page: 555

vprintf (BA_LIB) vprintf (BA_LIB)

NAME
vprintf, vfprintf, vsprintf, vsnprintf – print formatted output of a variable argument
list

SYNOPSIS
#include <stdio.h>
#include <stdarg.h>

int vprintf(const char *format, va_list ap);

int vfprintf(FILE *stream, const char *format, va_list ap);

int vsprintf(char *s, const char *format, va_list ap);

int vsnprintf(char *s, size_t maxsize, const char *format, va_list ap);

DESCRIPTION
The functions vprintf(), vfprintf(), vsprintf(), and vsnprintf() are
the same as printf(), fprintf(), sprintf(),and snprintf() respectively,
except that instead of being called with a variable number of arguments, they are
called with an argument list as defined by the <stdarg.h> header file.

The <stdarg.h> header file defines the type va_list and a set of macros for
advancing through a list of arguments whose number and types may vary. The
argument ap to the vprint family of routines is of type va_list. This argument is
used with the <stdarg.h> header file macros va_start(), va_arg() and
va_end() [see va_start(), va_arg(), and va_end() in stdarg(BA_ENV)]. The
EXAMPLE section below shows their use with vprintf().

The macro va_alist is used as the parameter list in a function definition as in the
function called error() in the example below. The macro va_start(ap,
parmN), where ap is of type va_list, and parmN is the rightmost parameter (just
before . . .), must be called before any attempt to traverse and access unnamed
arguments. Calls to va_arg(ap, atype) traverse the argument list. Each execution
of va_arg() expands to an expression with the value and type of the next argu-
ment in the list ap, which is the same object initialized by va_start. The argument
atype is the type that the returned argument is expected to be. The va_end(ap)
macro must be invoked when all desired arguments have been accessed. (The argu-
ment list in ap can be traversed again if va_start() is called again after
va_end().) In the example below, va_arg() is executed first to return the
function_name passed to error() and it is called again to retrieve the format
passed to error(). The remaining error() arguments, arg1, arg2, ..., are given to
vfprintf() in the argument ap.

RETURN VALUE
The functions vprintf(), and vfprintf() return the number of characters
transmitted, or return –1 if an error was encountered.

EXAMPLE
The following demonstrates how vfprintf() could be used to write an error()
routine:

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/vprintf
svid

Page: 556

vprintf (BA_LIB) vprintf (BA_LIB)

#include <stdio.h>
#include <stdarg.h>
/*
* error should be called like
* error(function_name, format, arg1, ...);
*/
void error(char *function_name, char *format, ...)

{
va_list ap;

va_start(ap, format);
/* print out name of function causing error */
(void) fprintf(stderr, "ERR in %s: ", function_name);
va_arg(ap, char*);
/* print out remainder of message */
(void) vfprintf(stderr, format, ap);
va_end(ap);
(void) abort();

}

SEE ALSO
printf(BA_LIB), stdarg(BA_ENV).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ba_lib/vprintf
svid

Page: 557

vscanf (BA_LIB) vscanf (BA_LIB)

NAME
v s c a n f, v f s c a n f, v s s c a n f – convert formatted input of a variable argument list

SYNOPSIS
i n c l u d e < s t d i o . h >
i n c l u d e < s t d a r g . h >

i n t v s c a n f (c o n s t c h a r ∗format, v a _ l i s t ap) ;

i n t v f s c a n f (F I L E ∗stream, c o n s t c h a r ∗format, v a _ l i s t ap) ;

i n t v s s c a n f (c o n s t c h a r ∗s, c o n s t c h a r ∗format, v a _ l i s t ap) ;

DESCRIPTION
v s c a n f, v f s c a n f and v s s c a n f are the same as s c a n f, f s c a n f, and s s c a n f respec-
tively, except that instead of being called with a variable number of arguments, they
are called with an argument list as defined by the s t d a r g . h header file.

The s t d a r g . h header file defines the type v a _ l i s t and a set of macros for advanc-
ing through a list of arguments whose number and types may vary. [See
s t d a r g(BA_ENV)].

Errors
These functions return the number of matched patterns, or return E O F if an error
was encountered.

SEE ALSO
s c a n f(BA_LIB), s t d a r g(BA_ENV),

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/vscanf
svid

Page: 558

wconv (BA_LIB) wconv (BA_LIB)

NAME
w c o n v: t o w u p p e r, t o w l o w e r – translate characters

SYNOPSIS
i n c l u d e < w c h a r . h >

w i n t _ t t o w u p p e r (w i n t _ t c) ;

w i n t _ t t o w l o w e r (w i n t _ t c) ;

DESCRIPTION
If the argument to t o w u p p e r is a wide character that is also a lowercase letter, the
result is the corresponding uppercase letter. If the argument to t o w l o w e r is a wide
character that is also an uppercase letter, the result is the corresponding lowercase
letter.

In the case of all other arguments, the return value is unchanged.

SEE ALSO
c o n v(BA_LIB), w c t y p e(BA_LIB),

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/wconv
svid

Page: 559

wcscat (BA_LIB) wcscat (BA_LIB)

NAME
w c s c a t – concatenate two wide character strings

SYNOPSIS
i n c l u d e < w c h a r . h >

w c h a r _ t ∗w c s c a t (w c h a r _ t ∗ws1, c o n s t w c h a r _ t ∗ws2) ;

DESCRIPTION
w c s c a t appends a copy of the wide character string ws2, including the N U L L wide
character, to the end of the wide character string ws1. The terminating null wide
character at the end of ws1 is overwritten by the initial wide character of ws2. The
behavior is undefined if copying takes place between overlapping objects.

These functions do not check for an overflow condition of the array pointed to by
ws1.

Return Value
w c s c a t returns ws1.

SEE ALSO
w c s n c a t(BA_LIB)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/wcscat
svid

Page: 560

wcschr (BA_LIB) wcschr (BA_LIB)

NAME
w c s c h r – scan a wide character string

SYNOPSIS
i n c l u d e < w c h a r . h >

w c h a r _ t * w c s c h r (c o n s t w c h a r _ t *ws, w i n t _ t wc) ;

DESCRIPTION
w c s c h r scans the wide character string pointed to by ws for the wide character
specified by wc. The null wide character terminating a string is considered to be
part of the string.

Return Values
w c s c h r returns a pointer to the first occurrence of wide character wc in wide char-
acter string ws, or a null pointer if wc does not occur in the string.

SEE ALSO
w c s r c h r(BA_LIB),

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/wcschr
svid

Page: 561

wcscmp (BA_LIB) wcscmp (BA_LIB)

NAME
w c s c m p – compare two wide character strings

SYNOPSIS
i n c l u d e < w c h a r . h >

i n t w c s c m p (c o n s t w c h a r _ t *ws1, c o n s t w c h a r _ t *ws2) ;

DESCRIPTION
w c s c m p makes a comparison between the wide character string pointed to by ws1
and the wide character string pointed to by ws2.

Return Values
w c s c m p compares its arguments and returns an integer less than, equal to, or
greater than zero, depending on whether wide character string ws1 is less than,
equal to, or greater than wide character string ws2. The null wide character com-
pares less than any other wide character.

SEE ALSO
w c s n c m p(BA_LIB)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/wcscmp
svid

Page: 562

wcscoll (BA_LIB) wcscoll (BA_LIB)

NAME
w c s c o l l – wide character string comparison using collating information

SYNOPSIS
i n c l u d e < w c h a r . h >

i n t w c s c o l l (c o n s t w c h a r _ t ∗ws1, c o n s t w c h a r _ t ∗ws2) ;

DESCRIPTION
w c s c o l l is part of the X/Open Portability Guide Issue 4 optional Enhanced Inter-
nationalization feature group. It compares the wide character string pointed to by
w s 1 to the wide character string pointed to by w s 2, which are both interpreted as
appropriate to the L C _ C O L L A T E category of the current locale.

Return Values
w c s c o l l returns 0 and sets e r r n o to E N O S Y S.

Errors
In the following conditions, w c s c o l l fails and sets e r r n o to:

E I N V A L The w s 1 or w s 2 arguments contain wide character codes outside the
domain of the collating sequence.

E N O S Y S The function is not supported

USAGE
Since no return value is reserved to show an error, if you want to check for errors,
you should set e r r n o to 0, call w c s c o l l, and then check e r r n o. If it is non-zero,
you can assume that an error has occurred.

Use w c s x f r m and w c s c m p for sorting large lists of wide character strings.

SEE ALSO
s t r c o l l(BA_LIB), w c s x f r m(BA_LIB)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/wcscoll
svid

Page: 563

wcscpy (BA_LIB) wcscpy (BA_LIB)

NAME
w c s c p y – copy a wide character string

SYNOPSIS
i n c l u d e < w c h a r . h >

w c h a r _ t * w c s c p y (w c h a r _ t *ws1, c o n s t w c h a r _ t *ws2) ;

DESCRIPTION
w c s c p y copies the wide string ws2 to the array ws1, stopping after the null wide
character has been copied. The behavior is undefined if copying occurs between
overlapping objects.

Return Value
w c s c p y returns ws1.

USAGE
Overlapping moves may cause unexpected results because the movement of wide
character codes is implementation-dependent.

SEE ALSO
w c h a r(BA_ENV) w c s n c p y(BA_LIB)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/wcscpy
svid

Page: 564

wcscspn (BA_LIB) wcscspn (BA_LIB)

NAME
w c s c s p n – get length of complementary wide substring

SYNOPSIS
i n c l u d e < w c h a r . h >

s i z e _ t w c s c s p n (c o n s t w c h a r _ t *ws1, c o n s t w c h a r _ t *ws2) ;

DESCRIPTION
w c s c s p n determines the length of the maximum initial segment of the wide string
pointed to by ws1. This string consists entirely of wide characters not included in
the string pointed to by ws2.

Return Values
w c s c s p n returns the length of the segment.

SEE ALSO
w c s s p n(BA_LIB)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/wcscspn
svid

Page: 565

wcsftime (BA_LIB) wcsftime (BA_LIB)

NAME
w c s f t i m e – convert date and time to wide character string

SYNOPSIS
i n c l u d e < w c h a r . h >

i n t w c s f t i m e (w c h a r _ t ∗wcs, s i z e _ t size, c o n s t w c h a r _ t ∗format, c o n s t
s t r u c t t m ∗timeptr) ;

DESCRIPTION
w c s f t i m e puts wide character codes into the array pointed to by wcs as controlled
by the string pointed to by format. It behavior is similar to s t r f t i m e, except that
the format and the result are wide character strings. Not more than s i z e wide
characters are placed into the array pointed to by w c s.

The behavior is undefined if copying takes place between objects that overlap.

Return Values
If the size of the resultant wide character codes inclusive of the terminating null
wide character code is within the size limit, w c s f t i m e returns the number of wide
character codes in the array pointed to by wcs, exclusive of the terminating null
wide character code. Otherwise, it returns zero and the contents of the array are
indeterminate.

NOTICES
If the feature test macro _ X O P E N _ S O U R C E is defined, then the following synopsis
may be defined:

i n t w c s f t i m e (w c h a r _ t ∗wcs, s i z e _ t size, c o n s t c h a r ∗format, c o n s t
s t r u c t t m ∗timeptr) ;

For conformance to XPG4’s w c s f t m i m e, an alternate interface is defined which we
expect will be updated to match the above version in XPG’s next release.

This version of w c s f t i m e is allowed to set \rrno t o E N O S Y S t o s h o w t h a t t h e
f u n c t i o n i s n o t i m p l e m e n t e d .

SEE ALSO
s t r f t i m e(BA_LIB), w c h a r(BA_ENV)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/wcsftime
svid

Page: 566

wcslen (BA_LIB) wcslen (BA_LIB)

NAME
w c s l e n – obtain wide character string length

SYNOPSIS
i n c l u d e < w c h a r . h >

s i z e _ t w c s l e n (c o n s t w c h a r _ t *ws) ;

DESCRIPTION
w c s l e n returns the number of wide characters in wide character string ws, not
including the terminating null wide character.

Return Values
w c s l e n returns the length of the string.

SEE ALSO
w c h a r(BA_ENV),

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/wcslen
svid

Page: 567

wcsncat (BA_LIB) wcsncat (BA_LIB)

NAME
w c s n c a t – concatenate two wide character strings with bound

SYNOPSIS
i n c l u d e < w c h a r . h >

w c h a r _ t * w c s n c a t (w c h a r _ t *ws1, c o n s t w c h a r _ t *ws2, s i z e _ t n) ;

DESCRIPTION
w c s n c a t appends at most n wide characters from the wide string ws2 to the end of
the wide string ws1. Wide characters that follow a null wide character are not
copied. The null wide character at the end of ws1 is overwritten by the initial wide
character of ws2. A terminating null wide character is always appended to the
result. The behavior is undefined if copying occurs between overlapping objects.
This function does not check for an overflow condition of the array pointed to by
ws1.

Return Values
w c s n c a t returns ws1.

SEE ALSO
w c s c a t(BA_LIB)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/wcsncat
svid

Page: 568

wcsncmp (BA_LIB) wcsncmp (BA_LIB)

NAME
w c s n c m p – compare two wide character strings with bound

SYNOPSIS
i n c l u d e < w c h a r . h >

i n t w c s n c m p (c o n s t w c h a r _ t *ws1, c o n s t w c h a r _ t *ws2, s i z e _ t n) ;

DESCRIPTION
w c s n c m p compares not more than n wide characters from the array pointed to by
ws1 to the array pointed to by ws2. The function does not compare wide characters
that follow a null wide character.

Return Values
w c s n c m p compares its arguments and returns an integer less than, equal to, or
greater than zero, depending on whether the wide string ws1 is less than, equal to,
or greater than the wide string ws2. The null wide character compares less than any
other wide character.

SEE ALSO
w c s c m p(BA_LIB),

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/wcsncmp
svid

Page: 569

wcsncpy (BA_LIB) wcsncpy (BA_LIB)

NAME
w c s n c p y – copy a wide character string with bound

SYNOPSIS
i n c l u d e < w c h a r . h >

w c h a r _ t * w c s n c p y (w c h a r _ t *ws1, c o n s t w c h a r _ t *ws2, s i z e _ t n) ;

DESCRIPTION
w c s n c p y copies exactly n wide characters, truncating the wide string ws2 or adding
null wide characters to ws1, if necessary. Wide characters that follow a null wide
character are not copied. The result will not be null-terminated if the length of ws2
is n or more. If the array ws2 points to is a wide character string that is shorter than
n wide characters, the copy in the array pointed to by ws1 is padded with null wide
characters until a total of n wide characters is written. This function does not check
for an overflow condition of the array pointed to by ws1.

Return Values
w c s n c p y returns ws1.

USAGE
Overlapping moves may cause unexpected results because the movement of wide
characters is implementation-dependent. If there is no null wide character in the
first n wide characters of the array pointed to by ws2, the result will not be null-
terminated.

SEE ALSO
w c s c p y(BA_LIB)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/wcsncpy
svid

Page: 570

wcspbrk (BA_LIB) wcspbrk (BA_LIB)

NAME
w c s p b r k – scan a wide character string for wide characters

SYNOPSIS
i n c l u d e < w c h a r . h >

w c h a r _ t * w c s p b r k (c o n s t w c h a r _ t *ws1, c o n s t w c h a r _ t *ws2) ;

DESCRIPTION
w c s p b r k returns a pointer to the first occurrence in the wide string ws1 of any wide
character from the wide string ws2, or a null pointer if there is no wide character
from ws2 in ws1.

Return Values
On completion, w c s p b r k returns a pointer to the first wide character, or a null
pointer if no wide character from ws2 is found in ws1.

SEE ALSO
w c s c h r(BA_LIB), w c s r c h r(BA_LIB),

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/wcspbrk
svid

Page: 571

wcsrchr (BA_LIB) wcsrchr (BA_LIB)

NAME
w c s r c h r – reverse wide character string scan

SYNOPSIS
i n c l u d e < w c h a r . h >

w c h a r _ t * w c s r c h r (c o n s t w c h a r _ t *ws, w i n t _ t wc) ;

DESCRIPTION
wcsrchr scans the wide string ws for the last occurrence of the wide character wc.
The null wide character terminating ws is considered to be part of the string.

Return Values
wcsrchr returns a pointer to the last occurrence of the wide character wc in the wide
string ws, or a null pointer if wc does not occur in the string.

SEE ALSO
w c s c h r(BA_LIB),

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/wcsrchr
svid

Page: 572

wcsspn (BA_LIB) wcsspn (BA_LIB)

NAME
w c s s p n – obtain the length of a wide substring

SYNOPSIS
i n c l u d e < w c h a r . h >

s i z e _ t w c s s p n (c o n s t w c h a r _ t *ws1, c o n s t w c h a r _ t *ws2) ;

DESCRIPTION
w c s s p n returns the length of the initial segment of the wide string ws1, which con-
sists entirely of the wide characters from the wide string ws2.

Return Values
w c s s p n returns the length of the segment.

SEE ALSO
w c s c s p n(BA_LIB)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/wcsspn
svid

Page: 573

wcsstr (BA_LIB) wcsstr (BA_LIB)

NAME
w c s s t r , ‡ w c s w c s – find wide substring

SYNOPSIS
i n c l u d e < w c h a r . h >

w c h a r _ t * w c s s t r (c o n s t w c h a r _ t *ws1, c o n s t w c h a r _ t *ws2) ;

w c h a r _ t * w c s w c s (c o n s t w c h a r _ t *ws1, c o n s t w c h a r _ t *ws2) ;

DESCRIPTION
w c s s t r locates the first occurrence in the wide character string pointed to by ws1 of
the sequence of wide characters (excluding the terminating null wide character)
pointed to by ws2.

Return Values
Upon successful completion, w c s s t r returns a pointer to the located wide character
string, or a null pointer if the wide character string is not found.

w c s s t r returns ws1 if ws2 points to a zero-length wide character string.

SEE ALSO
w c s c h r(BA_LIB),

LEVEL
Level 1.

w c s w c s is designated Level 2 September 30, 1993.

w c s w c s is only provided for XPG4 compatibility. It is anticipated that it will be
removed in a future issue of XPG and of the SVID.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/wcsstr
svid

Page: 574

wcstod (BA_LIB) wcstod (BA_LIB)

NAME
w c s t o d, w c s t o f, w c s t o l d – convert wide string to floating point value

SYNOPSIS
i n c l u d e < w c h a r . h >

d o u b l e w c s t o d (c o n s t w c h a r _ t *nptr, w c h a r _ t * *endptr) ;

f l o a t w c s t o f (c o n s t w c h a r _ t *nptr, w c h a r _ t * *endptr) ;

l o n g d o u b l e w c s t o l d (c o n s t w c h a r _ t *nptr, w c h a r _ t * *endptr) ;

DESCRIPTION
w c s t o d returns, as a double-precision floating-point number, the wide character
string pointed to by nptr. w c s t o f returns, as a single-precision floating-point
number, the wide character string pointed to by nptr. w c s t o l d returns, as a long
double-precision floating-point number, the wide character string pointed to by
nptr. Scanning occurs up to the first wide character that is unrecognized. The func-
tion recognizes an optional string that is composed of "white space" wide characters
as defined by the i s w s p a c e function. The string is then followed by an optional
sign then a sequence of digits optionally containing a decimal point character, fol-
lowed by an exponential part (e or E) then another optional sign with an integer fol-
lowing it.

Also, instead of the regular decimal digit sequence, the string can be a h e x a d e -
c i m a l floating value, an i n f i n i t y, or a N a N. A hexadecimal floating value consists
of 0 x or O X followed by a sequence of hexadecimal digits optionally containing a
decimal point character, followed by a binary exponent part p or P then an optional
sign with an integer following it. The exponent part must be present if no decimal
point character is present. An infinity is specified by the string i n f or i n f i n i t y
case insensitive. A N a N is specified by n a n case insensitive, followed by an optional
sequence of zero or more alphanumeric or underscore _ characters between a pair
of parenthesis. If the value of endptr is not null, a pointer to the wide character ter-
minating the scan is returned in the location pointed to by endptr.

Return Values
The function returns the value produced after the conversion process. If the func-
tion has not been performed then zero is returned and e r r n o may be set to E I N V A L.

If a correct value causes overflow, ±H U G E _ V A L is returned, depending on the sign of
the value, and e r r n o is set to E R A N G E.

If the value produced is correct but causes underflow, then zero will be returned
with e r r n o being set to E R A N G E.

Errors
In the following conditions, these functions may fail and set e r r n o to:

E R A N G E The value produced after the conversion process would cause either
an overflow or underflow.

E I N V A L No conversion process could be carried out.

USAGE
Zero and ±H U G E _ V A L can be returned as a correct value after the conversion pro-
cess. However, they can also be returned on error. To check for an error condition,
zero should be assigned to e r r n o followed by a call to one of these functions

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/wcstod
svid

Page: 575

wcstod (BA_LIB) wcstod (BA_LIB)

and then a check on e r r n o. If the value of e r r n o is non-zero it can be assumed
that an error has occurred.

SEE ALSO
l o c a l e c o n v(BA_LIB), s c a n f(BA_LIB), s e t l o c a l e(BA_OS), w c s t o l(BA_LIB)

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ba_lib/wcstod
svid

Page: 576

wcstok (BA_LIB) wcstok (BA_LIB)

NAME
w c s t o k – split a wide character string into tokens

SYNOPSIS
i n c l u d e < w c h a r . h >

w c h a r _ t * w c s t o k (w c h a r _ t *ws1, c o n s t w c h a r _ t *ws2, w c h a r _ t * *savept) ;

DESCRIPTION
w c s t o k splits the wide string pointed to by ws1 into tokens delimited by a wide
character found in the wide string pointed to by ws2. savept points to a w c h a r _ t
pointer provided by the caller, in which w c s t o k stores information it needs to con-
tinue processing a particular wide string.

ws1 points to a wide string on the first call to w c s t o k, and is a null pointer on subse-
quent calls for the same wide string. When ws1 is a null pointer, the value pointed
to by savept is that set by the previous call to w c s t o k for the same wide string. Oth-
erwise, the incoming value of the object pointed to by savept is ignored.

On the first call, w c s t o k searches for the first wide character which does not occur
in the wide string pointed to by ws2. This wide character, if found, is the beginning
of the first token. If no appropriate wide character is found, w c s t o k returns a null
pointer, and there are no tokens in the wide string.

Starting at the first wide character of the token, w c s t o k searches for a wide charac-
ter which does occur in the wide string pointed to by ws2. If an appropriate wide
character is found, it becomes the end of the token, and is overwritten by a null
wide character. The current token extends to the end of the wide string pointed to
by ws1 if no appropriate wide character is found. A null pointer is returned by any
subsequent searches of the same wide string.

w c s t o k uses the pointer pointed to by savept to store enough information for subse-
quent calls to start searching just past the end of the token (if any) previously
returned.

ws2 can point to a different wide character separator string for each call.

Return Values
On success, w c s t o k returns a pointer to the first wide character of a token. On
failure, when no token is found, the function will return a null pointer.

NOTICES
The functionality of this interface is the same as that described previously, except an
internal address is pointed to by savept, therefore no third argument is necessary.

SEE ALSO
w c h a r(BA_ENV)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/wcstok
svid

Page: 577

wcstol (BA_LIB) wcstol (BA_LIB)

NAME
w c s t o l – convert a wide character string to a long integer

SYNOPSIS
i n c l u d e < w c h a r . h >

l o n g w c s t o l (c o n s t w c h a r _ t *nptr, w c h a r _ t * *endptr, i n t base) ;

l o n g w c s t o u l (c o n s t w c h a r _ t *nptr, w c h a r _ t * *endptr, i n t base) ;

DESCRIPTION
w c s t o l returns, as a long integer, the value represented by the character string
pointed to by nptr. w c s t o u l returns, as an unsigned long integer, the value
represented by the character string pointed to by nptr. The string is scanned up to
the first character inconsistent with the base. Leading ‘‘white-space’’ characters [as
defined by i s w s p a c e] are ignored.

If the value of endptr is not a null pointer, a pointer to the wide character terminat-
ing the scan is returned in the location pointed to by endptr . If no integer can be
formed, that location is set to nptr, and zero is returned.

If base is between 2 and 36, inclusive, it is used as the base for conversion. After an
optional leading sign, leading zeros are ignored, and a leading ‘‘0 x’’ or ‘‘0 X’’ is
ignored if base is 16 and a leading) b or 0 B is ignored if b a s e is 2.

If base is zero, the string itself determines the base as follows: After an optional
leading sign a leading zero indicates octal conversion, and a leading ‘‘0 x’’ or ‘‘0 X’’
hexadecimal conversion. Otherwise, decimal conversion is used.

Return Values
For w c s t o l, if the value represented by nptr would cause overflow, L O N G _ M A X or
L O N G _ M I N is returned (according to the sign of the value), and e r r n o is set to the
value E R A N G E.

For w c s t o u l, if the value represented by nptr would cause overflow, U L O N G _ M A X is
returned, and e r r n o is set to the value E R A N G E.

If w c s t o l or w c s t o u l is given a base other than zero or 2 through 36, it returns zero
and sets e r r n o to E I N V A L. Otherwise, w c s t o l and w c s t o u l return the represented
value.

Errors
In the following conditions, w c s t o l fails and sets e r r n o to:

E I N V A L The value of base is not supported.

E I N V A L No conversion could be performed.

E R A N G E The value to be returned is not representable.

SEE ALSO
s c a n f(BA_LIB), w c s t o d(BA_LIB)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/wcstol
svid

Page: 578

wcswidth (BA_LIB) wcswidth (BA_LIB)

NAME
w c s w i d t h – determine the number of column positions for a wide character string

SYNOPSIS
i n c l u d e < w c h a r . h >

i n t w c s w i d t h (c o n s t w c h a r _ t *pwcs, s i z e _ t n) ;

DESCRIPTION
w c s w i d t h determines the number of column printing positions needed for up to n
wide characters in the wide string pwcs. Fewer than n wide characters will be pro-
cessed only if a null wide character is encountered before n wide characters in pwcs.

Return Values
w c s w i d t h returns either zero if pwcs is pointing to a null wide character code, or the
number of column positions occupied by the wide character string pointed to by
pwcs. w c s w i d t h returns –1 if any wide character code in the wide character string
pointed to by pwcs is not a printable wide character.

EXAMPLES
This example function, when passed a wide character string, calculates the number
of column positions required and prints a diagnostic message.

i n c l u d e < w c h a r . h >
i n c l u d e < s t d i o . h >

. . .

i n t
p r i n t _ w i d t h (c o n s t w c h a r _ t * p w c s)
{

i n t w i d t h ;
s i z e _ t l e n ;

l e n = w c s l e n (p w c s) ;
i f (l e n > 0) {

w i d t h = w c s w i d t h (p w c s , l e n) ;
i f (w i d t h = = - 1)

(v o i d) p r i n t f (" n o n p r i n t a b l e c h a r a c t e r \ n ") ;
e l s e

(v o i d) p r i n t f (" W i d e s t r i n g w i d t h = % d \ n " , w i d t h) ;
r e t u r n (1) ;

}

(v o i d) p r i n t f (" z e r o l e n g t h w i d e c h a r a c t e r s t r i n g \ n ") ;
r e t u r n (0) ;

}

SEE ALSO
w c h a r(BA_DEV), w c w i d t h(BA_LIB)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/wcswidth
svid

Page: 579

wcsxfrm (BA_LIB) wcsxfrm (BA_LIB)

NAME
w c s x f r m – wide character string transformation

SYNOPSIS
i n c l u d e < w c h a r . h . h >

s i z e _ t w c s x f r m (w c h a r _ t ∗ws1, c o n s t w c h a r _ t ∗ws2, s i z e _ t n) ;

DESCRIPTION
w c s x f r m is part of the X/Open Portability Guide Issue 4 optional Enhanced Inter-
nationalization feature group.

w c s x f r m transforms the wide character string pointed to by w s 2 and places the
resulting wide character string into the array pointed to by w s 1. The transformation
does the following:

If w c s c m p is applied to two transformed wide strings, it returns a value greater
than, or equal to, zero, corresponding to the result of w c s c o l l applied to the same
two original wide character strings.

No more than n wide-character codes are placed into the resulting array pointed to
by w c s 1, including the terminating null wide-character code. If n is zero, w c s 1 can
be a null pointer. If copying takes place between objects that overlap, the behavior
is undefined.

Return Values
w c s x f r m returns the length necessary to hold the entire transformed wide character
string, not including the terminating null wide-character code. If the value returned
is n or more, the contents of the array pointed to by ws1 are indeterminate.
w c s x f r m returns - 1 and sets e r r n o to E N O S Y S.

Errors
w c s x f r m may fail if

E I N V A L The w s 1 or w s 2 arguments contain wide character codes outside the
domain of the collating sequence.

E N O S Y S The function is not supported

USAGE
Since no return value is reserved to show an error, if you want to check for errors,
you should set e r r n o to 0, call w c s c o l l, and then check e r r n o. If it is non-zero,
you can assume that an error has occurred.

SEE ALSO
s t r x f r m(BA_LIB), w c h a r(BA_DEV), w c s c o l l(BA_LIB)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/wcsxfrm
svid

Page: 580

wctob (BA_LIB) wctob (BA_LIB)

NAME
w c t o b – wide character to byte conversion

SYNOPSIS
i n c l u d e < s t d i o . h >
i n c l u d e < w c h a r . h >
i n t w c t o b (w i n t _ t c) ;

DESCRIPTION
w c t o b determines whether c corresponds to a member of the extended character set
whose multibyte character representation is as a single byte when in the initial shift
state.

Return Values
w c t o b returns E O F if c does not correspond to a multibyte character with length
one; otherwise, it returns the single byte representation.

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/wctob
svid

Page: 581

wctype (BA_LIB) wctype (BA_LIB)

NAME
w c t y p e: i s w a l p h a, i s w u p p e r, i s w l o w e r, i s w d i g i t, i s w x d i g i t, i s w a l n u m,
i s w s p a c e, i s w p u n c t, i s w p r i n t, i s w g r a p h, i s w c n t r l – test wide characters for a
specified class

SYNOPSIS
i n c l u d e < w c h a r . h >

i n t i s w a l p h a (w i n t _ t wc) ;

i n t i s w u p p e r (w i n t _ t wc) ;

i n t i s w l o w e r (w i n t _ t wc) ;

i n t i s w d i g i t (w i n t _ t wc) ;

i n t i s w x d i g i t (w i n t _ t wc) ;

i n t i s w a l n u m (w i n t _ t wc) ;

i n t i s w s p a c e (w i n t _ t wc) ;

i n t i s w p u n c t (w i n t _ t wc) ;

i n t i s w p r i n t (w i n t _ t wc) ;

i n t i s w g r a p h (w i n t _ t wc) ;

i n t i s w c n t r l (w i n t _ t wc) ;

DESCRIPTION
i s w a l p h a (wc) wc is an alphabetic wide character.
i s w u p p e r (wc) wc is an uppercase wide character.
i s w l o w e r (wc) wc is a lowercase wide character.
i s w d i g i t (wc) wc is a wide character representing a digit.
i s w x d i g i t (wc) wc is a wide character representing a hexadecimal digit.
i s w a l n u m (wc) wc is an alphanumeric wide character.
i s w s p a c e (wc) wc is a wide character representing a white space character.
i s w p u n c t (wc) wc is a wide character representing a punctuation character.
i s w p r i n t (wc) wc is a wide character representing a printing character includ-

ing space.
i s w g r a p h (wc) wc is a wide character like above but does not include white

space.
i s w c n t r lwc wc is a control characters (not printable)

Return Values
If wc matches the classification of the called function, nonzero is returned. Other-
wise, zero is returned. locale (category L C _ C T Y P E).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/wctype
svid

Page: 582

wcwidth (BA_LIB) wcwidth (BA_LIB)

NAME
w c w i d t h – determine the number of column positions for a wide character

SYNOPSIS
i n c l u d e < w c h a r . h >

i n t w c w i d t h (w i n t _ t wc);

DESCRIPTION
w c w i d t h determines the number of column printing positions that are needed by
the wide character wc.

Return Values
w c w i d t h returns zero if wc is a null wide character, or the number of column print-
ing positions the wide character wc occupies. w c w i d t h returns -1 if wc does not
correspond to a valid, printable wide character.

EXAMPLE
Here is a program that reads a wide character from standard input and prints the
width of the character.

i n c l u d e < w c h a r . h >
i n c l u d e < s t d i o . h >

m a i n ()
{

i n t x ;
w i n t _ t w c ;

i f ((w c = f g e t w c (s t d i n)) ! = W E O F) {
x = w c w i d t h (w c) ;
i f (x = = - 1)
(v o i d) p r i n t f (" C h a r a c t e r n o t p r i n t a b l e \ n ") ;

e l s e
(v o i d) p r i n t f (" C h a r a c t e r w i d t h = % d \ n " , x) ;

e x i t (0) ;
}
(v o i d) p r i n t f (" E r r o r e n c o u n t e r e d r e a d i n g c h a r a c t e r \ n ") ;
e x i t (2) ;

}

SEE ALSO
w c h a r(BA_DEV), w c s w i d t h(BA_LIB)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/wcwidth
svid

Page: 583

wordexp (BA_LIB) wordexp (BA_LIB)

NAME
w o r d e x p , w o r d f r e e – perform word expansions

SYNOPSIS
i n c l u d e < w o r d e x p . h >

i n t w o r d e x p (c o n s t c h a r ∗string, w o r d e x p _ t ∗pword, i n t flags) ;

v o i d w o r d f r e e (w o r d e x p _ t ∗pword) ;

DESCRIPTION
These functions are part of the X/Open Portability Guide Issue 4 optional POSIX2
C-Language Binding feature group.

w o r d e x p performs word expansions and places the list of expanded words into the
structure pointed to by p w o r d.

Return Values
w o r d e x p returns W R D E _ N O S Y S and sets e r r n o to E N O S Y S.

w o r d f r e e returns and sets e r r n o to E N O S Y S.

Errors
In the following conditions, w o r d e x p returns and sets e r r n o to:

W R D E _ B A D C H A R One of the unquoted characters appears in words in an inap-
propriate context.

W R D E _ B A D V A L Reference to an undefined shell variable when W R D E _ U N D E F is set
in flags.

W R D E _ C M D S U B Command substitution requested when W R D E _ N O C M D was set in
flags.

W R D E _ N O S P A C E Attempt to allocate memory failed.

W R D E _ S Y N T A X Shell syntax error.

USAGE
w o r d e x p should be used by an application that wants to do all the shell’s expan-
sions on a word or words obtained from a user. If the application prompts for a file
name and then uses w o r d e x p to process the input, you could respond with any-
thing that would be valid input to the shell.

The W R D E _ N O C M D flag prevents you from executing shell commands. Not allowing
unquoted shell special characters also prevents unwanted side effects such as exe-
cuting a command or writing a file.

SEE ALSO
f n m a t c h(BA_LIB), g l o b(BA_LIB),

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_lib/wordexp
svid

Page: 584

Base System Devices Introduction

This section contains an overview of the STREAMS I/O Interfaces, followed by
the BA_DEV manual pages.

STREAMS I/O Interfaces Overview

STREAMS is a general, flexible facility for development of communication ser-
vices. It supports development ranging from complete networking protocol suites
to individual device drivers by defining standard interfaces for character
input/output within the kernel. The standard interfaces and associated tools
enable modular, portable development and easy integration of high performance
network services and their components. STREAMS provides a broad framework
that does not impose any specific network architecture. It implements a user
interface consistent and compatible with the character I/O mechanism.

The power of STREAMS resides in its modularity. The design reflects the layering
characteristics of contemporary networking architectures such as Open Systems
Interconnection (OSI), Systems Network Architecture (SNA), Transmission Con-
trol Protocol/Internet Protocol (TCP/IP), and XEROX Network Systems (XNS)
(XEROX is a registered trademark of Xerox Corporation). For these protocol
suites, developers have traditionally faced problems arising from lack of relevant
standard interfaces. STREAMS defines standard mechanisms for implementing
protocols in "modules". Each module represents a set of processing functions and
communicates with other modules via a standard interface. From user-level,
kernel-resident modules can be dynamically selected and interconnected to imple-
ment any rational processing sequence. Modularity allows these advantages:

User-level programs can be independent of underlying protocols and physi-
cal communication media.

Network architectures and higher-level protocols can be independent of
underlying protocols, drivers, and physical communication media. This
enables customers to retain their investment in application software as they
migrate to different networking environments.

Higher level services can be created by selecting and connecting lower level
services and protocols.

Protocol module portability is enhanced by well defined structure and inter-
face standards.

Base System Devices Introduction 7-1

FINAL COPY
June 15, 1995

File: ba_dev.txt
svid

Page: 585

Terminal subsystems can have customized line discipline modules.

Implementing networking facilities and communication components under
STREAMS allows efficient, open-ended products.

STREAMs Fundamentals

"STREAMS" refers to the mechanism consisting of operating system service rou-
tines, kernel resources, and kernel utility routines. A stream, as illustrated in
figure 1, is a full duplex processing and data transfer path in the kernel that is
created through an application of the STREAMS mechanism.

Figure 7-1: Basic Stream

User Space

Kernel Space

System calls

Driver

Module

Module

Stream mechanism

A stream implements a connection between a driver in kernel space and a process
in user space. It provides a general character input/output (I/O) interface for
user processes. STREAMS I/O is based on messages. Messages flow in both
directions in a stream. Each module represents processing functions to be per-
formed on the contents of messages flowing into the module on the stream. Each
module is self-contained and functionally isolated from any other component in
the stream except its two neighboring components. A module communicates with

7-2 BASE SYSTEM DEVICES INTRODUCTION

FINAL COPY
June 15, 1995

File: ba_dev.txt
svid

Page: 586

its neighbors by passing messages. The module receives the message, inspects the
type, and processes it or just passes it on. A module can function, for example as,
a communication protocol, line discipline, or data filter.

There are many message types used by STREAMS modules. They can be
classified according to queueing priority. Every message has a priority band asso-
ciated with it. Messages may be normal, priority, or high-priority. Normal mes-
sages have a priority band of zero and are always placed at the end of the queue
following all other messages in the queue. High-priority messages are always
placed at the head of a queue but after any other high-priority messages already in
the queue. By convention they are not affected by flow control and their priority
band is ignored. They are high-priority by virtue of the message type. Priority
messages are always placed on the queue as indicated by their priority band.
They are placed after any messages in the same priority band already on the
queue. High-priority and priority messages are used to send control and data
information outside the normal flow control constraints. Priority messages enable
support of "expedited" or "urgent" data which are needed for various networking
protocols. Each priority band is subject to separate flow control from other prior-
ity bands. To prevent congestion and resource waste due to lack of flow control
with high-priority messages, only one high-priority message may be placed in the
stream head read queue at a time.

A user may access STREAMS messages that contain a data portion, control por-
tion, or both. The data portion is that information which is sent out over the net-
work and the control information is used by the local STREAMS modules. The
other types of messages are used between modules and not accessible to users.
Messages containing only a data portion are accessible via putmsg(),
putpmsg(), getmsg(), getpmsg(), read(), and write() routines. Mes-
sages containing a control portion with or without a data portion are accessible via
calls to putmsg(), putpmsg(), getmsg(), and getpmsg().

The interface between a user process and STREAMS is compatible with the pre-
STREAMS character I/O facilities.

Accessing Streams

User access to STREAMS is provided through a set of operating system service
routines. These include the traditional open(), close(), read(), write(),
and ioctl() operating system service routines as well as the putmsg(),
putpmsg(), getmsg(), getpmsg(), and poll() routines.

Base System Devices Introduction 7-3

FINAL COPY
June 15, 1995

File: ba_dev.txt
svid

Page: 587

Setting Up a Stream

Like conventional drivers, the STREAMS-based driver occupies a node in the file
system and may be "opened" and "closed". When a STREAMS-based device is
opened, a stream is automatically set up. As shown in Figure 2, this open sets up
a stream with an internal module called the "stream head" closest to the user and
the device driver downstream from the stream head.

Figure 7-2: Setting Up a Stream

stream head

driver

process
user

Kernel

User

The stream then consists of the stream head and a driver. To add other modules
to the stream, the user calls the ioctl() operating system service routine to
"PUSH" a module.
The syntax for this ioctl() command is

ioctl(fd, I_PUSH, "name")

where fd is the file descriptor of the open stream, I_PUSH is the command, and
"name" is the name of the module to be pushed. The number of modules that may
be pushed onto a stream is a configurable quantity. A new module is always
pushed just below the stream head so the order of "pushes" is important. After the
module is pushed, the stream looks as shown in the figure below:

7-4 BASE SYSTEM DEVICES INTRODUCTION

FINAL COPY
June 15, 1995

File: ba_dev.txt
svid

Page: 588

Figure 7-3: Before and After a Module is Pushed

stream headstream head
Kernel

module

user

driver

process

User

Kernel

Before PUSH After PUSH

User

driver

user
process

The user may "POP" modules off a stream using the ioctl() command

ioctl(fd, I_POP, 0)

This routine removes the module most recently added to the stream designated by
the file descriptor fd; this is always the intermediate module closest to the stream
head. At the user-level, drivers are operationally distinct from other modules;
drivers are explicitly opened by device pathname, while modules are "pushed"
onto the stream by module name. Device pathnames are ordinary system
filenames, but pushable modules’ names are internal to the system and are not
visible in the file system.

Sending and Receiving STREAMS Messages

In order to send and receive STREAMS messages that contain control information,
the routines getmsg(), getpmsg(), putmsg(), and putpmsg() must be used.
These differ from read() and write() in that the traditional routines can access
STREAMS messages containing only data, while getmsg(), getpmsg(),
putmsg(), and putpmsg() can access messages containing a control portion,
data portion, or both. The control portion is used to carry interface information
between modules and drivers.

Base System Devices Introduction 7-5

FINAL COPY
June 15, 1995

File: ba_dev.txt
svid

Page: 589

As an example, the transport functions of the OPEN SYSTEMS NETWORKING
INTERFACES use putmsg() to send service requests (e.g., to establish a connec-
tion), with or without data, to the underlying STREAMS-based transport protocol.
getmsg() is used by the transport functions to receive information back.

Polling STREAMS

The poll() routine provides users with a mechanism for multiplexing
input/output over a set of file descriptors that reference open files; this section
will describe how poll() can be used in conjunction with files that are streams.
poll() identifies those streams on which a user can send or receive messages or
on which certain events have occurred. The syntax for poll() is as follows:

int poll(pollfds, nfds, timeout)

where nfds specifies the number of file descriptors to be examined, timeout
specifies the number of msec that poll() should wait for an event to occur, and
pollfds is an array of pollfd structures where each structure contains the follow-
ing members:

int fd; /* file descriptor */
short events; /* requested events */
short revents; /* returned events */

These structures specify the file descriptors to be examined and the events of
interest for each file descriptor. fd specifies an open file descriptor and events
and revents are bitmasks constructed by OR-ing any combination of the events
specific to the poll() operating system service routine.

For each element of the array pointed to by pollfds, poll() examines the given
file descriptor for the event(s) specified in events.

The results of the poll() query are stored in the revents field in the pollfd
structure. Bits are set in the revents bitmask to indicate which of the requested
events are true. If none are true, none of the specified bits is set in revents when
the poll() call returns.

If none of the defined events have occurred on any selected file descriptor,
poll() waits at least timeout msec for an event to occur on any of the selected file
descriptors. If the value of timeout is 0, poll() returns immediately, effectively
polling the file descriptors. If the value of timeout is -1, poll() blocks until a
requested event occurs or until the call is interrupted.

7-6 BASE SYSTEM DEVICES INTRODUCTION

FINAL COPY
June 15, 1995

File: ba_dev.txt
svid

Page: 590

Multiplexing in STREAMS

Until now, STREAMS has been described as linear connections of modules, where
each invocation of a module is connected to at most a single upstream module and
a single downstream module. While this configuration is suitable for many appli-
cations, others require the ability to multiplex STREAMS in a variety of
configurations. Typical examples are internetworking protocols, which might
route data over several subnetworks, or terminal window facilities.

STREAMS provides the capability to dynamically build, maintain, and dismantle
multiplexing configurations. Two types of multiplexing are supported by
STREAMS. The first type allows user processes to connect multiple streams to a
single driver from above. This configuration can be established by opening multi-
ple minor devices of the same driver, and does not require any special STREAMS
facilities. The second multiplexing type allows user processes to connect multiple
streams below a pseudo-driver. This configuration must contain a multiplexing
pseudo-driver recognized by STREAMS as having special characteristics. A spe-
cial set of ioctl() commands is used to establish this multiplexing
configuration. STREAMS allows a user to build complex, multi-level
configurations by cascading multiplexing streams below one another.

Setting Up a Multiplexer

A multiplexing driver is a pseudo-device, and is treated like any other software
driver. It has a node in the file system, and is opened just like any other
STREAMS device driver. The open() call establishes a single stream "above" the
multiplexer, and the process that opened the multiplexer is

Base System Devices Introduction 7-7

FINAL COPY
June 15, 1995

File: ba_dev.txt
svid

Page: 591

returned a file descriptor that can be used to access the stream that was opened.
The file descriptor fd0 in Figure 4 is an example of this.

Next, one of the drivers that is to exist "below" the multiplexer is opened. Once
again, this is a driver, and is opened like any other system device. The open()
operating system service routine is used to open the driver, a stream is established
between the driver and a stream head, and the process that issued the open() call
is returned a file descriptor that can be used to access the stream connected to the
driver (e.g., fd1 in Figure 4).

If the eventual multiplexing configuration is to have intermediate protocol or
line-discipline modules in the stream between the driver just opened and the mul-
tiplexer (e.g., between the MUX driver and Driver1 in the "After" section of Figure
4), these modules should be added at this time to the stream just opened, using the
I_PUSH ioctl() command. The "push" operation must be done before the
driver is attached below the multiplexer because, once connected, ioctl() com-
mands cannot be issued to the bottom driver in the normal way.

The driver that was just opened is then connected below the multiplexing driver
that was opened first. This is done using the I_LINK command of the ioctl()
operating system service routine; the complete sequence is given here:

fd0 = open("/dev/MUXdriver", oflag);
fd1 = open("/dev/Driver1", oflag);
mux_id = ioctl(fd0, I_LINK, fd1);

Here, the variable fd0 is the file descriptor for the stream connected to the multi-
plexing driver, and fd1 is the file descriptor for the stream connected to another
driver. It should be noted that in the ioctl() call the placement of the first argu-
ment (fd0) and the third argument (fd1) is important; the first argument must be
the file descriptor of the stream connected to the multiplexing driver. (See Figure
4.) The value mux_id is returned by the operating system service routine; it is
used by the multiplexing module to identify the stream just connected.

Figure 4 shows two drivers and a multiplexing driver before and after the two
drivers have been linked below the multiplexer.

7-8 BASE SYSTEM DEVICES INTRODUCTION

FINAL COPY
June 15, 1995

File: ba_dev.txt
svid

Page: 592

Figure 7-4: A Multiplexing Configuration Before and After 2 I_LINK ioctl() Calls

BEFORE:

fd2 fd0 fd1

Driver1 Driver2

MUX
Driver

kernel

user

--
AFTER:

user

kernel

Driver1 Driver2

MUX
Driver

..

..

.
..
.

fd1 fd0 fd2

Other device drivers are opened and linked below the multiplexing driver in the
same way, as in the example shown in Figure 4:

Base System Devices Introduction 7-9

FINAL COPY
June 15, 1995

File: ba_dev.txt
svid

Page: 593

/* open another driver */
fd2 = open("/dev/driver2", oflag);
/* link it below the MUX */
mux_id2 = ioctl(fd0, I_LINK, fd2);

The number of streams that can be "linked" to a multiplexer depends on the partic-
ular multiplexer, and it is the responsibility of the multiplexer to keep track of the
streams linked to it. However, only one I_LINK operation is allowed for each
"lower" stream; a single stream cannot be linked below two multiplexers simul-
taneously.

The order in which the streams in the multiplexing configuration are opened is
unimportant. It is only necessary that the two streams referenced as arguments to
the I_LINK ioctl() are both open when the I_LINK ioctl() command is
issued. Once the configuration is established, the file descriptors that point to the
"bottom" device drivers (e.g., fd1 and fd2 in Figure 4) can be closed without
affecting the way the multiplexer works; these closes will not cause the drivers to
be unlinked from the multiplexer. If these file descriptors (fd1 and fd2 in Figure
4) are not closed, the multiplexer will work as expected, but all subsequent
read(), write(), ioctl(), poll(), putmsg(), putpmsg(), getmsg(), and
getpmsg() OS service routine calls issued to fd1 and fd2 will fail.

Figure 7-5: Three STREAMS Converging on One Device Driver

kernel

user

.

......

Driver
0

fd3 fd2 fd1 fd0

Driver
Multiplexer

......

7-10 BASE SYSTEM DEVICES INTRODUCTION

FINAL COPY
June 15, 1995

File: ba_dev.txt
svid

Page: 594

Building a multiplexer that connects several streams to a single driver, as in Figure
5, is similar, except that only one driver is linked below the multiplexer. Addi-
tional streams above the multiplexer would be established by issuing repeated
open() calls to the multiplexer on "related" minor devices. Again, the way the
multiplexer handles these repeated calls to open() is multiplexer-dependent, as is
the number of streams that a particular multiplexer will successfully handle.

More complex multiplexing configurations can also be created. It is possible to
combine the examples of Figures 4 and 5 to create a configuration with many
streams above and many drivers linked below the multiplexer. STREAMS
imposes no restrictions on the number of multiplexing drivers that may be
included in a multiplexing configuration or on the number of multiplexers that
data can pass through when moving from one end of the multiplexing
configuration to the other.

Another type of link, called a "persistent link", can also be created in a multiplex-
ing configuration. Two new ioctl() commands, I_PLINK and I_PUNLINK,
are used to create and remove such "persistent" links. The syntax for these com-
mands is the same as for I_LINK and I_UNLINK. However, these persistent
links are not associated with the stream above the multiplexer. A close() or
I_UNLINK would not disconnect the persistent links. In Figure 4, if the link to
Driver1 is a persistent link, the file descriptor, fd0, associated with the stream
above the MUX Driver, can be closed without dismantling the persistent link
below. Other users can come in and open MUXdriver and send data to Driver1
since the persistent link to Driver1 remains intact.

In a multi-level multiplexing configuration where persistent links exist below a
multiplexer whose stream is connected to the above multiplexer by regular links,
closing the file descriptor associated with the controlling stream will remove the
regular link but not the persistent links below it. Regular links are also allowed to
exist below a multiplexer whose upper stream is connected via a persistent link.
In this case, the regular links would be removed if the persistent link above them
is removed, and if there were no open references to the lower streams.

Dismantling a Multiplexer

Multiplexing configurations are taken apart using the ioctl() I_UNLINK or
I_PUNLINK command. Each of the bottom drivers linked below the multiplexing
driver (e.g., Driver1 and Driver2 in Figure 4) can be individually disconnected:

ioctl(fd0, I_UNLINK, mux_id);

Here, fd0 is the file descriptor pointing to a stream connected to the multiplexing
driver, and mux_id is the identifier that was returned by the ioctl() I_LINK
command when one of the bottom drivers was linked to the multiplexing driver.
Each bottom driver can be disconnected individually in this way, or a special

Base System Devices Introduction 7-11

FINAL COPY
June 15, 1995

File: ba_dev.txt
svid

Page: 595

mux_id value of MUXID_ALL will disconnect all bottom modules from the multi-
plexer simultaneously. This unlinking occurs automatically on the last close of the
top stream through which the lower streams were linked under the multiplexer;
all these bottom streams are then unlinked.

To disconnect a persistent link, one would have to first open the driver to obtain a
file descriptor fd0, if it had been closed, and then call ioctl() with
I_PUNLINK as the command using the mux_id that had been returned on the
previous I_PLINK command. This call removes the persistent link in between
the multiplexer referenced by fd0 and the stream to the driver designated by
mux_id. A call with a mux_id value of MUXID_ALL will unlink all persistent
links below the multiplexing driver referenced by fd0.

The use of I_PLINK and I_PUNLINK should not be intermixed with that of
I_LINK and I_UNLINK. Any attempt to unlink a regular link via I_PUNLINK or
to unlink a persistent link via I_UNLINK will fail.

Multiplexed Data Routing

Processes use the normal read(), write(), getmsg(), getpmsg(),
putmsg(), and putpmsg() operating system service routines to read data from
and write data to an upper stream connected to the multiplexer. When these data
are routed through a multiplexer, the multiplexer must use its own criteria to
route the data moving in both directions. For example, a protocol multiplexer
might use protocol address information found in a protocol header to determine
over which subnetwork a given packet should be routed. It is the multiplexing
driver’s responsibility to define its routing criteria.

One option available to the multiplexer is to use the "mux id" value to determine
which stream to route data to. The multiplexer has access to this value, and the
I_LINK ioctl() command returns this value to the user. The multiplexer can
therefore specify that the "mux id" value accompany the data routed through it.

Pipe Fundamentals

A pipe is a mechanism that provides a communication path between multiple
processes. It implements a user interface consistent and compatible with the char-
acter I/O mechanism.

A STREAMS-based pipe, as shown in Figure 6, is a full duplex processing and
data transfer path in the kernel that is created by a user process invoking the
pipe() routine. A pipe implements a connection between the kernel and one or
more user processes. A STREAMS-based pipe supports capabilities beyond those
of the traditional pipe but has maintained the semantics of the traditional pipe.
Because of the STREAMS framework, a user can push processing modules,
poll(), and pass file descriptors across these pipe connections.

7-12 BASE SYSTEM DEVICES INTRODUCTION

FINAL COPY
June 15, 1995

File: ba_dev.txt
svid

Page: 596

The remainder of this section will use the term pipe to refer to a STREAMS-based
pipe.

Creating and Accessing Pipes

A user process creates a pipe via the pipe() operating system service routine
which returns two file descriptors, fd[0] and fd[1], that are opened for both
reading and writing. Data written to fd[0] can be read from fd[1] and data
written to fd[1] can be read from fd[0]. Unlike STREAMS-based drivers or
pseudo drivers, a pipe is not an object in the file system name space. A user pro-
cess accesses the pipe through one of these two file descriptors that represent each
end of the pipe.

When a pipe is created via the pipe() routine, two streams are automatically set
up, each only consisting of an internal stream head module. As shown in Figure 6,
a pipe represents two separate streams, with both streams attached in such a way
that messages flow in either direction, from one stream head to the other.

Figure 7-6: Basic STREAMS-based Pipe

user process

stream head stream head Kernel

User

Other modules can be added to the pipe if the user invokes ioctl() to "PUSH"
the modules, as shown in Figure 7.

Base System Devices Introduction 7-13

FINAL COPY
June 15, 1995

File: ba_dev.txt
svid

Page: 597

Named Streams

Some applications may find it helpful to be able to dynamically associate a stream
or STREAMS-based pipe with an existing object in the file system name space. For
example, a server process may create a pipe, name one end of the pipe, and permit
unrelated processes to communicate with it over the named pipe.

A STREAMS file descriptor can be named by attaching that file descriptor to an
object in the file system name space. The routine used to name a STREAMS file
descriptor is fattach() which has the following interface:

fattach (int fildes, char *path)

fildes must be an open file descriptor that refers to either a STREAMS-based pipe
or a STREAMS device driver (or pseudo device driver). This discussion describes
the scenario where fildes represents a STREAMS-based pipe. path is an existing
object in the file system name space (e.g. regular file, directory, character special
file, etc.) and cannot already have a STREAMS file attached to it. In addition, path
must not be the mount point for a file system nor the root of a file system. To
attach the file descriptor, the user must be the owner of path with write permission
or must be a process with the appropriate privileges.

If path is currently in use at the time fattach() is executed, those user processes
accessing path will not be interrupted and any data that was associated with path
before the call to fattach() will continue to be accessible by those processes.

After a file descriptor is named, all subsequent operations (e.g. open()) on path
will operate on the named stream. Thus, it is possible that a user process can have
one file descriptor pointing to the data associated with path and another file
descriptor pointing to the named STREAMS-pipe.

Once the stream is named, stat() on path will project the information for the
STREAMS-file. That is, if the named stream is a pipe, the stat() information
will show that path is a pipe. If the STREAMS file is a device driver (or pseudo
device driver) path will show the information for the devices. The attributes of the
named stream[see stat(BA_OS)] are initialized as follows: the permissions, user ID,
group ID, and times are set to those of path, the number of links is set to 1, and the
size and device indentifier are set to those of the streams device associated with
fildes. Once the stream is named, the user can issue chmod(), chown() to alter
the attributes of the named stream and not

Base System Devices Introduction 7-15

FINAL COPY
June 15, 1995

File: ba_dev.txt
svid

Page: 599

affect the original attributes of path nor the original attributes of the STREAMS-
file.

The size represented in the stat() information will reflect the number of unread
bytes of data currently at the stream head. This size is not necessarily the number
of bytes written to the STREAM.

A STREAMS-based file descriptor can be attached to many different paths at the
same time, i.e. a stream can have several names attached to it. The modes, owner-
ship and permissions of these paths may vary. However, operations on any of
these paths will access the same stream.

Since named streams are STREAMS devices, processes can push modules,
poll(), pass file descriptors, or do any other STREAMS operations on them.

To disassociate a filename from a named stream, the fdetach() routine is
invoked with the following interface:

fdetach (char *path)

where path is the name of the previously attached object. The user must be the
owner of path or a user with the appropriate privileges. If processes have the
named stream open at the time of the call to fdetach(), these processes are not
affected and continue to access the named stream.

The original permission, mode and ownership are restored to the state prior to
naming. In addition, the type and the size of the object reflect the object itself, as it
appears in the file system. Subsequent operations on path will access the file sys-
tem object and no longer access the named stream. If only one end of the pipe is
attached, the last close of the other end (for example the process closes down) will
cause the attached end to be automatically detached. If, however, the named
stream is a device and not a pipe, the last close of the file will not cause the stream
to be detached. A process has to invoke fdetach() to detach the stream.

Passing File Descriptors

Named stream pipes are especially useful for passing file descriptors between
unrelated processes. A user process can send a file descriptor to another process
by invoking ioctl() on one end of a named stream pipe with the I_SENDFD
command. This sends a message containing a file pointer to the stream head at the
other end of the pipe. Another process can retrieve that message containing the
file pointer by invoking ioctl() on the other end of the pipe with the
I_RECVFD command.

7-16 BASE SYSTEM DEVICES INTRODUCTION

FINAL COPY
June 15, 1995

File: ba_dev.txt
svid

Page: 600

Base System Devices

This following section contains the manual pages for the BA_DEV routines.

Base System Devices 8-1

FINAL COPY
June 15, 1995

File: ba_dev.cov
svid

Page: 601

FINAL COPY
June 15, 1995

File:

Page: 602

devcon (BA_DEV) devcon (BA_DEV)

NAME
devcon: console – system console interface

SYNOPSIS
/dev/console

DESCRIPTION
/dev/console is a generic name given to the system console. It is usually linked
to a particular machine-dependent special file, and provides a basic I/O interface to
the system console through the termio interface [see termio(BA_DEV)].

SEE ALSO
termio(BA_DEV), termios(BA_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_dev/devcon
svid

Page: 604

devnul (BA_DEV) devnul (BA_DEV)

NAME
devnul: null – the null file

SYNOPSIS
/dev/null

DESCRIPTION
Data written on a null special file are discarded.

Read operations from a null special file always return 0 bytes.

Output of a command is written to the special file /dev/null when the command
is executed for its side effects and not for its output.

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_dev/devnul
svid

Page: 605

devtty (BA_DEV) devtty (BA_DEV)

NAME
devtty: tty – controlling terminal interface

SYNOPSIS
/dev/tty

DESCRIPTION
The file /dev/tty is, in each process, a synonym for the control terminal associ-
ated with the session of that process, if any. It is useful for programs that wish to
be sure of writing messages on the terminal no matter how output has been
redirected [see system(BA_OS)]. It can also be used for programs that demand the
name of a file for output when typed output is desired and as an alternative to iden-
tifying what terminal is currently in use.

USAGE
Normally, application programs should not need to use this file interface. The stan-
dard input, standard output and standard error files should be used instead. These
file are accessed through the stdin, stdout and stderr stdio interfaces,
respectively.

SEE ALSO
system(BA_OS), termio(BA_DEV).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_dev/devtty
svid

Page: 606

ldterm (BA_DEV) ldterm (BA_DEV)

NAME
l d t e r m – standard STREAMS terminal line discipline module

DESCRIPTION
l d t e r m is a STREAMS module that provides most of the t e r m i o(BA_DEV) terminal
interface. This module does not perform the low-level device control functions
specified by flags in the c _ c f l a g word of the t e r m i o / t e r m i o s structure or by the
I G N B R K , I G N P A R , P A R M R K, or I N P C K flags in the c _ i f l a g word of the
t e r m i o / t e r m i o s structure; those functions must be performed by the driver or by
modules pushed below the l d t e r m module. All other t e r m i o / t e r m i o s functions
are performed by l d t e r m; some of them, however, require the cooperation of the
driver or modules pushed below l d t e r m and may not be performed in some cases.
These include the I X O F F flag in the c _ i f l a g word and the delays specified in the
c _ o f l a g word.

l d t e r m also handles EUC and multi-byte characters.

SEE ALSO
t e r m i o(BA_DEV), t e r m i o s(BA_OS)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_dev/ldterm
svid

Page: 607

pckt (BA_DEV) pckt (BA_DEV)

NAME
p c k t – STREAMS Packet Mode module

DESCRIPTION
p c k t is a STREAMS module that may be used with a pseudo terminal to packetize
certain messages. The p c k t module should be pushed [see I _ P U S H, s t r e a m i o(7)]
onto the master side of a pseudo terminal.

SEE ALSO
g e t m s g(BA_OS), i o c t l(BA_OS), l d t e r m(BA_DEV), p t e m(BA_DEV),
s t r e a m s(BA_DEV), t e r m i o(BA_DEV)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ba_dev/pckt
svid

Page: 608

streams (BA_DEV) streams (BA_DEV)

NAME
s t r e a m i o – STREAMS i o c t l commands

SYNOPSIS
i n c l u d e < s y s / t y p e s . h >
i n c l u d e < s t r o p t s . h >

i n t i o c t l (i n t fildes, i n t command, . . . / * a r g * /) ;

DESCRIPTION
STREAMS i o c t l commands are a subset of the i o c t l() system calls which perform
a variety of control functions on streams.

fildes is an open file descriptor that refers to a stream. command determines the con-
trol function to be performed as described below. arg represents additional infor-
mation that is needed by this command. The type of arg depends upon the com-
mand, but it is generally an integer or a pointer to a command-specific data struc-
ture. The command and arg are interpreted by the stream head. Certain combina-
tions of these arguments may be passed to a module or driver in the stream.

Since these STREAMS commands are a subset of i o c t l, they are subject to the errors
described there. In addition to those errors, the call will fail with e r r n o set to E I N -
V A L, without processing a control function, if the stream referenced by fildes is
linked below a multiplexor, or if command is not a valid value for a stream.

Also, as described in i o c t l, STREAMS modules and drivers can detect errors. In
this case, the module or driver sends an error message to the stream head contain-
ing an error value.

Dynamically Loadable Modules
STREAMS modules and drivers may be dynamically loadable. If a dynamically
loadable module or driver is accessed via an o p e n () or an I _ P U S H (streamio) and it
is not currently present in memory, then it is automatically loaded as a side effect of
the access. The loading process will bring the driver or module into memory and
call its load() routine to initialize it. See modload(KE_OS), modadmin(AS_CMD).

Accessing STREAMS
A user process accesses STREAMS using the standard routines o p e n () [see
open(BA_OS)], c l o s e () [see close(BA_OS)], r e a d (), w r i t e (), i o c t l (), p i p e ()
[see pipe(BA_OS)], p u t m s g (), p u t p m s g (), g e t m s g (), g e t p m s g (), and p o l l ().
Refer to the detailed component definitions for these functions for general proper-
ties and errors.

i o c t l () calls are used to perform control functions with the device associated with
the file descriptor fd. The arguments command and arg are passed to the STREAMS
file designated by fd and are interpreted by the stream head. Certain combinations
of these arguments may be passed to a module or driver in the stream.

fd is an open file descriptor that refers to a stream. command determines the control
function to be performed as described below. arg represents additional information
that is needed by this command. The type of arg depends on the command, but it is
generally an integer or a pointer to a command-specific data structure.

Page 1

FINAL COPY
June 15, 1995

File: ba_dev/streams
svid

Page: 610

streams (BA_DEV) streams (BA_DEV)

Since these STREAMS commands are a subset of i o c t l (), they are subject to the
errors described there. In addition to those errors, the call will fail with e r r n o set
to E I N V A L, without processing a control function, if the stream referenced by fd is
linked below a multiplexer, or if command is not a valid value for a stream.

STREAMS modules and drivers can detect errors, sending an error message to the
stream head, thus causing subsequent system calls to fail and set e r r n o to the value
specified in the message. In addition, STREAMS modules and drivers can elect to
fail a particular i o c t l () request alone by sending a negative acknowledgement
message to the stream head. This causes just the pending i o c t l () request to fail
and set e r r n o to the value specified in the message.

i o c t l () calls have the format:

i n t i o c t l (i n t fd, i n t command, i n t arg) ;

The i o c t l () commands applicable to STREAMS and their arguments are described
below. Unless specified, the return value from i o c t l () is 0 on success and – 1 on
failure with e r r n o set as indicated. e r r n o will be set to E I N V A L for any of the fol-
lowing i o c t l () calls if the stream is linked below a multiplexer.

To use i o c t l (), the lines
i n c l u d e < s y s / t y p e s . h >
i n c l u d e < s t r o p t s . h >

must be included in the user program.

Command Functions
The following i o c t l commands, with error values indicated, are applicable to all
STREAMS files:

I _ P U S H Pushes the module whose name is pointed to by arg onto the top of
the current stream, just below the stream head. If the stream is a
pipe, the module will be inserted between the stream heads of both
ends of the pipe. It then calls the open routine of the newly-pushed
module. On failure, e r r n o is set to one of the following values:

E I N V A L Invalid module name.

E N X I O Open routine of new module failed.

E N X I O Hangup received on fildes.

E N O L O A D failure in loading a loadable exec module

I _ P O P Removes the module just below the stream head of the stream
pointed to by fildes. To remove a module from a pipe requires that
the module was pushed on the side it is being removed from. arg
should be 0 in an I _ P O P request. On failure, e r r n o is set to one of
the following values:

E I N V A L No module present in the stream.

E N X I O Hangup received on fildes.

I _ L O O K Retrieves the name of the module just below the stream head of the
stream pointed to by fildes, and places it in a null terminated charac-
ter string pointed at by arg. The buffer pointed to by arg should be
at least F M N A M E S Z+1 bytes long. A # i n c l u d e < s y s / c o n f . h >

Page 2

FINAL COPY
June 15, 1995

File: ba_dev/streams
svid

Page: 611

streams (BA_DEV) streams (BA_DEV)

declaration is required. On failure, e r r n o is set to one of the follow-
ing values:

E I N V A L
No module present in stream.

I _ F L U S H This request flushes all input and/or output queues, depending on
the value of arg. Valid arg values are:

F L U S H R Flush read queues.

F L U S H W Flush write queues.

F L U S H R W Flush read and write queues.

If a pipe or FIFO does not have any modules pushed, the read queue
of the stream head on either end is flushed depending on the value
of arg.

If F L U S H R is set and fildes is a pipe, the read queue for that end of
the pipe is flushed and the write queue for the other end is flushed.
If fildes is a FIFO, both queues are flushed.

If F L U S H W is set and fildes is a pipe and the other end of the pipe
exists, the read queue for the other end of the pipe is flushed and
the write queue for this end is flushed. If fildes is a FIFO, both
queues of the FIFO are flushed.

If F L U S H R W is set, all read queues are flushed, that is, the read queue
for the FIFO and the read queue on both ends of the pipe are
flushed.

Correct flush handling of a pipe or FIFO with modules pushed is
achieved via the p i p e m o d module. This module should be the first
module pushed onto a pipe so that it is at the midpoint of the pipe
itself.

On failure, e r r n o is set to one of the following values:

E A G A I N Unable to allocate buffers for flush message due to
insufficient STREAMS memory resources.

E I N V A L Invalid arg value.

E N X I O Hangup received on fildes.

I _ F L U S H B A N D Flushes a particular band of messages. arg points to a b a n d i n f o
structure that has the following members:

u n s i g n e d c h a r b i _ p r i ;
i n t b i _ f l a g ;

The b i _ f l a g field may be one of F L U S H R , F L U S H W, or F L U S H R W as
described earlier.

I _ S E T S I G Informs the stream head that the user wants the kernel to issue the
S I G P O L L signal [see s i g n a l(BA_OS)] when a particular event has
occurred on the stream associated with fildes. I _ S E T S I G supports
an asynchronous processing capability in STREAMS. The value of
arg is a bitmask that specifies the events for which the user should

Page 3

FINAL COPY
June 15, 1995

File: ba_dev/streams
svid

Page: 612

streams (BA_DEV) streams (BA_DEV)

be signaled. It is the bitwise-OR of any combination, except where
noted, of the following constants:

S _ I N P U T Any message other than an M _ P C P R O T O has arrived
on a stream head read queue. This event is main-
tained for compatibility with prior releases. This is
set even if the message is of zero length.

S _ R D N O R M An ordinary (non-priority) message has arrived on a
stream head read queue. This is set even if the mes-
sage is of zero length.

S _ R D B A N D A priority band message (band > 0) has arrived on a
stream head read queue. This is set even if the mes-
sage is of zero length.

S _ H I P R I A high priority message is present on the stream
head read queue. This is set even if the message is
of zero length.

S _ O U T P U T The write queue just below the stream head is no
longer full. This notifies the user that there is room
on the queue for sending (or writing) data down-
stream.

S _ W R N O R M This event is the same as S _ O U T P U T.

S _ W R B A N D A priority band greater than 0 of a queue down-
stream exists and is writable. This notifies the user
that there is room on the queue for sending (or writ-
ing) priority data downstream.

S _ M S G A STREAMS signal message that contains the S I G -
P O L L signal has reached the front of the stream head
read queue.

S _ E R R O R An M _ E R R O R message has reached the stream head.

S _ H A N G U P An M _ H A N G U P message has reached the stream head.

S _ B A N D U R G When used in conjunction with S _ R D B A N D, S I G U R G
is generated instead of S I G P O L L when a priority
message reaches the front of the stream head read
queue.

A user process may choose to be signaled only of high priority mes-
sages by setting the arg bitmask to the value S _ H I P R I.

Processes that want to receive S I G P O L L signals must explicitly regis-
ter to receive them using I _ S E T S I G. If several processes register to
receive this signal for the same event on the same stream, each
process will be signaled when the event occurs.

If the value of arg is zero, the calling process will be unregistered
and will not receive further S I G P O L L signals. On failure, e r r n o is
set to one of the following values:

Page 4

FINAL COPY
June 15, 1995

File: ba_dev/streams
svid

Page: 613

streams (BA_DEV) streams (BA_DEV)

E I N V A L arg value is invalid or arg is zero and process is not
registered to receive the S I G P O L L signal.

E A G A I N Allocation of a data structure to store the signal
request failed.

I _ G E T S I G Returns the events for which the calling process is currently
registered to be sent a S I G P O L L signal. The events are returned as a
bitmask pointed to by arg, where the events are those specified in
the description of I _ S E T S I G above. On failure, e r r n o is set to one
of the following values:

E I N V A L Process not registered to receive the S I G P O L L signal.

I _ F I N D Compares the names of all modules currently present in the stream
to the name pointed to by arg, and returns 1 if the named module is
present in the stream. It returns 0 if the named module is not
present. On failure, e r r n o is set to one of the following values:

E I N V A L
arg does not contain a valid module name.

I _ P E E K Allows a user to retrieve the information in the first message on the
stream head read queue without taking the message off the queue.
I _ P E E K is analogous to g e t m s g() except that it does not remove the
message from the queue. arg points to a s t r p e e k structure which
contains the following members:

s t r u c t s t r b u f c t l b u f ;
s t r u c t s t r b u f d a t a b u f ;
l o n g f l a g s ;

The m a x l e n field in the c t l b u f and d a t a b u f s t r b u f structures
[see g e t m s g(BA_OS)] must be set to the number of bytes of control
information and/or data information, respectively, to retrieve.
f l a g s may be set to R S _ H I P R I or 0. If R S _ H I P R I is set, I _ P E E K will
look for a high priority message on the stream head read queue.
Otherwise, I _ P E E K will look for the first message on the stream
head read queue.

I _ P E E K returns 1 if a message was retrieved, and returns 0 if no
message was found on the stream head read queue. It does not
wait for a message to arrive. On return, c t l b u f specifies informa-
tion in the control buffer, d a t a b u f specifies information in the data
buffer, and f l a g s contains the value R S _ H I P R I or 0. On failure,
e r r n o is set to the following value:

I _ S R D O P T Sets the read mode [see r e a d(BA_OS)] using the value of the argu-
ment arg. Valid arg values are:

R N O R M Byte-stream mode, the default.

R M S G D Message-discard mode.

Page 5

FINAL COPY
June 15, 1995

File: ba_dev/streams
svid

Page: 614

streams (BA_DEV) streams (BA_DEV)

R M S G N Message-nondiscard mode.

Setting both R M S G D and R M S G N is an error.
R M S G D and R M S G N override R N O R M.

The bitwise inclusive O R of R M S G D and R M S G N will return E I N V A L. The bitwise
inclusive O R of R M S R M and either R M S G D or R M S G N will result in the other flag over-
ridding R N S R M which is the default.

In addition, treatment of control messages by the stream head may be
changed by setting the following flags in arg:

R P R O T N O R M Fail r e a d with E B A D M S G if a control message is at the
front of the stream head read queue. This is the
default behavior.

R P R O T D A T Deliver the control portion of a message as data
when a user issues r e a d.

R P R O T D I S Discard the control portion of a message, delivering
any data portion, when a user issues a r e a d.

On failure, e r r n o is set to the following value:

E I N V A L arg is not one of the above valid values.

E I N V A L Both R M S G D and R M S G N are set.

I _ G R D O P T Returns the current read mode setting in an i n t pointed to by the
argument arg. Read modes are described in r e a d(2).

I _ N R E A D Counts the number of data bytes in data blocks in the first message
on the stream head read queue, and places this value in the location
pointed to by arg. The return value for the command is the number
of messages on the stream head read queue. For example, if zero is
returned in arg, but the i o c t l return value is greater than zero, this
indicates that a zero-length message is next on the queue.

I _ F D I N S E R T Creates a message from user specified buffer(s), adds information
about another stream and sends the message downstream. The
message contains a control part and an optional data part. The data
and control parts to be sent are distinguished by placement in
separate buffers, as described below.

arg points to a s t r f d i n s e r t structure which contains the following
members:

s t r u c t s t r b u f c t l b u f ;
s t r u c t s t r b u f d a t a b u f ;
l o n g f l a g s ;
i n t f i l d e s ;
i n t o f f s e t ;

The l e n field in the c t l b u f s t r b u f structure [see p u t m s g(BA_OS)]
must be set to the size of a pointer plus the number of bytes of con-
trol information to be sent with the message. fildes in the s t r f d i n -
s e r t structure specifies the file descriptor of the other stream.
o f f s e t, which must be word-aligned, specifies the number of bytes

Page 6

FINAL COPY
June 15, 1995

File: ba_dev/streams
svid

Page: 615

streams (BA_DEV) streams (BA_DEV)

beyond the beginning of the control buffer where I _ F D I N S E R T will
store a pointer. This pointer will be the address of the read queue
structure of the driver for the stream corresponding to f i l d e s in
the s t r f d i n s e r t structure. The l e n field in the d a t a b u f s t r b u f
structure must be set to the number of bytes of data information to
be sent with the message or zero if no data part is to be sent.

f l a g s specifies the type of message to be created. An ordinary
(non-priority) message is created if f l a g s is set to 0, a high priority
message is created if f l a g s is set to R S _ H I P R I. For normal mes-
sages, I _ F D I N S E R T will block if the stream write queue is full due to
internal flow control conditions. For high priority messages,
I _ F D I N S E R T does not block on this condition. For normal mes-
sages, I _ F D I N S E R T does not block when the write queue is full and
O _ N O N B L O C K is set. Instead, it fails and sets e r r n o to E A G A I N.

I _ F D I N S E R T also blocks, unless prevented by lack of internal
resources, waiting for the availability of message blocks, regardless
of priority or whether O _ N O N B L O C K has been specified. No partial
message is sent. On failure, e r r n o is set to one of the following
values:

E A G A I N A non-priority message was specified, the O _ N O N B L O C K
flag is set, and the stream write queue is full due to inter-
nal flow control conditions.

E A G A I N Buffers could not be allocated for the message that was to
be created due to insufficient STREAMS memory resources.

E I N V A L One of the following: f i l d e s in the s t r f d i n s e r t struc-
ture is not a valid, open stream file descriptor; the size of a
pointer plus o f f s e t is greater than the l e n field for the
buffer specified through c t l p t r; o f f s e t does not specify
a properly-aligned location in the data buffer; an
undefined value is stored in f l a g s.

E N X I O Hangup received on f i l d e s of the i o c t l call or f i l d e s in
the s t r f d i n s e r t structure.

E R A N G E The l e n field for the buffer specified through d a t a b u f
does not fall within the range specified by the maximum
and minimum packet sizes of the topmost stream module,
or the l e n field for the buffer specified through d a t a b u f is
larger than the maximum configured size of the data part
of a message, or the l e n field for the buffer specified
through c t l b u f is larger than the maximum configured
size of the control part of a message.

I _ F D I N S E R T can also fail if an error message was received by the
stream head of the stream corresponding to f i l d e s in the s t r f d -
i n s e r t structure. In this case, e r r n o will be set to the value in the
message.

Page 7

FINAL COPY
June 15, 1995

File: ba_dev/streams
svid

Page: 616

streams (BA_DEV) streams (BA_DEV)

An I _ S T R can also fail while waiting for an acknowledgement if a
message indicating an error or a hangup is received at the stream
head. In addition, an error code can be returned in the positive or
negative acknowledgement message, in the event the ioctl com-
mand sent downstream fails. For these cases, I _ S T R will fail with
e r r n o set to the value in the message.

I _ S W R O P T Sets the write mode using the value of the argument arg. Legal bit
settings for arg are:

S N D Z E R O Send a zero-length message downstream when a
write of 0 bytes occurs on pipes and FIFOs.

To not send a zero-length message when a write of 0 bytes occurs,
this bit must not be set in arg.

On failure, e r r n o may be set to the following value:

E I N V A L arg is not the above valid value.

I _ G W R O P T Returns the current write mode setting, as described above, in the
i n t that is pointed to by the argument arg.

I _ S E N D F D Requests the stream associated with fildes to send a message, con-
taining a file pointer, to the stream head at the other end of a stream
pipe. The file pointer corresponds to arg, which must be an open
file descriptor.

I _ S E N D F D converts arg into the corresponding system file pointer.
It allocates a message block and inserts the file pointer in the block.
The user ID and group ID associated with the sending process are
also inserted. This message is placed directly on the read queue of
the stream head at the other end of the stream pipe to which it is
connected. On failure, e r r n o is set to one of the following values:

E A G A I N The sending stream is unable to allocate a message
block to contain the file pointer.

E A G A I N The read queue of the receiving stream head is full
and cannot accept the message sent by I _ S E N D F D.

E B A D F arg is not a valid, open file descriptor.

E I N V A L fildes is not connected to a stream pipe.

E N X I O Hangup received on fildes.

I _ R E C V F D Retrieves the file descriptor associated with the message sent by an
I _ S E N D F D i o c t l over a stream pipe. arg is a pointer to a data
buffer large enough to hold an s t r r e c v f d data structure containing
the following members:

i n t f d ;
u i d _ t u i d ;
g i d _ t g i d ;
c h a r f i l l [8] ;

Page 9

FINAL COPY
June 15, 1995

File: ba_dev/streams
svid

Page: 618

streams (BA_DEV) streams (BA_DEV)

f d is an integer file descriptor. u i d and g i d are the user ID and
group ID, respectively, of the sending stream.

If O _ N O N B L O C K are clear [see o p e n(BA_OS)] I _ R E C V F D will block
until a message is present at the stream head. If O _ N O N B L O C K is set,
I _ R E C V F D will fail with e r r n o set to E A G A I N if no message is
present at the stream head.

If the message at the stream head is a message sent by an I _ S E N D F D,
a new user file descriptor is allocated for the file pointer contained
in the message. The new file descriptor is placed in the f d field of
the s t r r e c v f d structure. The structure is copied into the user data
buffer pointed to by arg.

On failure, e r r n o is set to one of the following values:

E A G A I N A message is not present at the stream head read
queue, and the O _ N O N B L O C K flag is set.

E B A D M S G The message at the stream head read queue is not a
message containing a passed file descriptor.

E F A U L T arg points outside the allocated address space.

E M F I L E N O F I L E S file descriptors are currently open.

E N X I O Hangup received on fildes.

E O V E R F L O W u i d or g i d is too large to be stored in the structure
pointed to by arg.

I _ L I S T Allows the user to list all the module names on the stream, up to
and including the topmost driver name. If arg is N U L L, the return
value is the number of modules, including the driver, that are on
the stream pointed to by fildes. This allows the user to allocate
enough space for the module names. If arg is non-N U L L, it should
point to an s t r _ l i s t structure that has the following members:

i n t s l _ n m o d s ;
s t r u c t s t r _ m l i s t * s l _ m o d l i s t ;

The s t r _ m l i s t structure has the following member:

c h a r l _ n a m e [F M N A M E S Z + 1] ;

s l _ n m o d s indicates the number of entries the user has allocated in
the array. On success, the return value is 0, s l _ m o d l i s t contains
the list of module names, and the number of entries that have been
filled into the s l _ m o d l i s t array is found in the s l _ n m o d s member.
The number includes the number of modules, including the driver.
On failure, e r r n o may be set to one of the following values:

E I N V A L The s l _ n m o d s member is less than 1.

E A G A I N Unable to allocate buffers

Page 10

FINAL COPY
June 15, 1995

File: ba_dev/streams
svid

Page: 619

streams (BA_DEV) streams (BA_DEV)

I _ A T M A R K Allows the user to see if the current message on the stream head
read queue is ‘‘marked’’ by some module downstream. arg deter-
mines how the checking is done when there may be multiple
marked messages on the stream head read queue. The bitwise-OR
of these flags is allowed. It may take the following values:

A N Y M A R K Check if the message is marked.

L A S T M A R K Check if the message is the last one marked on the
queue.

If both A N Y M A R K and L A S T M A R K are set, A N Y M A R K supersedes L A S T -
M A R K.

The return value is 1 if the mark condition is satisfied and 0 other-
wise. On failure, e r r n o may be set to the following value:

E I N V A L A value other than (A N Y M A R K | L A S T M A R K) is set in
arg.

I _ C K B A N D Check if the message of a given priority band exists on the stream
head read queue. This returns 1 if a message of a given priority
exists, or –1 on error. arg should be an integer containing the value
of the priority band in question. On failure, e r r n o may be set to the
following value:

E I N V A L Invalid arg value.

I _ G E T B A N D Returns the priority band of the first message on the stream head
read queue in the integer referenced by arg. On failure, e r r n o may
be set to the following value:

E N O D A T A No message on the stream head read queue.

I _ C A N P U T Check if a certain band is writable. arg is set to the priority band in
question. The return value is 0 if the priority band arg is flow con-
trolled, 1 if the band is writable, or –1 on error. On failure, e r r n o
may be set to the following value:

E I N V A L Invalid arg value.

I _ S E T C L T I M E Allows the user to set the time the stream head will delay when a
stream is closing and there is data on the write queues. Before clos-
ing each module and driver, the stream head will delay for the
specified amount of time to allow the data to drain. If, after the
delay, data is still present, data will be flushed. arg is a pointer to
the number of milliseconds to delay, rounded up to the nearest
valid value on the system. The default is fifteen seconds. On
failure, e r r n o may be set to the following value:

E I N V A L Invalid arg value.

I _ G E T C L T I M E Returns the close time delay in the long pointed by arg.

The following four commands are used for connecting and disconnecting multi-
plexed STREAMS configurations.

Page 11

FINAL COPY
June 15, 1995

File: ba_dev/streams
svid

Page: 620

streams (BA_DEV) streams (BA_DEV)

E I N V A L arg is an invalid multiplexor ID number or fildes is
not the stream on which the I _ L I N K that returned
arg was performed.

An I _ U N L I N K can also fail while waiting for the multiplexing driver
to acknowledge the link request, if a message indicating an error or
a hangup is received at the stream head of fildes. In addition, an
error code can be returned in the positive or negative acknowledge-
ment message. For these cases, I _ U N L I N K will fail with e r r n o set to
the value in the message.

I _ P L I N K Connects two streams, where fildes is the file descriptor of the
stream connected to the multiplexing driver, and arg is the file
descriptor of the stream connected to another driver. The stream
designated by arg gets connected via a persistent link below the
multiplexing driver. I _ P L I N K requires the multiplexing driver to
send an acknowledgement message to the stream head regarding
the linking operation. This call creates a persistent link which can
exist even if the file descriptor fildes associated with the upper
stream to the multiplexing driver is closed. This call returns a mul-
tiplexor ID number (an identifier that may be used to disconnect the
multiplexor, see I _ P U N L I N K) on success, and a –1 on failure. On
failure, e r r n o may be set to one of the following values:

E N X I O Hangup received on fildes.

E T I M E Time out before acknowledgement message was
received at the stream head.

E A G A I N Unable to allocate STREAMS storage to perform the
I _ P L I N K.

E B A D F arg is not a valid, open file descriptor.

E I N V A L fildes does not support multiplexing.

E I N V A L arg is not a stream or is already linked under a mul-
tiplexor.

E I N V A L The specified link operation would cause a ‘‘cycle’’
in the resulting configuration; that is, if a given
stream head is linked into a multiplexing
configuration in more than one place.

An I _ P L I N K can also fail while waiting for the multiplexing driver
to acknowledge the link request, if a message indicating an error on
a hangup is received at the stream head of fildes. In addition, an
error code can be returned in the positive or negative acknowledge-
ment message. For these cases, I _ P L I N K will fail with e r r n o set to
the value in the message.

I _ P U N L I N K Disconnects the two streams specified by fildes and arg that are con-
nected with a persistent link. fildes is the file descriptor of the
stream connected to the multiplexing driver. arg is the multiplexor
ID number that was returned by I _ P L I N K when a stream was linked
below the multiplexing driver. If arg is M U X I D _ A L L then all streams

Page 13

FINAL COPY
June 15, 1995

File: ba_dev/streams
svid

Page: 622

streams (BA_DEV) streams (BA_DEV)

which are persistent links to fildes are disconnected. As in I _ P L I N K,
this command requires the multiplexing driver to acknowledge the
unlink. On failure, e r r n o may be set to one of the following values:

E N X I O Hangup received on fildes.

E T I M E Time out before acknowledgement message was
received at the stream head.

E A G A I N Unable to allocate buffers for the acknowledgement
message.

E I N V A L Invalid multiplexor ID number.

E I N V A L fildes is the file descriptor of a pipe or FIFO.

An I _ P U N L I N K can also fail while waiting for the multiplexing
driver to acknowledge the link request if a message indicating an
error or a hangup is received at the stream head of fildes. In addi-
tion, an error code can be returned in the positive or negative ack-
nowledgement message. For these cases, I _ P U N L I N K will fail with
e r r n o set to the value.

Return Values
Unless specified otherwise above, i o c t l returns 0 on success and –1 on failure and
sets e r r n o as indicated in the message.

SEE ALSO
c l o s e(BA_OS), f c n t l(BA_OS), g e t m s g(BA_OS), m o d a d m i n(AS_CMD),
m o d l o a d(KE_OS), o p e n(BA_OS), p o l l(BA_OS), p u t m s g(BA_OS), r e a d(BA_OS),
s i g n a l(BA_OS),

LEVEL
Level 1.

Page 14

FINAL COPY
June 15, 1995

File: ba_dev/streams
svid

Page: 623

termio (BA_DEV) termio (BA_DEV)

NAME
termio: ioctl – general terminal interface

SYNOPSIS
#include <termio.h>

ioctl(int fildes, int request, struct termio *arg);

ioctl(int fildes, int request, int arg);

#include <termios.h>

ioctl(int fildes, int request, struct termios *arg);

DESCRIPTION
System V supports a general interface for asynchronous communications ports that
is hardware-independent. The user interface to this functionality is via function
calls (the preferred interface) described in termios(BA_OS) or ioctl() commands
described in this section. This section also discusses the common features of the ter-
minal subsystem which are relevant with both user interfaces.

When a terminal file is opened, it normally causes the process to wait until a con-
nection is established. In practice, users’ programs seldom open terminal files; they
are opened by the system and become a user’s standard input, output, and error
files. The very first terminal file opened by the session leader, which is not already
associated with a session, becomes the control-terminal for that session. The control
terminal plays a special role in handling quit and interrupt signals, as discussed
below. The control terminal is inherited by a child process during a fork() [see
fork(BA_OS)]. A process can break this association by changing its session using
setsid() [see setsid(BA_OS)].

A terminal associated with one of these files ordinarily operates in full-duplex
mode. Characters may be typed at any time, even while output is occurring, and
are only lost when the character input buffers of the system become completely full,
which is rare (e.g., if the number of characters in the line discipline buffer exceeds
{MAX_CANON} and IMAXBEL [see below] is not set), or when data on the driver’s
input queue exceeds {MAX_INPUT} input characters that have not yet been read
by some program. When the input limit is reached, all the characters saved in the
buffer up to that point are thrown away without notice.

Session Management (Job Control)
A control terminal will distinguish one of the process groups in the session associ-
ated with it to be the foreground process group. All other process groups in the
session are designated as background process groups. This foreground process
group plays a special role in handling signal-generating input characters, as dis-
cussed below. By default, when a controlling terminal is allocated, the controlling
process’ process group is assigned as foreground process group.

Background process groups in the controlling process’ session are subject to a job
control line discipline when they attempt to access their controlling terminal. Typi-
cally, they will be sent a signal that will cause them to stop, unless they have made
other arrangements. An exception is made for members of orphaned process
group, process groups which do not have a member with a parent in another pro-
cess group that is in the same session and therefore shares the same controlling ter-
minal. When these processes attempt to access their controlling terminal, they will

Page 1

FINAL COPY
June 15, 1995

File: ba_dev/termio
svid

Page: 624

termio (BA_DEV) termio (BA_DEV)

return errors, since there is no process to continue them if they should stop.

If a member of a background process group attempts to read its controlling termi-
nal, its process group will be sent a SIGTTIN signal, which will normally cause the
members of that process group to stop. If, however, the process is ignoring or hold-
ing SIGTTIN, or is a member of an orphaned process group, the read will fail with
errno set to EIO, and no signal will be sent.

If a member of a background process group attempts to write its controlling termi-
nal and the TOSTOP bit is set in the c_lflag field, its process group will be sent a
SIGTTOU signal, which will normally cause the members of that process group to
stop. If, however, the process is ignoring or holding SIGTTOU, the write will
succeed. If the process is not ignoring or holding SIGTTOU and is a member of an
orphaned process group, the write will fail with errno set to EIO, and no signal will
be sent.

If TOSTOP is set and a member of a background process group attempts to
ioctl() its controlling terminal, and that ioctl() will modify terminal parame-
ters (e.g., TCSETA, TCSETAW, TCSETAF or TIOCSPGRP), its process group will be
sent a SIGTTOU signal, which will normally cause the members of that process
group to stop. If, however, the process is ignoring or holding SIGTTOU, the
ioctl() will succeed. If the process is not ignoring or holding SIGTTOU and is a
member of an orphaned process group, the write will fail with errno set to EIO, and
no signal will be sent.

Canonical mode input processing
Normally, terminal input is processed in units of lines. A line is delimited by a
newline (ASCII LF) character, an end-of-file (ASCII EOT) character, or an end-of-
line character. This means that a program attempting to read will be suspended
until an entire line has been typed. Also, no matter how many characters are
requested in the read call, at most one line will be returned. It is not necessary,
however, to read a whole line at once; any number of characters may be requested
in a read, even one, without losing information.

During input, erase and kill processing is normally done. The ERASE character (by
default, the # character) erases the last character typed. The WERASE character
(CRTL-W) erases the last ‘‘word’’ typed in the current input line (but not any
preceding spaces or tabs). A ‘‘word’’ is defined as a sequence of non-blank charac-
ters, with tabs counted as blanks. Neither ERASE nor WERASE will erase beyond
the beginning of the line. The KILL character (by default, the @ character) kills
(deletes) the entire input line, and optionally outputs a newline character. All these
characters operate on a key stroke basis, independent of any backspacing or tabbing
that may have been done. The REPRINT character (CTRL-R) prints a newline fol-
lowed by all characters that have not been read. Reprinting also occurs automati-
cally if characters that would normally be erased from the screen are fouled by pro-
gram output. The characters are reprinted as if they were being echoed; conse-
quencely, if ECHO is not set, they are not printed.

The ERASE and KILL characters may be entered literally by preceding them with
the escape character (\). In this case, the escape character is not read. The erase
and kill characters may be changed.

Page 2

FINAL COPY
June 15, 1995

File: ba_dev/termio
svid

Page: 625

termio (BA_DEV) termio (BA_DEV)

Non-canonical mode input processing
In non-canonical mode input processing, input characters are not assembled into
lines, and erase and kill processing does not occur. The MIN and TIME values are
used to determine how to process the characters received.

MIN represents the minimum number of characters that should be received when
the read is satisfied (i.e., when the characters are returned to the user). TIME is a
timer of 0.10-second granularity that is used to timeout bursty and short-term data
transmissions. The four possible values for MIN and TIME and their interactions
are described below.

Case A: MIN > 0, TIME > 0
In this case, TIME serves as an intercharacter timer and is activated after the
first character is received. Since it is an intercharacter timer, it is reset after a
character is received. The interaction between MIN and TIME is as follows:
as soon as one character is received, the intercharacter timer is started. If
MIN characters are received before the intercharacter timer expires (note that
the timer is reset upon receipt of each character), the read is satisfied. If the
timer expires before MIN characters are received, the characters received to
that point are returned to the user. Note that if TIME expires, at least one
character will be returned because the timer would not have been enabled
unless a character was received. In this case (MIN > 0, TIME > 0), the read
sleeps until the MIN and TIME mechanisms are activated by the receipt of
the first character. If the number of characters read is less than the number
of characters available, the timer is not reactivated and the subsequent read
is satisfied immediately.

Case B: MIN > 0, TIME = 0
In this case, since the value of TIME is zero, the timer plays no role and only
MIN is significant. A pending read is not satisfied until MIN characters are
received (the pending read sleeps until MIN characters are received). A
program that uses this case to read record based terminal I/O may block
indefinitely in the read operation.

Case C: MIN = 0, TIME > 0
In this case, since MIN = 0, TIME no longer represents an intercharacter
timer: it now serves as a read timer that is activated as soon as a read is
done. A read is satisfied as soon as a single character is received or the read
timer expires. Note that, in this case, if the timer expires, no character is
returned. If the timer does not expire, the only way the read can be satisfied
is if a character is received. In this case, the read will not block indefinitely
waiting for a character; if no character is received within TIME*.10 seconds
after the read is initiated, the read returns with zero characters.

Case D: MIN = 0, TIME = 0
In this case, return is immediate. The minimum of either the number of
characters requested or the number of characters currently available is
returned without waiting for more characters to be input.

Comparison of the different cases of MIN, TIME interaction
Some points to note about MIN and TIME:

Page 3

FINAL COPY
June 15, 1995

File: ba_dev/termio
svid

Page: 626

termio (BA_DEV) termio (BA_DEV)

1. In the following explanations, note that the interactions of MIN and TIME
are not symmetric. For example, when MIN > 0 and TIME = 0, TIME has no
effect. However, in the opposite case, where MIN = 0 and TIME > 0, both
MIN and TIME play a role in that MIN is satisfied with the receipt of a single
character.

2. Also note that in case A (MIN > 0, TIME > 0), TIME represents an interchar-
acter timer, whereas in case C (TIME = 0, TIME > 0), TIME represents a read
timer.

These two points highlight the dual purpose of the MIN/TIME feature. Cases A and
B, where MIN > 0, exist to handle burst mode activity (e.g., file transfer programs),
where a program would like to process at least MIN characters at a time. In case A,
the intercharacter timer is activated by a user as a safety measure; in case B, the
timer is turned off.

Cases C and D exist to handle single character, timed transfers. These cases are
readily adaptable to screen-based applications that need to know if a character is
present in the input queue before refreshing the screen. In case C, the read is timed,
whereas in case D, it is not.

Another important note is that MIN is always just a minimum. It does not denote a
record length. For example, if a program does a read of 20 bytes, MIN is 10, and 25
characters are present, then 20 characters will be returned to the user.

Writing characters
When one or more characters are written, they are transmitted to the terminal as
soon as previously written characters have finished typing. Input characters are
echoed as they are typed if echoing has been enabled. If a process produces charac-
ters more rapidly than they can be typed, it will be suspended when its output
queue exceeds some limit. When the queue is drained down to some threshold, the
program is resumed.

Special characters
Certain characters have special functions on input. These functions and their
default character values are summarized as follows:

INTR (Rubout or ASCII DEL) generates a SIGINT signal, which is sent to all
processes with the associated control terminal. Normally, each such
process is forced to terminate, but arrangements may be made either to
ignore the signal or to receive a trap to an agreed upon location. [See
signal(BA_OS).]

QUIT (CTRL- or ASCII FS) generates a SIGQUIT signal. Its treatment is
identical to the interrupt signal except that, unless a receiving process
has made other arrangements, it will not only be terminated but a core
image file (called core) will be created in the current working direc-
tory.

ERASE (#) erases the preceding character. It does not erase beyond the start of
a line, as delimited by a NL, EOF, EOL, or EOL2 character.

Page 4

FINAL COPY
June 15, 1995

File: ba_dev/termio
svid

Page: 627

termio (BA_DEV) termio (BA_DEV)

Input modes
The c_iflag field describes the basic terminal input control:

IGNBRK Ignore break condition.
If IGNBRK is set, a break condition (a character framing error with data
all zeros) detected on input is ignored, that is, not put on the input
queue and therefore not read by any process.

BRKINT Signal interrupt on break.
If IGNBRK is not set and BRKINT is set, the break condition shall flush
the input and output queues and if the terminal is the controlling ter-
minal of a foreground process group, the break condition generates a
single SIGINT signal to that foreground process group. If neither
IGNBRK nor BRKINT is set, a break condition is read as a single ASCII
NULL character (´\0´), or if PARMRK is set, as ´\377´, ´\0´, ´\0´.

IGNPAR Ignore characters with parity errors.
If IGNPAR is set, a byte with framing or parity errors (other than break)
is ignored.

PARMRK Mark parity errors.
If PARMRK is set, and IGNPAR is not set, a byte with a framing or parity
error (other than break) is given to the application as the three-
character sequence: ´\377´, ´\0´, X, where X is the data of the byte
received in error. To avoid ambiguity in this case, if ISTRIP is not
set, a valid character of ´\377´ is given to the application as ´\377´,
´\377´. If neither IGNPAR nor PARMRK is set, a framing or parity
error (other than break) is given to the application as a single ASCII
NULL character (´\0´).

INPCK Enable input parity check.
If INPCK is set, input parity checking is enabled. If INPCK is not set,
input parity checking is disabled. This allows output parity generation
without input parity errors. Note that whether input parity checking is
enabled or disabled is independent of whether parity detection is
enabled or disabled. If parity detection is enabled but input parity
checking is disabled, the hardware to which the terminal is connected
will recognize the parity bit, but the terminal special file will not check
whether this is set correctly or not.

ISTRIP Strip character.
If ISTRIP is set, valid input characters are first stripped to seven bits,
otherwise all eight bits are processed.

INLCR Map NL to CR on input.
If INLCR is set, a received NL character is translated into a CR character.

IGNCR Ignore CR.
If IGNCR is set, a received CR character is ignored (not read).

ICRNL Map CR to NL on input.
If ICRNL is set, a received CR character is translated into a NL character.

Page 7

FINAL COPY
June 15, 1995

File: ba_dev/termio
svid

Page: 630

termio (BA_DEV) termio (BA_DEV)

IUCLC Map upper-case to lower-case on input.
If IUCLC is set, a received upper case, alphabetic character is translated
into the corresponding lower case character.

IXON Enable start/stop output control.
If IXON is set, start/stop output control is enabled. A received STOP
character suspends output and a received START character restarts
output. The STOP and START characters will not be read, but will
merely perform flow control functions.

IXANY Enable any character to restart output.
If IXANY is set, any input character restarts output that has been
suspended.

IXOFF Enable start/stop input control.
If IXOFF is set, the system transmits a STOP character when the input
queue is nearly full, and a START character when enough input has
been read so that the input queue is nearly empty again.

IMAXBEL Echo BEL on input line too long.
If IMAXBEL is set, the ASCII BEL character is echoed if the input stream
overflows. Further input is not stored, but any input already present
in the input stream is not disturbed. If IMAXBEL is not set, no BEL
character is echoed, and all input present in the input queue is dis-
carded if the input stream overflows.

The initial input control value is BRKINT, ICRNL, IXON, ISTRIP.

Output modes
The c_oflag field specifies the system treatment of output:

OPOST Post-process output.
If OPOST is set, output characters are post-processed as indicated by
the remaining flags; otherwise, characters are transmitted without
change.

OLCUC Map lower case to upper on output.
If OLCUC is set, a lower case alphabetic character is transmitted as the
corresponding upper case character. This function is often used in con-
junction with IUCLC.

ONLCR Map NL to CR-NL on output.
If ONLCR is set, the NL character is transmitted as the CR-NL character
pair.

OCRNL Map CR to NL on output.
If OCRNL is set, the CR character is transmitted as the NL character.

ONOCR No CR output at column 0.
If ONOCR is set, no CR character is transmitted when at column 0 (first
position).

ONLRET NL performs CR function.
If ONLRET is set, the NL character is assumed to do the carriage-return
function; the column pointer is set to 0 and the delays specified for CR
are used. Otherwise, the NL character is assumed to do just the

Page 8

FINAL COPY
June 15, 1995

File: ba_dev/termio
svid

Page: 631

termio (BA_DEV) termio (BA_DEV)

linefeed function; the column pointer remains unchanged. The column
pointer is also set to 0 if the CR character is actually transmitted.

OFILL Use fill characters for delay.
If OFILL is set, fill characters are transmitted for delay instead of a
timed delay. This is useful for high baud rate terminals that need only
a minimal delay.

OFDEL Fill is DEL, else NULL.
If OFDEL is set, the fill character is DEL; otherwise it is NULL.

The delay bits specify how long transmission stops to allow for mechanical or other
movement when certain characters are sent to the terminal. In all cases, a value of 0
indicates no delay.

If a form-feed or vertical-tab delay is specified, it lasts for about 2 seconds.

The actual delays depend on line speed and system load.

NLDLY Newline delay lasts about 0.10 seconds.
If ONLRET is set, the carriage-return delays are used instead of the new-
line delays.

If OFILL is set, two fill characters are transmitted.

Select new-line delays.
NL0 New-Line character type 0
NL1 New-Line character type 1

CRDLY Carriage-return delay type 1 is dependent on the current column posi-
tion, type 2 is about 0.10 seconds, and type 3 is about 0.15 seconds.

If OFILL is set, delay type 1 transmits two fill characters, and type 2
transmits four fill characters.

Select carriage-return delays:
CR0 Carriage-return delay type 0
CR1 Carriage-return delay type 1
CR2 Carriage-return delay type 2
CR3 Carriage-return delay type 3

TABDLY Horizontal-tab delay type 1 is dependent on the current column posi-
tion. Type 2 is about 0.10 seconds. Type 3 specifies that tabs are to be
expanded into spaces.

If OFILL is set, two fill characters are transmitted for any delay.

Select horizontal tab delays or tab expansion:
TAB0 Horizontal-tab delay type 0
TAB1 Horizontal-tab delay type 1
TAB2 Horizontal-tab delay type 2
TAB3 Expand tabs to spaces.
XTABS Expand tabs to spaces.

BSDLY Backspace delay lasts about 0.05 seconds.

Page 9

FINAL COPY
June 15, 1995

File: ba_dev/termio
svid

Page: 632

termio (BA_DEV) termio (BA_DEV)

If OFILL is set, one fill character is transmitted.

Select backspace delays:
BS0 Backspace delay type 0
BS1 Backspace delay type 1

VTDLY Vertical-tab delay lasts about 2.0 seconds.

Select vertical tab delays:
VT0 Vertical-tab delay type 0
VT1 Vertical-tab delay type 1

FFDLY Form-feed delay lasts about 2.0 seconds.

Select form feed delays:
FF0 Form-feed delay type 0
FF1 Form-feed delay type 1

The initial output control value is OPOST, ONLCR, TAB3.

Control modes
The c_cflag field describes the hardware control of the terminal:

CBAUD The CBAUD bits specify the baud rate. The zero baud rate, B0, is used
to hang up the connection. If B0 is specified, the data-terminal-ready
signal is not asserted. Normally, this disconnects the line. If the
CIBAUD bits are not zero, they specify the input baud rate, with the
CBAUD bits specifying the output baud rate; otherwise, the output and
input baud rates are both specified by the CBAUD bits. The values for
the CIBAUD bits are the same as the values for the CBAUD bits, shifted
left IBSHIFT bits. For any particular hardware, impossible speed
changes are ignored.

Baud rate:
B0 Hang up
B50 50 baud
B75 75 baud
B110 110 baud
B134 134 baud
B150 150 baud
B200 200 baud
B300 300 baud
B600 600 baud
B1200 1200 baud
B1800 1800 baud
B2400 2400 baud
B4800 4800 baud
B9600 9600 baud
B19200 19200 baud
EXTA External A
EXTB External B

Page 10

FINAL COPY
June 15, 1995

File: ba_dev/termio
svid

Page: 633

termio (BA_DEV) termio (BA_DEV)

CSIZE The CSIZE bits specify the character size in bits for both transmission
and reception. This size does not include the parity bit, if any.

Character size:
CS5 5 bits
CS6 6 bits
CS7 7 bits
CS8 8 bits

CSTOPB Send two stop bits, else one
If CSTOPB is set, two stop bits are used; otherwise, one stop bit is used.
For example, at 110 baud, two stops bits are required.

CREAD Enable receiver
If CREAD is set, the receiver is enabled. Otherwise, no characters are
received.

PARENB Parity enable
If PARENB is set, parity generation and detection is enabled, and a par-
ity bit is added to each character.

PARODD Odd parity, else even
If parity is enabled, the PARODD flag specifies odd parity if set; other-
wise, even parity is used.

HUPCL Hang up on last close
If HUPCL is set, the line is disconnected when the last process with the
line open closes it or terminates. That is, the data-terminal-ready signal
is not asserted.

CLOCAL Local line, else dial-up
If CLOCAL is set, then the effect of setting the baud rate to 0 is driver-
dependent. If CLOCAL is set, the line is assumed to be a local, direct
connection with no modem control; otherwise, modem control is
assumed.

CIBAUD Input baud rate, if different from output rate.

PAREXT Extended parity for mark and space parity.

The initial hardware control value after open is CS8, CREAD, HUPCL.

Local modes and line discipline
The c_lflag field of the argument structure is used by the line discipline to con-
trol terminal functions. The basic line discipline (0) provides the following:

ISIG Enable signals.
If ISIG is set, each input character is checked against the special con-
trol characters INTR, QUIT, and SUSP, STATUS, and DSUSP. If an
input character matches one of these control characters, the function
associated with that character is performed. If ISIG is not set, no
checking is done. Thus, these special input functions are possible only
if ISIG is set.

Page 11

FINAL COPY
June 15, 1995

File: ba_dev/termio
svid

Page: 634

termio (BA_DEV) termio (BA_DEV)

ICANON Canonical input (erase and kill processing).
If ICANON is set, canonical processing is enabled. This enables the
erase and kill edit functions, and the assembly of input characters into
lines delimited by NL, EOF, EOL, and EOL2. If ICANON is not set, read
requests are satisfied directly from the input queue. A read is not
satisfied until at least MIN characters have been received or the timeout
value TIME has expired between characters. This allows fast bursts of
input to be read efficiently while still allowing single character input.
The time value represents tenths of seconds.

XCASE Canonical upper/lower presentation.
If XCASE is set, and if ICANON is set, an upper case letter is accepted on
input by preceding it with a \ character, and is output preceded by a
\ character. In this mode, the following escape sequences are gen-
erated on output and accepted on input:

for: use:
` \´
 \!
˜ \ˆ
{ \(
} \)
\ \\

For example, A is input as \a, \n as \\n, and \N as \\\n.

ECHO Enable echo.
If ECHO is set, characters are echoed as received.

When ICANON is set, the following echo functions are possible:

ECHOE Echo erase character as BS-SP-BS.
If ECHO and ECHOE are set, and ECHOPRT is not set, the ERASE and
WERASE characters are echoed as one or more ASCII BS SP BS,
which clears the last character(s) from a CRT screen.

ECHOK Echo NL after kill character.
If ECHOK is set, and ECHOKE is not set, the NL character is echoed after
the kill character to emphasize that the line is deleted. Note that an
escape character (\) or an LNEXT character preceding the erase or kill
character removes any special function.

ECHONL Echo NL.
If ECHONL is set, the NL character is echoed even if ECHO is not set.
This is useful for terminals set to local echo (so called half-duplex).

NOFLSH Disable flush after interrupt or quit.
If NOFLSH is set, the normal flush of the input and output queues asso-
ciated with the INTR, QUIT, and SUSP characters is not done.

TOSTOP Send SIGTTOU for background output.
If TOSTOP is set, the signal SIGTTOU is sent to a process that tries to
write to its controlling terminal if it is not in the foreground process
group for that terminal. This signal normally stops the process.

Page 12

FINAL COPY
June 15, 1995

File: ba_dev/termio
svid

Page: 635

termio (BA_DEV) termio (BA_DEV)

ioctls
The ioctl()s supported by devices and STREAMS modules providing the
termios interface are listed below. Some calls may not be supported by all devices
or modules. The functionality provided by these calls is also available through the
preferred function call interface specified on termios(BA_OS).

TCGETS The argument is a pointer to a termios structure. The current
terminal parameters are fetched and stored into that structure.

TCSETS The argument is a pointer to a termios structure. The current
terminal parameters are set from the values stored in that struc-
ture. The change is immediate.

TCSETSW The argument is a pointer to a termios structure. The current
terminal parameters are set from the values stored in that struc-
ture. The change occurs after all characters queued for output
have been transmitted. This form should be used when changing
parameters that affect output.

TCSETSF The argument is a pointer to a termios structure. The current
terminal parameters are set from the values stored in that struc-
ture. The change occurs after all characters queued for output
have been transmitted; all characters queued for input are dis-
carded and then the change occurs.

TCGETA The argument is a pointer to a termio structure. The current ter-
minal parameters are fetched, and those parameters that can be
stored in a termio structure are stored into that structure.

TCSETA The argument is a pointer to a termio structure. Those terminal
parameters that can be stored in a termio structure are set from
the values stored in that structure. The change is immediate.

TCSETAW The argument is a pointer to a termio structure. Those terminal
parameters that can be stored in a termio structure are set from
the values stored in that structure. The change occurs after all
characters queued for output have been transmitted. This form
should be used when changing parameters that affect output.

TCSETAF The argument is a pointer to a termio structure. Those terminal
parameters that can be stored in a termio structure are set from
the values stored in that structure. The change occurs after all
characters queued for output have been transmitted; all characters
queued for input are discarded and then the change occurs.

TCSBRK The argument is an int value. Wait for the output to drain. If
the argument is 0, then send a break (zero valued bits for 0.25
seconds).

TCXONC Start/stop control. The argument is an int value. If the argu-
ment is 0, suspend output; if 1, restart suspended output; if 2,
suspend input; if 3, restart suspended input.

Page 15

FINAL COPY
June 15, 1995

File: ba_dev/termio
svid

Page: 638

termio (BA_DEV) termio (BA_DEV)

TCFLSH The argument is an int value. If the argument is 0, flush the
input queue; if 1, flush the output queue; if 2, flush both the input
and output queues.

TIOCGPGRP The argument is a pointer to a pid_t. Set the value of that
pid_t to the process group ID of the foreground process group
associated with the terminal. [See termios(BA_OS) for a descrip-
tion of tcgetpgrp.]

TIOCSPGRP The argument is a pointer to a pid_t. Associate the process
group whose process group ID is specified by the value of that
pid_t with the terminal. The new process group value must be in
the range of valid process group ID values. Otherwise, the error
EPERM is returned. [See termios(BA_OS) for a description of
tcsetpgrp.]

TIOCGSID The argument is a pointer to an pid_t. The session ID of the ter-
minal is fetched and stored in the pid_t.

TIOCGWINSZ The argument is a pointer to a winsize structure. The terminal
driver’s notion of the terminal size is stored into that structure.

TIOCSWINSZ The argument is a pointer to a winsize structure. The terminal
driver’s notion of the terminal size is set from the values specified
in that structure. If the new sizes are different from the old sizes, a
SIGWINCH signal is set to the process group of the terminal.

TIOCMBIS The argument is a pointer to an int whose value is a mask con-
taining modem control lines to be turned on. The control lines
whose bits are set in the argument are turned on; no other control
lines are affected.

TIOCMBIC The argument is a pointer to an int whose value is a mask con-
taining modem control lines to be turned off. The control lines
whose bits are set in the argument are turned off; no other control
lines are affected.

TIOCMGET The argument is a pointer to an int. The current state of the
modem status lines is fetched and stored in the int pointed to by
arg.

TIOCMSET The argument is a pointer to an int containing a new set of
modem control lines. The modem control lines are turned on or
off, depending on whether the bit for that mode is set or clear.

FILES
files in or under /dev

SEE ALSO
fork(BA_OS), ioctl(BA_OS), setsid(BA_OS), signal(BA_OS), streams(BA_DEV),
termios(BA_OS).

LEVEL
Level 1.

Page 16

FINAL COPY
June 15, 1995

File: ba_dev/termio
svid

Page: 639

termiox (BA_DEV) termiox (BA_DEV)

NAME
termiox – extended general terminal interface

SYNOPSIS
#include <termiox.h>

ioctl(int fildes, int request, struct termiox *arg);

DESCRIPTION
The extended general terminal interface supplements the termio(BA_DEV) general
terminal interface by adding support for asynchronous hardware flow control, iso-
chronous flow control and clock modes, and local implementations of additional
asynchronous features. Some systems may not support all of these capabilities
because of either hardware or software limitations. Other systems may not permit
certain functions to be disabled. In these cases, the appropriate bits will be ignored.
If the capabilities can be supported, the interface described here must be used.

Hardware Flow Control Modes
Hardware flow control supplements the termio IXON, IXOFF and IXANY [see
termio(BA_DEV)] character flow control. Character flow control occurs when one
device controls the data transfer of another device by the insertion of control char-
acters in the data stream between devices. Hardware flow control occurs when one
device controls the data transfer of another device using electrical control signals on
wires (circuits) of the asynchronous interface. Isochronous hardware flow control
occurs when one device controls the data transfer of another device by asserting or
removing the transmit clock signals of that device. Character flow control and
hardware flow control may be simultaneously set.

In asynchronous, full duplex applications, the use of the Electronics Industries
Association’s EIA-232-D Request To Send (RTS) and Clear to Send (CTS) circuits is
the preferred method of hardware flow control. An interface to other hardware
flow control methods is included to provide a standard interface to these existing
methods.

The EIA-232-D standard specified only unidirectional hardware flow control - the
Data Circuit-terminating Equipment or Data Communications Equipment (DCE)
indicates to the Data Terminal Equipment (DTE) to stop transmitting data. The
termiox interface allows both unidirectional and bidirectional hardware flow con-
trol; when bidirectional flow control is enabled, either the DCE or DTE can indicate
to each other to stop transmitting data across the interface. Note: It is assumed that
the asynchronous port is configured as a DTE. If the connected device is also a DTE
and not a DCE, then DTE to DTE (e.g., terminal or printer connected to computer)
hardware flow control is possible by using a null modem to interconnect the
appropriate data and control circuits.

Clock Modes
Isochronous communication is a variation of asynchronous communication
whereby two communicating devices may provide transmit and/or receive clock to
each other. Incoming clock signals can be taken from the baud rate generator on
the local isochronous port controller, from CCITT V.24 circuit 114, Transmitter Sig-
nal Element Timing - DCE source (EIA-232-D pin 15), or from CCITT V.24 circuit
115, Receiver Signal Element Timing - DCE source (EIA-232-D pin 17). Outgoing
clock signals can be sent on CCITT V.24 circuit 113, Transmitter Signal Element

Page 1

FINAL COPY
June 15, 1995

File: ba_dev/termiox
svid

Page: 640

termiox (BA_DEV) termiox (BA_DEV)

Timing - DTE source (EIA-232-D pin 24), sent on CCITT V.24 circuit 128, Receiver
Signal Element Timing - DTE source (no EIA-232-D pin), or not sent at all.

In terms of clock modes, traditional asynchronous communication is implemented
simply by using the local baud rate generator as the incoming transmit and receive
clock source and not outputting any clock signals.

Terminal Parameters
The parameters that control the behavior of devices providing the termiox inter-
face are specified by the termiox structure, defined in the <sys/termiox.h>
header file. Several ioctl() system calls [see ioctl(BA_OS)] that fetch or change
these parameters use the termiox structure, which contains the following
members:

unsigned short x_hflag; /∗ hardware flow control modes ∗/
unsigned short x_cflag; /∗ clock modes ∗/
unsigned short x_rflag[NFF]; /∗ reserved modes ∗/
unsigned short x_sflag; /∗ spare local modes ∗/

The x_hflag field describes hardware flow control modes:

RTSXOFF 0000001 Enable RTS hardware flow control on input.
CTSXON 0000002 Enable CTS hardware flow control on output.
DTRXOFF 0000004 Enable DTR hardware flow control on input.
CDXON 0000010 Enable CD hardware flow control on output.
ISXOFF 0000020 Enable isochronous hardware flow control on

input.

The EIA-232-D DTR and CD circuits are used to establish a connection between two
systems. The RTS circuit is also used to establish a connection with a modem.
Thus, both DTR and RTS are activated when an asynchronous port is opened. If
DTR is used for hardware flow control, then RTS must be used for connectivity. If
CD is used for hardware flow control, then CTS must be used for connectivity.
Thus, RTS and DTR (or CTS and CD) cannot both be used for hardware flow con-
trol at the same time. Other mutual exclusions may exist, such as the simultaneous
setting of the termio HUPCL and the termiox DTRXOFF bits, which use the DTE
Ready line for different functions.

Variations of different hardware flow control methods may be selected by setting
the the appropriate bits. For example, bidirectional RTS/CTS flow control is
selected by setting both the RTSXOFF and CTSXON bits and bidirectional DTR/CTS
flow control is selected by setting both the DTRXOFF and CTSXON. Modem control
or unidirectional CTS hardware flow control is selected by setting only the CTSXON
bit.

As previously mentioned, it is assumed that the local asynchronous port
(e.g.,computer) is configured as a DTE. If the connected device (e.g., printer) is also
a DTE, it is assumed that the device is connected to the computer’s asynchronous
port via a null modem that swaps control circuits (typically RTS and CTS). The
connected DTE drives RTS and the null modem swaps RTS and CTS so that the
remote RTS is received as CTS by the local DTE. In the case that CTSXON is set for
hardware flow control, a printer’s lowering of its RTS would cause CTS seen by the
computer to be lowered. Output to the printer is suspended until the the printer’s

Page 2

FINAL COPY
June 15, 1995

File: ba_dev/termiox
svid

Page: 641

termiox (BA_DEV) termiox (BA_DEV)

raising of its RTS, which would cause CTS seen by the computer to be raised.

If RTSXOFF is set, the Request to Send (RTS) circuit (line) will be raised, and if the
asynchronous port needs to have its input stopped, it will lower the Request to
Send (RTS) line. If the RTS line is lowered, it is assumed that the connected device
will stop its output until RTS is raised.

If CTSXON is set, output will occur only if the Clear To Send (CTS) circuit (line) is
raised by the connected device. If the CTS line is lowered by the connected device,
output is suspended until CTS is raised.

If DTRXOFF is set, the DTE Ready (DTR) circuit (line) will be raised, and if the asyn-
chronous port needs to have its input stopped, it will lower the DTE Ready (DTR)
line. If the DTR line is lowered, it is assumed that the connected device will stop its
output until DTR is raised.

If CDXON is set, output will occur only if the Received Line Signal Detector (CD)
circuit (line) is raised by the connected device. If the CD line is lowered by the con-
nected device, output is suspended until CD is raised.

If ISXOFF is set, and if the isochronous port needs to have its input stopped, it will
stop the outgoing clock signal. It is assumed that the connected device is using this
clock signal to create its output. Transit and receive clock sources are programmed
using the x_cflag fields. If the port is not programmed for external clock genera-
tion, ISXOFF is ignored. Output isochronous flow control is supported by
appropriate clock source programming using the x_cflag field and enabled at the
remote connected device.

The x_cflag field specifies the system treatment of clock modes.

XMTCLK 0000007 Transmit clock source:
XCIBRG 0000000 Get transmit clock from Internal

Baud Rate Generator.
XCTSET 0000001 Get transmit clock from Transmitter

Signal Element Timing (DCE source)
lead, CCITT V.24 circuit 114,
EIA-232-D pin 15.

XCRSET 0000002 Get transmit clock from Receiver
Signal Element Timing (DCE source)
lead, CCITT V.24 circuit 115,
EIA-232-D pin 17.

RCVCLK 0000070 Receive clock source:
RCIBRG 0000000 Get receive clock from Internal

Baud Rate Generator.
RCTSET 0000010 Get receive clock from Transmitter

Signal Element Timing (DCE source)
lead, CCITT V.24 circuit 114,
EIA-232-D pin 15.

RCRSET 0000020 Get receive clock from Receiver
Signal Element Timing (DCE source)
lead, CCITT V.24 circuit 115,
EIA-232-D pin 17.

TSETCLK 0000700 Transmitter Signal Element Timing

Page 3

FINAL COPY
June 15, 1995

File: ba_dev/termiox
svid

Page: 642

termiox (BA_DEV) termiox (BA_DEV)

(DTE source) lead, CCITT V.24
circuit 113, EIA-232-D pin 24,
clock source:

TSETCOFF 0000000 TSET clock not provided.
TSETCRBRG 0000100 Output receive baud rate generator

on circuit 113.
TSETCTBRG 0000200 Output transmit baud rate generator

on circuit 113.
TSETCTSET 0000300 Output transmitter signal element

timing (DCE source) on circuit 113.
TSETCRSET 0000400 Output receiver signal element

timing (DCE source) on circuit 113.
RSETCLK 0007000 Receiver Signal Element Timing (DTE

source) lead, CCITT V.24 circuit 128,
no EIA-232-D pin, clock source:

RSETCOFF 0000000 RSET clock not provided.
RSETCRBRG 0001000 Output receive baud rate generator

on circuit 128.
RSETCTBRG 0002000 Output transmit baud rate generator

on circuit 128.
RSETCTSET 0003000 Output transmitter signal element

timing (DCE source) on circuit 128.
RSETCRSET 0004000 Output receiver signal element

timing (DCE source) on circuit 128.

If the XMTCLK field has a value of XCIBRG, the transmit clock is taken from the
hardware internal baud rate generator, as in normal asynchronous transmission. If
XMTCLK = XCTSET, the transmit clock is taken from the Transmitter Signal Element
Timing (DCE source) circuit. If XMTCLK = XCRSET, the transmit clock is taken
from the Receiver Signal Element Timing (DCE source) circuit.

If the RCVCLK field has a value of RCIBRG, the receive clock is taken from the
hardware Internal Baud Rate Generator, as in normal asynchronous transmission.
If RCVCLK = RCTSET, the receive clock is taken from the Transmitter Signal Ele-
ment Timing (DCE source) circuit. If RCVCLK = RCRSET, the receive clock is taken
from the Receiver Signal Element Timing (DCE source) circuit.

If the TSETCLK field has a value of TSETCOFF, the Transmitter Signal Element
Timing (DTE source) circuit is not driven. If TSETCLK = TSETCRBRG, the
Transmitter Signal Element Timing (DTE source) circuit is driven by the Receive
Baud Rate Generator. If TSETCLK = TSETCTBRG, the Transmitter Signal Element
Timing (DTE source) circuit is driven by the Transmit Baud Rate Generator. If
TSETCLK = TSETCTSET, the Transmitter Signal Element Timing (DTE source) cir-
cuit is driven by the Transmitter Signal Element Timing (DCE source). If TSETCLK
= TSETCRBRG, the Transmitter Signal Element Timing (DTE source) circuit is
driven by the Receiver Signal Element Timing (DCE source).

If the RSETCLK field has a value of RSETCOFF, the Receiver Signal Element Tim-
ing (DTE source) circuit is not driven. If RSETCLK = RSETCRBRG, the Receiver
Signal Element Timing (DTE source) circuit is driven by the Receive Baud Rate Gen-
erator. If RSETCLK = RSETCTBRG, the Receiver Signal Element Timing (DTE
source) circuit is driven by the Transmit Baud Rate Generator. If RSETCLK =

Page 4

FINAL COPY
June 15, 1995

File: ba_dev/termiox
svid

Page: 643

termiox (BA_DEV) termiox (BA_DEV)

RSETCTSET, the Receiver Signal Element Timing (DTE source) circuit is driven by
the Transmitter Signal Element Timing (DCE source). If RSETCLK = RSETCRBRG,
the Receiver Signal Element Timing (DTE source) circuit is driven by the Receiver
Signal Element Timing (DCE source).

The x_rflag field is reserved for future interface definitions and should not be
used by any implementations. The x_sflag field may be used by local implemen-
tations wishing to customize their terminal interface using the termiox ioctl()
system calls.

IOCTLS
The ioctl() system calls have the form:

ioctl(fildes, command, arg)
struct termiox *arg;

The commands using this form are:

TCGETX The argument is a pointer to a termiox structure. The current
terminal parameters are fetched and stored into that structure.

TCSETX The argument is a pointer to a termiox structure. The current
terminal parameters are set from the values stored in that struc-
ture. The change is immediate.

TCSETXW The argument is a pointer to a termiox structure. The current
terminal parameters are set from the values stored in that struc-
ture. The change occurs after all characters queued for output
have been transmitted. This form should be used when chang-
ing parameters that will affect output.

TCSETXF The argument is a pointer to a termiox structure. The current
terminal parameters are set from the values stored in that struc-
ture. The change occurs after all characters queued for output
have been transmitted; all characters queued for input are dis-
carded and then the change occurs.

FILES
Files in or under /dev/*.

SEE ALSO
ioctl(BA_OS), stty(AU_CMD), termio(BA_DEV).

LEVEL
Level 1.

Page 5

FINAL COPY
June 15, 1995

File: ba_dev/termiox
svid

Page: 644

ticlts (BA_DEV) ticlts (BA_DEV)

NAME
t i c l t s , t i c o t s , t i c o t s o r d – loopback transport providers

SYNOPSIS
i n c l u d e < t i c l t s . h >
i n c l u d e < t i c o t s . h >
i n c l u d e < t i c o t s o r d . h >

DESCRIPTION
The devices known as t i c l t s, t i c o t s, and t i c o t s o r d are ‘‘loopback transport
providers,’’ that is, stand-alone networks at the transport level. Loopback transport
providers are transport providers in every sense except one: only one host (the local
machine) is ‘‘connected to’’ a loopback network. Loopback transports present a TPI
(S T R E A M S-level) interface to application processes and are intended to be accessed
via the TLI (application-level) interface. They are implemented as clone devices and
support address spaces consisting of ‘‘flex-addresses,’’ that is, arbitrary sequences
of octets, of length > 0, represented by a n e t b u f structure.

t i c l t s is a datagram-mode transport provider. It offers (connectionless) service of
type T _ C L T S. Its default address size is T C L _ D E F A U L T A D D R S Z. t i c l t s prints the
following error messages [see t _ r c v u d e r r(BA_LIB)]:

T C L _ B A D A D D R bad address specification
T C L _ B A D O P T bad option specification
T C L _ N O P E E R bound
T C L _ P E E R B A D S T A T E peer in wrong state

t i c o t s is a virtual circuit-mode transport provider. It offers (connection-oriented)
service of type T _ C O T S. Its default address size is T C O _ D E F A U L T A D D R S Z. t i c o t s
prints the following disconnect messages [see t _ r c v d i s(BA_LIB)]:

T C O _ N O P E E R no listener on destination address
T C O _ P E E R N O R O O M O N Q peer has no room on connect queue
T C O _ P E E R B A D S T A T E peer in wrong state
T C O _ P E E R I N I T I A T E D peer-initiated disconnect
T C O _ P R O V I D E R I N I T I A T E D provider-initiated disconnect

t i c o t s o r d is a virtual circuit-mode transport provider, offering service of type
T _ C O T S _ O R D (connection-oriented service with orderly release). Its default address
size is T C O O _ D E F A U L T A D D R S Z. t i c o t s o r d prints the following disconnect messages
[see t _ r c v d i s(BA_LIB)]:

T C O O _ N O P E E R no listener on destination address
T C O O _ P E E R N O R O O M O N Q peer has no room on connect queue
T C O O _ P E E R B A D S T A T E peer in wrong state
T C O O _ P E E R I N I T I A T E D peer-initiated disconnect
T C O O _ P R O V I D E R I N I T I A T E D provider-initiated disconnect

USAGE
Loopback transports support a local IPC mechanism through the TLI interface.
Applications implemented in a transport provider-independent manner on a
client-server model using this IPC are transparently transportable to networked
environments.

Page 1

FINAL COPY
June 15, 1995

File: ba_dev/ticlts
svid

Page: 645

ticlts (BA_DEV) ticlts (BA_DEV)

Transport provider-independent applications must not include the header files
listed in the synopsis section above. In particular, the options are (like all transport
provider options) provider dependent.

t i c l t s and t i c o t s support the same service types (T _ C L T S and T _ C O T S) sup-
ported by the OSI transport-level model. The use of t i c l t s and t i c o t s i s
e n c o u r a g e d .

t i c o t s o r d supports the same service type (T _ C O T S _ O R D) supported by the TCP/IP
model. The use of t i c o t s o r d is discouraged except for reasons of compatibility.

FILES
/ d e v / t i c l t s
/ d e v / t i c o t s
/ d e v / t i c o t s o r d

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ba_dev/ticlts
svid

Page: 646

timod (BA_DEV) timod (BA_DEV)

NAME
t i m o d – Transport Interface cooperating STREAMS module

DESCRIPTION
t i m o d is a STREAMS module for use with the Transport Interface (TI) functions of
the Network Services library. The t i m o d module converts a set of i o c t l(BA_OS)
calls into STREAMS messages that may be consumed by a transport protocol pro-
vider which supports the Transport Interface. This allows a user to initiate certain
TI functions as atomic operations.

The t i m o d module must be pushed onto only a stream terminated by a transport
protocol provider which supports the TI.

All STREAMS messages, with the exception of the message types generated from the
i o c t l commands described below, will be transparently passed to the neighboring
STREAMS module or driver. The messages generated from the following i o c t l
commands are recognized and processed by the t i m o d module. The format of the
i o c t l call is:

i n c l u d e < s y s / s t r o p t s . h >
-
-

s t r u c t s t r i o c t l s t r i o c t l ;
-
-

s t r i o c t l . i c _ c m d = cmd;
s t r i o c t l . i c _ t i m e o u t = I N F T I M ;
s t r i o c t l . i c _ l e n = size;
s t r i o c t l . i c _ d p = (c h a r *)buf
i o c t l (f i l d e s , I _ S T R , & s t r i o c t l) ;

Where, on issuance, size is the size of the appropriate TI message to be sent to the
transport provider and on return size is the size of the appropriate TI message from
the transport provider in response to the issued TI message. buf is a pointer to a
buffer large enough to hold the contents of the appropriate TI messages. The TI
message types are defined in s y s / t i h d r . h. The possible values for the cmd field
are:

T I _ B I N D Bind an address to the underlying transport protocol provider.
The message issued to the T I _ B I N D i o c t l is equivalent to the TI
message type T _ B I N D _ R E Q and the message returned by the suc-
cessful completion of the i o c t l is equivalent to the TI message
type T _ B I N D _ A C K.

T I _ U N B I N D Unbind an address from the underlying transport protocol pro-
vider. The message issued to the T I _ U N B I N D i o c t l is equivalent
to the TI message type T _ U N B I N D _ R E Q and the message returned
by the successful completion of the i o c t l is equivalent to the TI
message type T _ O K _ A C K.

T I _ G E T I N F O Get the TI protocol specific information from the transport proto-
col provider. The message issued to the T I _ G E T I N F O i o c t l is
equivalent to the TI message type T _ I N F O _ R E Q and the message

Page 1

FINAL COPY
June 15, 1995

File: ba_dev/timod
svid

Page: 647

timod (BA_DEV) timod (BA_DEV)

returned by the successful completion of the i o c t l is equivalent to
the TI message type T _ I N F O _ A C K.

T I _ O P T M G M T Get, set or negotiate protocol specific options with the transport
protocol provider. The message issued to the T I _ O P T M G M T i o c t l
is equivalent to the TI message type T _ O P T M G M T _ R E Q and the mes-
sage returned by the successful completion of the i o c t l is
equivalent to the TI message type T _ O P T M G M T _ A C K.

FILES
s y s / t i m o d . h
s y s / t i u s e r . h
s y s / t i h d r . h
s y s / e r r n o . h

SEE ALSO
t i r d w r(BA_DEV)

RETURN VALUE
If the i o c t l system call returns with a value greater than 0, the lower 8 bits of the
return value will be one of the TI error codes as defined in s y s / t i u s e r . h. If the TI
error is of type T S Y S E R R, then the next 8 bits of the return value will contain an
error as defined in s y s / e r r n o . h [see e r r n o(BA_ENV)].

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ba_dev/timod
svid

Page: 648

tirdwr (BA_DEV) tirdwr (BA_DEV)

Messages that represent expedited data will generate an error.
All further system calls associated with the stream will fail with
e r r n o set to E P R O T O.

Any data messages with control portions will have the control
portions removed from the message prior to passing the
message on to the upstream neighbor.

Messages that represent an orderly release indication from the
transport provider will generate a zero length data message,
indicating the end of file, which will be sent to the reader of the
stream. The orderly release message itself will be freed by the
module.

Messages that represent an abortive disconnect indication from
the transport provider will cause all further w r i t e and p u t m s g
system calls to fail with e r r n o set to E N X I O. All further r e a d
and g e t m s g system calls will return zero length data (indicating
end of file) once all previous data has been read.

With the exception of the above rules, all other messages with
control portions will generate an error and all further system
calls associated with the stream will fail with e r r n o set to
E P R O T O.

Any zero length data messages will be freed by the module and they
will not be passed onto the module’s upstream neighbor.

pop When the module is popped off the stream or the stream is closed, the
module will take the following action:

If an orderly release indication has been previously received, then an
orderly release request will be sent to the remote side of the tran-
sport connection.

SEE ALSO
s t r e a m s(BA_DEV), t i m o d(BA_DEV)
g e t m s g(BA_OS), p u t m s g(BA_OS), r e a d(BA_OS), w r i t e(BA_OS)

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ba_dev/tirdwr
svid

Page: 650

Kernel Extension Introduction

While the Base System is intended to support a run-time environment for execut-
able applications, the Kernel Extension provides additional operating system ser-
vices that will not be required by many application-programs but which are
needed for some environments.

The Kernel Extension provides operating system services to support memory
management facilities, process accounting tools, software development tools, and
applications or tools that require more sophisticated inter-process communication
than is provided by the Base System.

The Base System is prerequisite for support of the Kernel Extension.

SUMMARY OF OS SERVICE ROUTINES

The following OS service routines are supported by the Kernel Extension (excep-
tion: items marked with a sharp (#) are optional, hardware-dependent routines
and will only appear on machines with the requisite hardware.) Items marked
with a (†) are new to this extension. Items marked with a star (*) are Level 2, as
defined in the General Introduction to this volume.

acct modload† msgget plock * semop
chroot modpath† msgrcv priocntl† shmat #
getksym† modstat† msgsnd profil shmctl #
mmap moduload† msync ptrace shmdt #
modadm† mprotect munmap semctl shmget #
modadmin† msgctl nice semget

priocntl has been added to this extension as the preferred
interface for scheduling. It has been removed from the
RT_OS extension.

The following routines have been added to this extension in
support of Dynamically Loadable Kernel Modules: getkeysym,
modpath, modadm, modstat, modadmin, moduload, modload.
Dynamic installation of filesystem types, exec() modules,
drivers, Streams modules and multiplexors will be supported.
This feature provides the ability to add software to a run-
ning system in multi-user mode, without halting or or
rebooting the system. [See Also modadmin(AS_CMD)]

Kernel Extension Introduction 9-1

FINAL COPY
June 15, 1995
File: ke_int.txt

svid

Page: 651

Organization of Technical Information

The Kernel Extensions Definitions chapter defines terms used in manual page
descriptions in later chapters.

The Kernel Extension Environment chapter describes elements of the assumed
operating environment for this extension, including additional behavior of Base
System components when the Kernel Extension is present on the system.

The Kernel Extension OS Service Routines chapter provides manual page descrip-
tions of library routines supported by this extension.

9-2 KERNEL EXTENSION INTRODUCTION

FINAL COPY
June 15, 1995
File: ke_int.txt

svid

Page: 652

Kernel Extension Environment Routines

The following section contains the manual pages for the KE_ENV routines.

Kernel Extension Environment Routines 10-1

FINAL COPY
June 15, 1995

File: ke_env.cov
svid

Page: 653

FINAL COPY
June 15, 1995

File:

Page: 654

effects (KE_ENV) effects (KE_ENV)

NAME
effects – effects of the Kernel Extension on the Base System

DESCRIPTION
Some of the Base System V operating system services are affected by the additional
services in this extension. The effects are listed below for each routine:

exec(BA_OS)
The AFORK flag in the ac_flag field of the accounting record is turned off, and the
ac_comm field is reset by executing an exec routine [see acct(KE_OS)].

Any process, data, or text-locks are removed and not inherited by the new process
[see plock(KE_OS)].

Profiling is disabled for the new process [see profil(KE_OS)].

The shared-memory-segments attached to the calling process will not be attached to
the new process [see shmop(KE_OS)].

The new process also inherits the following additional attributes from the calling
process:

nice value [see nice(KE_OS)];

semadj values [see semop(KE_OS)];

exit(BA_OS)
An accounting record is written on the accounting file if the system’s accounting
routine is enabled [see acct(KE_OS)].

If the process has a process-lock, text-lock, or data-lock, the lock is removed [see
plock(KE_OS)].

Each attached shared-memory-segment is detached and the value of shm_nattch
in the data structure associated with its shared-memory-identifier is decremented
by 1.

For each semaphore for which the calling process has set a semadj value [see
semop(KE_OS)], that semadj value is added to the semval of the specified sema-
phore.

fork(BA_OS)
The AFORK flag is turned on when the function fork() is executed.

The child process inherits the following additional attributes from the parent pro-
cess:

The ac_comm contents of the accounting record [see acct(KE_OS)];

nice value [see nice(KE_OS)], scheduling priority and time quantum;

profiling on/off status [see profil(KE_OS)];

all attached shared-memory-segments [see shmop(KE_OS)].

The child process differs from the parent process in the following additional ways:

All semadj values are cleared [see semop(KE_OS)].

Page 1

FINAL COPY
June 15, 1995

File: ke_env/effects
svid

Page: 655

effects (KE_ENV) effects (KE_ENV)

Process-locks, text-locks, and data-locks are not inherited by the child pro-
cess [see plock(KE_OS), mctl(KE_OS), memctl(KE_OS), mlock(KE_OS), and
mlockall(KE_OS)].

SEE ALSO
acct(KE_OS), chroot(BA_OS) mctl(KE_OS), memctl(KE_OS), mlock(KE_OS),
mlockall(KE_OS), nice(KE_OS), plock(KE_OS), profil(KE_OS), semop(KE_OS),
shmop(KE_OS)

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ke_env/effects
svid

Page: 656

errno (KE_ENV) errno (KE_ENV)

NAME
error – error codes and condition definitions

SYNOPSIS
#include <errno.h>

‡ extern int errno;

errno

DESCRIPTION
The numerical value represented by the symbolic name of an error condition is
assigned to errno for errors that occur when executing a system service routine or
general library routine.

To be consistent with the C Standard, the interface definition of errno has been
change in the SIVD, Fourth Edition. Programs should obtain the value of errno by
including <errno.h>.

The macro errno expands to a modifiable lvalue that has type int, the value of
which is set to a positive error number by several library functions. errno need
not be the identifier of an object, e.g., it might expand to a modifiable lvalue result-
ing from a function call. It is unspecified whether errno is a macro or an identifier
declared with external linkage. If an errno macro definition is suppressed to
access an actual object, or if a program defines an identifier with the name errno,
the behavior is undefined.

In addition to the values defined in the Base System for the external variable errno
[see errno(BA_ENV)], two additional error conditions are defined in the Kernel
Extension:

ENOMSG No message of desired type.

An attempt was made to receive a message of a type that does not exist
on the specified message queue [see msgop(KE_OS)].

EIDRM Identifier removed.

This error is returned to processes that resume execution because of the
removal of an identifier [see msgctl(KE_OS), semctl(KE_OS), and
shmctl(KE_OS)].

SEE ALSO
errno(BA_ENV), msgctl(KE_OS), msgop(KE_OS), semctl(KE_OS), shmctl(KE_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ke_env/errno
svid

Page: 657

ipc (KE_ENV) ipc (KE_ENV)

NAME
sys/ipc.h – inter-process communication access structure

SYNOPSIS
#include <sys/ipc.h>

DESCRIPTION
The <sys/ipc.h> header uses three mechanisms for inter-process communication
(IPC): messages, semaphores and shared memory. All use a common structure
type, ipc_perm to pass information used in determining permission to perform an
IPC operation.

The structure ipc_perm contains the following members:

uid_t uid; /* owner’s user ID */
gid_t gid; /* owner’s group ID */
uid_t cuid; /* creator’s user ID */
gid_t cgid; /* creator’s group ID */
mode_t mode; /* read/write permission */

Definitions are given for the following constants:

Mode bits:
IPC_CREAT create entry if key doesn’t exist
IPC_EXCL fail if key exists
IPC_NOWAIT error if request must wait

Keys:

IPC_PRIVATE private key

Control Commands:

IPC_RMID remove identifier
IPC_SET set options
IPC_STAT get options

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ke_env/ipc
svid

Page: 658

msg (KE_ENV) msg (KE_ENV)

NAME
sys/msg.h – message queue structures

SYNOPSIS
#include <sys/msg.h>

DESCRIPTION
The <sys/msg.h> header defines the following constant and members of the struc-
ture msqid_ds

Message operation flag:

MSG_NOERROR no error if big message

The structure msqid_ds contains the following members:

struct ipc_perm msg_perm; /* operation permission
structure */

unsigned long msg_qnum; /* number of messages
currently on queue */

unsigned long msg_qbytes; /* max number of bytes
allowed on queue */

pid_t msg_lspid; /* pid of last msgsnd() */
pid_t msg_lrpid; /* pid of last msgrcv() */
time_t msg_stime; /* time of last msgsnd() */
time_t msg_rtime; /* time of last msgrcv() */
time_t msg_ctime; /* time of last change */

msg_perm is an ipc_perm structure [see ipc(KE_ENV)] that specifies the mes-
sage operation permission.

msg_qnum is the number of messages currently on the queue.

msg_qbytes is the maximum number of bytes allowed on the queue.

msg_lspid is the process ID of the last process that performed a msgsnd opera-
tion.

msg_lrpid is the process ID of the last process that performed a msgrcv opera-
tion.

msg_stime is the time of the last msgsnd operation.

msg_rtime is the time of the last msgrcv operation.

msg_ctime is the time of the last msgctl operation that changed a member of
the above structure.

The following are declared as either functions or macros:
msgctl() msgrcv()
msgget() msgsnd()

SEE ALSO
ipc(KE_ENV), msgctl(KE_OS), msgget(KE_OS), msgop(KE_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ke_env/msg
svid

Page: 659

sem (KE_ENV) sem (KE_ENV)

NAME
sys/sem.h – semaphore facility

SYNOPSIS
#include <sys/sem.h>

DESCRIPTION
The <sys/sem.h> header defines the following constants and structures.

Semaphore operation flags:

SEM_UNDO set up adjust on exit entry

Command definitions for the function semctl() [see semctl(KE_OS)]:

GETNCNT get semncnt
GETPID get sempid
GETVAL get semval
GETALL get all semvals
GETZCNT get semzcnt
SETVAL set semval
SETALL set all semvals

The structure semid_ds contains the following members:

struct ipc_perm sem_perm; /* operation permission
structure */

ushort sem_nsems; /* number of semaphores
in set */

time_t sem_otime; /* last semop() time */
time_t sem_ctime; /* last time changed by

semctl() */

sem_perm is an ipc_perm structure that specifies the semaphore operation per-
mission [see ipc(KE_ENV)].

sem_nsems is a value that is equal to the number of semaphores in the set. Each
semaphore in the set is referenced by a non-negative integer referred
to as a sem_num. The value of sem_num runs sequentially from 0 to
the value of sem_nsems–1. sem_otime is the time of the last
semop operation, and sem_ctime is the time of the last semctl
operation that changed a member of the above structure.

semval is a non-negative integer.

sempid is equal to the process ID of the last process that performed a sema-
phore operation on this semaphore.

semncnt is a count of the number of processes that are currently suspended
awaiting this semaphore’s semval to become greater than its current
value.

semzcnt is a count of the number of processes that are currently suspended
awaiting this semaphore’s semval to become zero.

Page 1

FINAL COPY
June 15, 1995

File: ke_env/sem
svid

Page: 660

sem (KE_ENV) sem (KE_ENV)

The number of semaphores in a set is sem_nsems within the set semaphores
number from 0 to sem_nsems-1. The number of a semaphore is known as a
sem_num.

A semaphore is represented by an anonymous structure containing the following
members:

ushort semval; /* semaphore value */
pid_t sempid; /* pid of last operation */
ushort semncnt; /* number of processes waiting

for semval to become greater
than current value */

ushort semzcnt; /* number of processes waiting
for semval to become zero */

The structure sembuf contains the following members:

ushort sem_num; /* semaphore number */
short sem_op; /* semaphore operation */
short sem_flg; /* operation flags */

The following are declared as either functions or macros:

semctl() semget() semop()

SEE ALSO
ipc(KE_OS), semctl(KE_OS), semget(KE_OS), semop(KE_OS).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ke_env/sem
svid

Page: 661

shm (KE_ENV) shm (KE_ENV)

NAME
sys/shm.h – shared memory facility

SYNOPSIS
#include <sys/shm.h>

DESCRIPTION
The <sys/shm.h> header defines the following constants and the structure.

Message operation flags:

SHM_RDONLY attach read-only (else read-write)
SHMLBA segment low boundary address multiple
SHM_RND round attach address to SHMLBA

The structure shmid_ds contains the following members:

struct ipc_perm shm_perm; /* operation permission
structure */

int shm_segsz; /* segment size in bytes */
pid_t shm_lpid; /* pid of last shmop */
pid_t shm_cpid; /* pid of creator */
unsigned long shm_nattch; /* number of current

attaches */
time_t shm_atime; /* time of last shmat() */
time_t shm_dtime; /* time of last shmdt() */
time_t shm_ctime; /* time of last change by

shmctl() */

shm_perm is an ipc_perm structure that specifies the shared memory opera-
tion permission [see ipc(KE_ENV)].

shm_segsz specifies the size of the shared memory segment.

shm_cpid is the process ID of the process that created the shared memory
identifier.

shm_lpid is the process ID of the last process that performed a shmop() rou-
tine [see shmop(KE_OS)].

shm_nattch
is the number of processes that currently have this segment attached.

shm_atime is the time of the last shmat operation.

shm_dtime is the time of the last shmdt operation. is the time of the last shmctl
operation that changed one of the members of the above structure.

The following are declared as either functions or macros:
shmat() shmctl() shmdt() shmget()

SEE ALSO
ipc(KE_ENV), shmctl(KE_OS), shmget(KE_OS), shmop(KE_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ke_env/shm
svid

Page: 662

Kernel Extension OS Service Routines

The following section contains the manual pages for the KE_OS routines.

Kernel Extension OS Service Routines 11-1

FINAL COPY
June 15, 1995
File: ke_os.cov

svid

Page: 663

FINAL COPY
June 15, 1995

File:

Page: 664

acct (KE_OS) acct (KE_OS)

NAME
a c c t – enable or disable process accounting

SYNOPSIS
i n c l u d e < u n i s t d . h >

i n t a c c t (c o n s t c h a r ∗path) ;

DESCRIPTION
a c c t enables or disables the system process accounting routine. If the routine is
enabled, an accounting record will be written in an accounting file for each process
that terminates. The termination of a process can be caused by one of two things:
an e x i t call or a signal The calling process must have the appropriate privilege
(P _ S Y S O P S) to enable or disable accounting.

path points to a pathname naming the accounting file. An accounting file produced
as a result of calling the a c c t function has records in the format defined by the
structure a c c t in < s y s / a c c t . h >, which defines the following data type:

c o m p _ t / * f l o a t i n g p o i n t - 1 3 - b i t f r a c t i o n , * /
/ * 3 - b i t e x p o n e n t * /

The structure a c c t includes the following members:

c h a r a c _ f l a g ; / * A c c o u n t i n g f l a g * /
c h a r a c _ s t a t ; / * E x i t s t a t u s * /
u i d _ t a c _ u i d ; / * A c c o u n t i n g u s e r I D * /
g i d _ t a c _ g i d ; / * A c c o u n t i n g g r o u p I D * /
d e v _ t a c _ t t y ; / * c o n t r o l l i n g t t y * /
t i m e _ t a c _ b t i m e ; / * B e g i n n i n g t i m e * /
c o m p _ t a c _ u t i m e ; / * a c c o u n t i n g u s e r t i m e i n c l o c k t i c k s * /
c o m p _ t a c _ s t i m e ; / * a c c o u n t i n g s y s t e m t i m e i n c l o c k t i c k s * /
c o m p _ t a c _ e t i m e ; / * a c c o u n t i n g e l a p s e d t i m e i n c l o c k t i c k s * /
c o m p _ t a c _ m e m ; / * m e m o r y u s a g e i n c l i c k s * /
c o m p _ t a c _ i o ; / * c h a r s t r a n s f e r r e d b y r e a d / w r i t e * /
c o m p _ t a c _ r w ; / * n u m b e r o f b l o c k r e a d s / w r i t e s * /
c h a r a c _ c o m m [8] ; / * c o m m a n d n a m e * /

and defines the following symbolic names:
A F O R K / * h a s e x e c u t e d f o r k , b u t n o e x e c * /
A S U / * u s e d a p p r o p r i a t e p r i v i l e g e s * /
A C C T F / * r e c o r d t y p e : 0 0 = a c c t * /

The a c _ s t a t value is the status returned in the argument to w a i t [see
w a i t(BA_OS)] cast to a c h a r.

The A F O R K flag is set in a c _ f l a g when the f o r k routine is executed and reset when
an e x e c routine is executed [see e x e c(BA_OS)]. The a c _ c o m m field is inherited
from the parent process when a child process is created with the f o r k routine and
is reset when an exec routine is executed. The variable a c _ m e m is a cumulative
record of memory usage and is incremented each time the system charges the pro-
cess with a clock tick.

Page 1

FINAL COPY
June 15, 1995

File: ke_os/acct
svid

Page: 665

acct (KE_OS) acct (KE_OS)

The accounting routine is enabled if path is non-zero and no errors occur during the
system call. It is disabled if path is (c h a r *) N U L L and no errors occur during the
system call.

Return Values
On success, a c c t returns 0. On failure, a c c t returns –1 and sets e r r n o to identify
the error.

Errors
In the following conditions, a c c t fails and sets e r r n o to:

E A C C E S The file named by path is not an ordinary file.

E A C C E S Search permission is denied on a component of the path
prefix.

E A C C E S Write permission on the name file is denied.

E F A U L T path points to an illegal address.

E L O O P Too many symbolic links were encountered in translating
path.

E N A M E T O O L O N G The length of the path argument exceeds {P A T H _ M A X}, or the
length of a path component exceeds {N A M E _ M A X} while
_ P O S I X _ N O _ T R U N C is in effect.

E N O T D I R A component of the path prefix is not a directory.

E N O E N T One or more components of the accounting file pathname do
not exist.

E P E R M The calling process does not have the appropriate privilege
to enable or disable accounting.

E R O F S The named file resides on a read-only file system.

SEE ALSO
e x i t(BA_OS)

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ke_os/acct
svid

Page: 666

chroot (KE_OS) chroot (KE_OS)

NAME
chroot — change root directory

SYNOPSIS
int chroot(const char *path);

DESCRIPTION
The function chroot() causes the named directory to become the root directory,
the starting point for path searches for absolute pathnames. The function
chroot() does not affect the user’s working directory.

The argument path points to a pathname naming a directory.

The process must have appropriate privileges to change the root directory.

The .. entry in the root directory is interpreted to mean the root directory itself.
Thus, .. cannot be used to access files outside the sub-tree rooted in the root direc-
tory.

RETURN VALUE
Upon successful completion, the function chroot() returns a value of 0; other-
wise, it returns a value of –1 and sets errno to indicate an error. On failure the root
directory remains unchanged.

ERRORS
Under the following conditions, the function chroot() fails, and sets errno to:

EACCES if search permission is denied for a component of path.

ENOTDIR if any component of the pathname is not a directory.

ENOENT if the named directory does not exist or path points to an empty string.

EPERM if the process does not have appropriate privileges.

ENAMETOOLONG
if the size of a pathname exceeds {PATH_MAX}, or a pathname com-
ponent is longer than {NAME_MAX} while {_POSIX_NO_TRUNC} is
in effect.

ELOOP if too many symbolic links are encountered in translating the path.

SEE ALSO
chdir(BA_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ke_os/chroot
svid

Page: 667

exit (KE_OS) exit (KE_OS)

NAME
e x i t, _ e x i t – terminate process

SYNOPSIS
i n c l u d e < s t d l i b . h >

v o i d e x i t (i n t status) ;

i n c l u d e < u n i s t d . h >

v o i d _ e x i t (i n t status) ;

DESCRIPTION
_ e x i t terminates the calling process with the following consequences:

All of the file descriptors, directory streams and message catalogue descrip-
tors open in the calling process are closed.

A S I G C H L D signal is sent to the calling process’s parent process.

If the parent process of the calling process has not specified the
S A _ N O C L D W A I T flag [see s i g a c t i o n(BA_OS)], the calling process is
transformed into a ‘‘zombie process.’’ A zombie process is a process that
only occupies an entry in the process list. It has no other space allocated
either in user or kernel space. The process table slot that it occupies is par-
tially overlaid with time accounting information [see < s y s / p r o c . h >] to be
used by the t i m e s system call.

The parent process ID of all of the calling process’s existing child processes
and zombie processes is set to 1. This means the initialization process inher-
its each of these processes.

Each attached shared memory segment is detached and the value of
s h m _ n a t t a c h in the data structure associated with its shared memory
identifier is decremented by 1.

For each semaphore for which the calling process has set a s e m a d j value
[see s e m o p(KE_OS)], that s e m a d j value is added to the s e m v a l of the
specified semaphore.

If the process has a process, text, or data lock, an u n l o c k is performed [see
p l o c k(KE_OS)].

An accounting record is written on the accounting file if the system’s
accounting routine is enabled [see a c c t(AS_CMD)].

If the process is a controlling process, S I G H U P is sent to the foreground pro-
cess group of its controlling terminal and its controlling terminal is deallo-
cated.

If the calling process has any stopped children whose process group will be
orphaned when the calling process exits, or if the calling process is a
member of a process group that will be orphaned when the calling process
exits, that process group will be sent S I G H U P and S I G C O N T signals.

The C function e x i t calls any functions registered through the a t e x i t function in
the reverse order of their registration. The function _ e x i t circumvents all such
functions and cleanup.

Page 1

FINAL COPY
June 15, 1995
File: ke_os/exit

svid

Page: 668

exit (KE_OS) exit (KE_OS)

The symbols E X I T _ S U C C E S S and E X I T _ F A I L U R E are defined in s t d l i b . h and may
be used as the value of status to indicate successful or unsuccessful termination,
respectively.

SEE ALSO
a c c t(AS_CMD), p l o c k(KE_OS), s e m o p(KE_OS), s i g a c t i o n(BA_OS),
t i m e s(BA_OS), w a i t(BA_OS).

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995
File: ke_os/exit

svid

Page: 669

getksym (KE_OS) getksym (KE_OS)

NAME
g e t k s y m – get information for a global kernel symbol

SYNOPSIS
i n c l u d e < s y s / k s y m . h >

i n t g e t k s y m (c h a r *symname, u n s i g n e d l o n g *value, u n s i g n e d l o n g *info) ;

DESCRIPTION
g e t k s y m, given a symname, looks for a global symbol of that name in the symbol
table of the running kernel (including all currently loaded kernel modules). If it
finds a match, g e t k s y m returns the value associated with that symbol (typically its
address) in the space pointed to by value, and the type of that symbol in the space
pointed to by info. If more than one symbol of the given name exists in the search
space, the one (if any) in the statically bound kernel or, if not there, the first one
found among the loaded modules will be returned.

If g e t k s y m is given a valid address in the running kernel in the space pointed to by
value, it will return, in the space pointed to by symname, the name of the symbol
whose value is the closest one less than or equal to the given value and, in space
pointed to by info, the difference between the address given and the value of the
symbol found.

Return Values
On failure, g e t k s y m returns –1 and sets e r r n o to identify the error.

Errors
In the following conditions, g e t k s y m fails and sets e r r n o to:

E F A U L T Invalid pointer for symname, value, or info

E N A M E T O O L O N G The length of the symbol name exceeds the maximum length of the
characters.

E N O M A T C H symname is not found in the running kernel (including loaded
modules) or value is outside the range of the static kernel and any
loaded modules.

SEE ALSO
n l i s t(SD_LIB),

LEVEL
Level 1.

NOTICES
As a consequence of the dynamically loadable kernel modules feature, a dynamic
symbol table is now kept in the kernel address space representing all defined global
symbols in the static kernel and all currently loaded modules. When a module is
loaded, its symbol information is added to this table; when a module is unloaded,
its symbol information is deleted.

Finding out the address of a particular kernel variable was commonly done by
using n l i s t(SD_LIB) on / s t a n d / u n i x. This is no longer an accurate way to get
that information, since / s t a n d / u n i x only contains the symbol table for the static
kernel. The symbol tables for the loadable modules are elsewhere on the system,
but which modules are loaded and from where changes over time. So, as part of
this feature, two new ways of getting at information associated with kernel symbols

Page 1

FINAL COPY
June 15, 1995

File: ke_os/getksym
svid

Page: 670

getksym (KE_OS) getksym (KE_OS)

have been provided.

The g e t k s y m(KE_OS) system call provides the kind of information on a given ker-
nel symbol or address that n l i s t(SD_LIB) provided. However, the symbol
name/address association may not be valid by the time it is returned to the user
(for example, if the symbol is defined in a loadable module and that module is
unloaded), unless the user takes special steps like keeping the module loaded by
making sure there is an outstanding o p e n, m o u n t, . . .

Because of this later complication and because most interest in kernel addresses is
related to reading or writing from / d e v / k m e m, an alternate atomic method of read-
ing and writing in the kernel address space based on a symbol name is provided.
Three new ioctl commands now exist in the m m memory driver for the / d e v / k m e m
minor device In this way, a user gets the desired IO operation accomplished
without fear that a module may be unloaded in the middle. Of course, this user
must still open / d e v / k m e m for the correct type of IO and so the appropriate protec-
tions against unauthorized access still exist.

Page 2

FINAL COPY
June 15, 1995

File: ke_os/getksym
svid

Page: 671

mmap (KE_OS) mmap (KE_OS)

NAME
mmap – map pages of memory

SYNOPSIS
#include <sys/types.h>
#include <sys/mman.h>

caddr_t mmap(caddr_t addr, size_t len, int prot,
int flags, int fd, off_t off);

DESCRIPTION
The function mmap() establishes a mapping between a process’s address space and
a virtual memory object. The format of the call is as follows:

pa=mmap(addr, len, prot, flags, fd, off);

mmap() establishes a mapping between the process’s address space at an address pa
for len bytes to the memory object represented by the file descriptor fd at offset off
for len bytes. The value of pa is an implementation-dependent function of the
parameter addr and values of flags , further described below. A successful mmap()
call returns pa as its result. The address ranges covered by [pa, pa + len) and [off, off
+ len) must be legitimate for the possible (not necessarily current) address space of a
process and the object in question, respectively.

The mapping established by mmap() replaces any previous mappings for the
process’s pages in the range [pa, pa + len).

The parameter prot determines whether read, write, execute, or some combination
of accesses are permitted to the pages being mapped. The protection options are
defined in <sys/mman.h> as:

PROT_READ /* page can be read */
PROT_WRITE /* page can be written */
PROT_EXEC /* page can be executed */
PROT_NONE /* page can not be accessed */

Not all implementations literally provide all possible combinations. PROT_WRITE
is often implemented as PROT_READ | PROT_WRITE and PROT_EXEC as
PROT_READ | PROT_EXEC. However, no implementation will permit a write to
succeed where PROT_WRITE has not been set. The behavior of PROT_WRITE can
be influenced by setting MAP_PRIVATE in the flags parameter, described below.

The parameter flags provides other information about the handling of the mapped
pages. The options are defined in <sys/mman.h> as:

MAP_SHARED /* Share changes */
MAP_PRIVATE /* Changes are private */
MAP_FIXED /* Interpret addr exactly */

MAP_SHARED and MAP_PRIVATE describe the disposition of write references to the
memory object. If MAP_SHARED is specified, write references will change the
memory object. If MAP_PRIVATE is specified, the initial write reference will create
a private copy of the memory object page and redirect the mapping to the copy.
Either MAP_SHARED or MAP_PRIVATE must be specified, but not both. The map-
ping type is retained across a fork().

Page 1

FINAL COPY
June 15, 1995

File: ke_os/mmap
svid

Page: 672

mmap (KE_OS) mmap (KE_OS)

Note that the private copy is not created until the first write; until then, other users
who have the object mapped MAP_SHARED can change the object.

MAP_FIXED informs the system that the value of pa must be addr , exactly. The use
of MAP_FIXED is discouraged, as it may prevent an implementation from making
the most effective use of system resources.

When MAP_FIXED is not set, the system uses addr in an implementation-defined
manner to arrive at pa . The pa so chosen will be an area of the address space which
the system deems suitable for a mapping of len bytes to the specified object. All
implementations interpret an addr value of zero as granting the system complete
freedom in selecting pa , subject to constraints described below. A non-zero value of
addr is taken to be a suggestion of a process address near which the mapping
should be placed. When the system selects a value for pa , it will never place a map-
ping at address 0, nor will it replace any extant mapping, nor map into areas con-
sidered part of the potential data or stack segments .

The parameter off is constrained to be aligned and sized according to the value
returned by sysconf(). When MAP_FIXED is specified, the parameter addr
must also meet these constraints. The system performs mapping operations over
whole pages. Thus, while the parameter len need not meet a size or alignment con-
straint, the system will include, in any mapping operation, any partial page
specified by the range [pa, pa + len).

The system will always zero-fill any partial page at the end of an object. Further,
the system will never write out any modified portions of the last page of an object
which are beyond its end. References to whole pages following the end of an object
will result in the delivery of a SIGBUS signal. SIGBUS signals may also be
delivered on various file system conditions, including quota exceeded errors.

mmap() adds an extra reference to the object associated with the file descriptor fd
which is not removed by a subsequent close() on that file descriptor. This refer-
ence is removed when the entire range is unmapped (explicitly or implicitly).

RETURN VALUE
Upon successful completion, the function mmap() returns the address at which the
mapping was placed (pa); otherwise, it returns a value of –1 and sets errno to indi-
cate an error.

ERRORS
Under the following conditions, the function mmap() fails and sets errno to:

EAGAIN if the mapping could not be locked in memory.

EBADF if fd is not open.

EACCES if fd is not open for read, regardless of the protection specified, or fd is
not open for write and PROT_WRITE was specified for a MAP_SHARED
type mapping.

ENXIO if addresses in the range [off, off + len) are invalid for fd .

EINVAL if the arguments addr (if MAP_FIXED was specified) or off are not mul-
tiples of the page size as returned by sysconf().

Page 2

FINAL COPY
June 15, 1995

File: ke_os/mmap
svid

Page: 673

mmap (KE_OS) mmap (KE_OS)

EINVAL if the field in flags is invalid (neither MAP_PRIVATE or MAP_SHARED).

ENODEV if fd refers to an object for which mmap() is meaningless, such as a
terminal.

ENOMEM if MAP_FIXED was specified, and the range [addr, addr + len) exceeds
that allowed for the address space of a process; or if MAP_FIXED was
not specified and there is insufficient room in the address space to
effect the mapping.

USAGE
The function mmap() allows access to resources via address space manipulations,
instead of the read()/write() interface. Once a file is mapped, all a process has
to do to access it is use the data at the address to which the object was mapped. So,
using pseudo-code to illustrate the way in which an existing program might be
changed to use mmap(),

fd = open(...)
lseek(fd, some_offset)
read(fd, buf, len)
/* use data in buf */

becomes
fd = open(...)
address = mmap(0, len, PROT_READ, MAP_PRIVATE, fd, some_offset)
/* use data at address */

SEE ALSO
fcntl(BA_OS), fork(BA_OS), lockf(BA_OS), mlockall(RT_OS), munmap(KE_OS),
mprotect(KE_OS), plock(KE_OS), sysconf(BA_OS).

LEVEL
Level 1.

Page 3

FINAL COPY
June 15, 1995

File: ke_os/mmap
svid

Page: 674

modload (KE_OS) modload (KE_OS)

NAME
m o d l o a d – load a loadable kernel module on demand

SYNOPSIS
i n c l u d e < s y s / m o d . h >

i n t m o d l o a d (c o n s t c h a r *pathname) ;

DESCRIPTION
m o d l o a d allows processes with the appropriate privilege to demand-load a loadable
module into a running system.

pathname gives the pathname of the module to be loaded, specified either as a
module name or as an absolute pathname. If pathname specifies a module name,
m o d l o a d searches for the module’s object file on disk in the list of directories set by
m o d p a t h(KE_OS) (including the default directory / e t c / c o n f / m o d . d). If pathname
specifies an absolute pathname, only pathname is used to locate the module’s object
file.

Tasks performed during the load operation include:
open the module’s object file on disk
allocate kernel memory to hold the module
read the module’s object file into memory
load any modules upon which the module depends that are not already
loaded
relocate the module’s symbols
resolve any external references to kernel symbols made by the module
execute the module’s wrapper routine to perform any setup the module
requires to initialize itself
logically link the module to the running kernel by creating the module’s
switch table entries
set a flag that prevents the module from being unloaded by the kernel auto-
unload mechanism

Return Values
On success, m o d l o a d returns the integer module id of the loaded module. On
failure, m o d l o a d returns –1 and sets e r r n o to identify the error.

Errors
In the following conditions, m o d l o a d fails and sets e r r n o to:

E A C C E S Search permission was denied by a pathname component.

E N O E N T The file pathname does not exist.

E I N V A L The file pathname is not preconfigured for dynamic loading or has
invalid dependencies on other modules (such as a circular depen-
dency).

E R E L O C Error occurred processing the module’s object file, or the module
references symbols not defined in the running kernel, or the
module references symbols in another loadable module, but it did
not define its dependence on this module in its M a s t e r file.

Page 1

FINAL COPY
June 15, 1995

File: ke_os/modload
svid

Page: 675

modload (KE_OS) modload (KE_OS)

E N A M E T O O L O N G pathname is more than M A X P A T H L E N characters long.

E N O S Y S Unable to perform the requested operation because the loadable
modules functions are not configured into the system.

SEE ALSO
m o d a d m i n(AS_CMD), m o d p a t h(KE_OS), m o d s t a t(KE_OS), m o d u l o a d(KE_OS)

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ke_os/modload
svid

Page: 676

modpath (KE_OS) modpath (KE_OS)

NAME
m o d p a t h – change loadable kernel modules search path

SYNOPSIS
i n c l u d e < s y s / m o d . h >

i n t m o d p a t h (c o n s t c h a r *pathname) ;

DESCRIPTION
m o d p a t h allows processes with the appropriate privilege to modify the global
search path used to locate object files for loadable kernel modules on disk. The
search path modifications take effect immediately and affect all subsequent loads
and all users on the system. Affected loads include all auto-loads performed by the
kernel auto-load mechanism and all demand-loads performed by m o d l o a d(KE_OS)
using a module name.

pathname can specify a colon-separated list of absolute pathnames, or an absolute
pathname, or N U L L.

If pathname specifies a pathname, the named directories:

will be searched prior to searching any directories specified by previous
calls to m o d p a t h

will be searched prior to searching the default loadable modules search
path, which is always searched and always searched last

do not have to exist on the system at the time m o d p a t h is called

do not have to exist on the system at the time the load takes place

If pathname is equal to N U L L, the loadable modules search path is reset to its default
value

Return Values
On success, m o d p a t h returns 0. On failure, m o d p a t h returns –1 and sets e r r n o to
identify the error.

Errors
In the following conditions, m o d p a t h fails and sets e r r n o to:

E I N V A L List of directories specified by pathname is malformed.

E N A M E T O O L O N G pathname is more than M A X P A T H L E N characters long.

E N O S Y S Unable to perform the requested operation because the loadable
modules functions are not configured into the system.

SEE ALSO
m o d a d m i n(AS_CMD), m o d l o a d(KE_OS)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ke_os/modpath
svid

Page: 677

modstat (KE_OS) modstat (KE_OS)

NAME
m o d s t a t – get information for loadable kernel modules

SYNOPSIS
i n c l u d e < s y s / m o d . h >

i n t m o d s t a t (i n t modid, s t r u c t m o d s t a t u s *stbuf, b o o l e a n _ t next_modid) ;

DESCRIPTION
m o d s t a t allows processes with the appropriate privilege to obtain information
about the currently loaded loadable kernel modules. Any module that has been
loaded by the kernel auto-load mechanism or demand-loaded by m o d l o a d(KE_OS)
may be queried by m o d s t a t.

When passed the module identifier modid, m o d s t a t fills up the members of the
m o d s t a t u s structure pointed to by strbuf with information about that module.

If the value of next_modid is B _ T R U E, m o d s t a t fills up a m o d s t a t u s structure with
information about the module whose module identifier is greater than or equal to
modid.

Return Values
On success, m o d s t a t returns one or more m o d s t a t u s structures. On failure,
m o d s t a t returns –1 and sets e r r n o to identify the error.

Errors
In the following conditions, m o d s t a t fails and sets e r r n o to:

E I N V A L modid does not match the identifier for any currently loaded
module when next_modid is B _ F A L S E or modid is greater than the
identifier for any currently loaded module when next_modid is
B _ T R U E.

E N O S Y S Unable to perform the requested operation because the loadable
modules functions are not configured into the system.

SEE ALSO
m o d a d m i n(AS_CMD), m o d l o a d(KE_OS), m o d u l o a d(KE_OS)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ke_os/modstat
svid

Page: 678

moduload (KE_OS) moduload (KE_OS)

NAME
m o d u l o a d – unload a loadable kernel module on demand

SYNOPSIS
i n c l u d e < s y s / m o d . h >

i n t m o d u l o a d (i n t modid) ;

DESCRIPTION
m o d u l o a d allows processes with the appropriate privilege to demand-unload a
loadable module—or all loadable modules—from a running system.

If modid specifies a module identifier, m o d u l o a d attempts to unload that module. If
modid specifies 0 (zero), m o d u l o a d attempts to unload all loadable modules.

Loadable modules are considered unloadable if all of the following conditions are
true:

the module is not currently being used

the module is not currently being loaded or unloaded

no module that depends on the module is currently loaded

profiling is disabled

When m o d u l o a d finds that it cannot demand-unload a module for one of the rea-
sons cited above, it flags the module as a candidate for subsequent unloading by the
kernel’s auto-unload mechanism.

Tasks performed during the unload operation include:

logically disconnect the module from the running system by removing the
module’s switch table entry

execute the module’s wrapper routine to perform any cleanup the module
requires to remove itself from the system

free kernel memory allocated for the module

Return Values
On success, m o d u l o a d returns 0. On failure, m o d u l o a d returns –1 and sets e r r n o to
identify the error.

Errors
In the following conditions, m o d u l o a d fails and sets e r r n o to:

E B U S Y Outstanding references to this module exist, or modules that
depend on this module are currently loaded, or profiling is not
enabled, or this module is in the process of being loaded or
unloaded.

E I N V A L modid does not specify a valid loadable module identifier, or
modid is not currently loaded.

E N O S Y S Unable to perform the requested operation because the loadable
modules functions are not configured into the system.

Page 1

FINAL COPY
June 15, 1995

File: ke_os/moduload
svid

Page: 679

moduload (KE_OS) moduload (KE_OS)

SEE ALSO
m o d a d m i n(AS_CMD), m o d l o a d(KE_OS), m o d p a t h(KE_OS), m o d s t a t(KE_OS)

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ke_os/moduload
svid

Page: 680

mprotect (KE_OS) mprotect (KE_OS)

NAME
mprotect – set protection of memory mapping

SYNOPSIS
#include <sys/types.h>
#include <sys/mman.h>

mprotect(caddr_t addr, size_t len, int prot);

DESCRIPTION
The function mprotect() changes the access protections on the mappings
specified by the range [addr, addr + len) to be that specified by prot . Legitimate
values for prot are the same as those permitted for mmap() and are defined in
<sys/mman.h> as:

PROT_READ /* page can be read */
PROT_WRITE /* page can be written */
PROT_EXEC /* page can be executed */
PROT_NONE /* page can not be accessed */

RETURN VALUE
Upon successful completion, the function mprotect() returns a value of 0; other-
wise, it returns a value of –1 and sets errno to indicate an error.

ERRORS
Under the following conditions, the function mprotect() fails and sets errno to:

EACCES if prot specifies a protection that violates the access permission the
process has to the underlying memory object.

EAGAIN if prot specifies PROT_WRITE over a MAP_PRIVATE mapping and
there are insufficient memory resources to reserve for locking the
private page.

EINVAL if addr is not a multiple of the page size as returned by sysconf().

ENOMEM if addresses in the range [addr, addr + len) are invalid for the address
space of a process, or specify one or more pages which are not
mapped.

When mprotect() fails for reasons other than EINVAL, the protections on some
of the pages in the range [addr, addr + len) will have been changed. If the error
occurs on some page at addr2, then the protections of all whole pages in the range
[addr, addr2] will have been modified.

SEE ALSO
mmap(KE_OS), memcntl(RT_OS), mlock(RT_OS), mlockall(RT_OS), plock(KE_OS),
sysconf(BA_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ke_os/mprotect
svid

Page: 681

msgctl (KE_OS) msgctl (KE_OS)

SEE ALSO
m s g o p(KE_OS)

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ke_os/msgctl
svid

Page: 683

msgget (KE_OS) msgget (KE_OS)

NAME
m s g g e t – get message queue

SYNOPSIS
i n c l u d e < s y s / t y p e s . h >
i n c l u d e < s y s / i p c . h >
i n c l u d e < s y s / m s g . h >

i n t m s g g e t (k e y _ t key, i n t msgflg) ;

DESCRIPTION
m s g g e t returns the message queue identifier associated with key . This identifier is
accessible by any process in the system, subject to normal access restrictions and the
permissions set with msgflg.

A successful call to m s g g e t does not imply access to the queue in question, only a
successful name mapping from key to ID.

A message queue identifier and associated message queue and data structure are
created for key if one of the following are true:

key is I P C _ P R I V A T E.

key does not already have a message queue identifier associated with it, and
(msgflg& I P C _ C R E A T) is true.

On creation, the data structure associated with the new message queue identifier is
initialized as follows:

m s g _ p e r m . c u i d, m s g _ p e r m . u i d, m s g _ p e r m . c g i d, and m s g _ p e r m . g i d are
set to the effective user I D and effective group I D, respectively, of the calling
process.

The low-order 9 bits of m s g _ p e r m . m o d e are set to the low-order 9 bits of
msgflg .

m s g _ q n u m, m s g _ l s p i d, m s g _ l r p i d, m s g _ s t i m e, and m s g _ r t i m e are set to 0.

m s g _ c t i m e is set to the current time.

m s g _ q b y t e s is set to the system limit.

Return Values
On success, m s g g e t returns a non-negative integer, namely a message queue
identifier. On failure, m s g g e t returns –1 and sets e r r n o to identify the error.

Errors
In the following conditions, m s g g e t fails and sets e r r n o to:

E A C C E S A message queue identifier exists for key , but the queue was not
created supporting the specified operation permissions.

E N O E N T A message queue identifier does not exist for key and
(msgflg& I P C _ C R E A T) is false.

E N O S P C A message queue identifier is to be created but the system-
imposed limit on the maximum number of allowed message queue
identifiers system wide would be exceeded.

Page 1

FINAL COPY
June 15, 1995

File: ke_os/msgget
svid

Page: 684

msgget (KE_OS) msgget (KE_OS)

E E X I S T A message queue identifier exists for key but (msgflg& I P C _ C R E A T)
and (msgflg& I P C _ E X C L) are both true.

SEE ALSO
m s g c t l(KE_OS), m s g o p(KE_OS)

LEVEL
Level 1.

Page 2

FINAL COPY
June 15, 1995

File: ke_os/msgget
svid

Page: 685

msgop (KE_OS) msgop (KE_OS)

m s g _ q n u m is incremented by 1.

m s g _ l s p i d I D of the caller.

m s g _ s t i m e is set to the current time.

m s g r c v reads a message from the queue associated with the message queue
identifier specified by msqid and places it in the user defined structure pointed to by
msgp . The structure must contain a message type field followed by the area for the
message text (see the structure m y m s g above). m t y p e is the received message’s type
as specified by the sending process. m t e x t is the text of the message. msgsz
specifies the size in bytes of m t e x t. The received message is truncated to msgsz
bytes if it is larger than msgsz and (msgflg& M S G _ N O E R R O R) is true. The truncated part
of the message is lost and no indication of the truncation is given to the calling
process.

msgtyp specifies the type of message requested as follows:

If msgtyp is 0, the first message on the queue is received.

If msgtyp is greater than 0, the first message of type msgtyp is received.

If msgtyp is less than 0, the first message of the lowest type that is less than
or equal to the absolute value of msgtyp is received.

msgflg specifies the action to be taken if a message of the desired type is not on the
queue. These are as follows:

If (msgflg& I P C _ N O W A I T) is true, the caller returns immediately with a return
value of –1 and sets e r r n o to E N O M S G.

If (msgflg& I P C _ N O W A I T) is false, the caller suspends execution until one of
the following occurs:

A message of the desired type is placed on the queue.

msqid is removed from the system. When this occurs, e r r n o is set to
E I D R M, and a value of –1 is returned.

The caller receives a signal that is to be caught. In this case a mes-
sage is not received and the caller resumes execution in the manner
prescribed in s i g n a l(BA_OS).

On success, the following actions are taken with respect to the data structure associ-
ated with msqid

m s g _ q n u m is decremented by 1.

m s g _ l r p i d is set to the process I D of the caller.

m s g _ r t i m e is set to the current time.

Return Values
On success:

m s g s n d returns 0.

m s g r c v returns the number of bytes actually placed into mtext .

Page 2

FINAL COPY
June 15, 1995

File: ke_os/msgop
svid

Page: 687

msgop (KE_OS) msgop (KE_OS)

On failure, m s g s n d and m s g r c v return –1 and set e r r n o to identify the error.

Errors
In the following conditions, m s g s n d and m s g r c v fail and set e r r n o to:

E I N T R m s g s n d or m s g r c v returned due to the receipt of a signal.

E I D R M m s g s n d or m s g r c v returned due to removal of msqid from the system.

In the following conditions, m s g s n d fails and sets e r r n o to:

E I N V A L msqid is not a valid message queue identifier.

E A C C E S Operation permission is denied to the caller.

E I N V A L mtype is less than 1.

E A G A I N The message cannot be sent for one of the reasons cited above and
(msgflg& I P C _ N O W A I T) is true.

E I N V A L msgsz is less than zero or greater than the system-imposed limit.

In the following conditions, m s g r c v fails and sets e r r n o to:

E I N V A L msqid is not a valid message queue identifier.

E A C C E S Operation permission is denied to the caller.

E I N V A L msgsz is less than 0.

E 2 B I G The length of mtext is greater than msgsz and
(msgflg& M S G _ N O E R R O R) is false.

E N O M S G The queue does not contain a message of the desired type and
(msgtyp& I P C _ N O W A I T) is true.

SEE ALSO
m s g c t l(KE_OS) m s g g e t(KE_OS) s i g n a l(BA_OS)

LEVEL
Level 1.

NOTICES
Considerations for Threads Programming

While one thread is blocked, siblings might still be executing.

Page 3

FINAL COPY
June 15, 1995

File: ke_os/msgop
svid

Page: 688

msync (KE_OS) msync (KE_OS)

NAME
msync – synchronize memory with physical storage

SYNOPSIS
#include <sys/types.h>
#include <sys/mman.h>

int msync(caddr_t addr; size_t len; int flags);

DESCRIPTION
The function msync() writes all modified copies of pages over the range [addr, addr
+ len) to their permanent storage locations. msync() optionally invalidates any
copies so that further references to the pages will be obtained by the system from
their permanent storage locations.

flags is a bit pattern built from the following flags used to control the behavior of the
operation:

MS_ASYNC perform asynchronous writes
MS_SYNC perform synchronous writes
MS_INVALIDATE invalidate mappings

MS_ASYNC returns immediately once all write operations are scheduled; with
MS_SYNC the system call will not return until all write operations are completed.

MS_INVALIDATE invalidates all cached copies of data in memory, so that further
references to the pages will be obtained by the system from their permanent storage
locations. This operation should be used by applications that require a memory
object to be in a known state.

RETURN VALUE
Upon successful completion, the function msync() returns a value of 0; otherwise,
it returns a value of –1 and sets errno to indicate an error.

ERRORS
Under the following conditions, the function msync() fails and sets errno to:

EBUSY if some or all the addresses in the range [addr, addr + len) are locked.

EINVAL if addr is not a multiple of the page size as returned by sysconf().

ENOMEM if some or all the addresses in the range [addr, addr + len) are invalid
for the address space of the process or pages not mapped are
specified.

USAGE
msync() should be used by programs that require a memory object to be in a
known state, for example in building transaction facilities.

SEE ALSO
mmap(KE_OS), sysconf(BA_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ke_os/msync
svid

Page: 689

munmap (KE_OS) munmap (KE_OS)

NAME
munmap – unmap pages of memory.

SYNOPSIS
#include <sys/types.h>
#include <sys/mman.h>

munmap(caddr_t addr, size_t len);

DESCRIPTION
The function munmap() removes the mappings for pages in the range [addr, addr +
len). Further references to these pages will result in the delivery of a SIGSEGV sig-
nal to the process.

The function mmap() often performs an implicit munmap().

RETURN VALUE
Upon successful completion, the function munmap() returns a value of 0; other-
wise, it returns a value of –1 and sets errno to indicate an error.

ERRORS
Under the following conditions, the function munmap() fails and sets errno to:

EINVAL if addr is not a multiple of the page size as returned by sysconf().

EINVAL if addresses in the range [addr, addr + len) are outside the valid range
for the address space of a process.

SEE ALSO
mmap(KE_OS), sysconf(BA_OS).

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ke_os/munmap
svid

Page: 690

nice (KE_OS) nice (KE_OS)

NAME
n i c e – change priority of a time-sharing process

SYNOPSIS
i n c l u d e < u n i s t d . h >

i n t n i c e (i n t incr) ;

DESCRIPTION
n i c e allows a member of the time-sharing scheduling class to change its priority.

n i c e adds the value of incr to the nice value of the calling process. The nice value is
a non-negative number for which a more positive value results in lower CPU prior-
ity.

A maximum nice value of N Z E R O are imposed by the system. Requests for values
above or below these limits result in the nice value being set to the corresponding
limit.

Return Values
On success, n i c e returns the new nice value minus N Z E R O. On failure, n i c e returns
–1 and sets e r r n o to identify the error.

Errors
In the following conditions, n i c e fails and sets e r r n o to:

E P E R M i n c r is negative or greater than N Z E R O and the effective user ID of
the calling process does not have the appropriate privilege.

E I N V A L The process was in a scheduling class other than time-sharing.

USAGE
p r i o c n t l(RT_CMD) is a more general interface to scheduler functions.

SEE ALSO
e x e c(BA_OS), n i c e(AS_CMD), p r i o c n t l(RT_CMD)

LEVEL
Level 1.

Page 1

FINAL COPY
June 15, 1995

File: ke_os/nice
svid

Page: 691

plock (KE_OS) plock (KE_OS)

NAME
p l o c k – lock into memory or unlock process, text, or data

SYNOPSIS
i n c l u d e < s y s / l o c k . h >

i n t p l o c k (i n t op) ;

DESCRIPTION
p l o c k allows the calling process to lock into memory or unlock its text segment
(text lock), its data segment (data lock), or both its text and data segments (process
lock). Locked segments are immune to all routine swapping. p l o c k also allows
these segments to be unlocked. The effective user id of the calling process must
have the appropriate privilege to use this call.

p l o c k performs the function specified by op :

P R O C L O C K Lock text and data segments into memory (process lock).

T X T L O C K Lock text segment into memory (text lock).

D A T L O C K Lock data segment into memory (data lock).

U N L O C K Remove locks.

Return Values
On success, p l o c k returns 0. On failure, p l o c k returns –1 and sets e r r n o to iden-
tify the error.

Errors
In the following conditions, p l o c k fails and sets e r r n o to:

E P E R M The effective user id of the calling process does not have the
appropriate privilege.

E I N V A L op is equal to P R O C L O C K and a process lock, a text lock, or a data
lock already exists on the calling process.

E I N V A L op is equal to T X T L O C K and a text lock, or a process lock already
exists on the calling process.

E I N V A L op is equal to D A T L O C K and a data lock, or a process lock already
exists on the calling process.

E I N V A L op is equal to U N L O C K and no lock exists on the calling process.

E A G A I N Not enough memory, or there is insufficient resources.

SEE ALSO
e x e c(BA_OS), m e m c n t l(RT_OS)

FUTURE DIRECTIONS
p l o c k is described in terms of text and data segments but a process address space is
usually described as a collected of m m a ped objects.

LEVEL
Level 2.

Page 1

FINAL COPY
June 15, 1995

File: ke_os/plock
svid

Page: 692

plock (KE_OS) plock (KE_OS)

NOTICES
m e m c n t l is the preferred interface to memory locking.

Considerations for Threads Programming
Sibling threads share (by definition) the same address space; modifications to the
address space by one can be perceived by the others.

Page 2

FINAL COPY
June 15, 1995

File: ke_os/plock
svid

Page: 693

priocntl (KE_OS) priocntl (KE_OS)

NAME
p r i o c n t l – process scheduler control

SYNOPSIS
i n c l u d e < s y s / t y p e s . h >
i n c l u d e < s y s / p r o c s e t . h >
i n c l u d e < s y s / p r i o c n t l . h >
i n c l u d e < s y s / f p p r i o c n t l . h >
i n c l u d e < s y s / t s p r i o c n t l . h >

l o n g p r i o c n t l (i d t y p e _ t idtype, i d _ t id, i n t cmd, v o i d * a r g) ;

DESCRIPTION
p r i o c n t l provides for control over the scheduling of active processes.

Processes fall into distinct classes with a separate scheduling policy applied to each
class. The two classes currently supported are the fixed priority class and the time-
sharing class. The characteristics of these classes are described under the
corresponding headings below. The class attribute of a process is inherited across
the f o r k(BA_OS) and e x e c(BA_OS) system calls. p r i o c n t l can be used to dynam-
ically change the class and other scheduling parameters associated with a running
process or set of processes given the appropriate permissions as explained below.

In the default configuration, the highest fixed priority process runs before any other
process. Therefore, inappropriate use of fixed priority processes can have a
dramatic negative impact on system performance.

For p r i o c n t l, the idtype and id arguments are used together to specify the set of
processes. The interpretation of id depends on the value of idtype. The possible
values for idtype and corresponding interpretations of id are as follows:

P _ P I D id is a process ID specifying a single process to which the p r i o c n t l
system call is to apply.

P _ P P I D id is a parent process ID. The p r i o c n t l system call applies to all
processes with the specified parent process ID.

P _ P G I D id is a process group ID. The p r i o c n t l system call applies to all
processes in the specified process group.

P _ S I D id is a session ID. The p r i o c n t l system call applies to all processes in
the specified session.

P _ C I D id is a class ID (returned by p r i o c n t l P C _ G E T C I D as explained below).
The p r i o c n t l system call applies to all processes in the specified
class.

P _ U I D id is a user ID. The p r i o c n t l system call applies to all processes with
this effective user ID.

P _ G I D id is a group ID. The p r i o c n t l system call applies to all processes
with this effective group ID.

P _ A L L The p r i o c n t l system call applies to all existing processes. The value
of id is ignored. The permission restrictions described below still
apply.

Page 1

FINAL COPY
June 15, 1995

File: ke_os/priocntl
svid

Page: 694

priocntl (KE_OS) priocntl (KE_OS)

The p c _ c l p a r m s buffer holds class-specific scheduling parameters. The format of
this parameter data for a particular class is described under the appropriate head-
ing below. P C _ C L P A R M S Z is the length of the p c _ c l p a r m s buffer and is defined in
s y s / p r i o c n t l . h.

Commands
Available p r i o c n t l commands are:

P C _ G E T C I D
Get class ID and class attributes for a specific class given class name. The idtype
and id arguments are ignored. If arg is non-null, it points to a structure of type
p c i n f o _ t. The p c _ c l n a m e buffer contains the name of the class whose attri-
butes you are getting.

On success, the class ID is returned in p c _ c i d, the class attributes are returned in
the p c _ c l i n f o buffer, and the p r i o c n t l call returns the total number of classes
configured in the system (including the s y s class). If the class specified by
p c _ c l n a m e is invalid or is not currently configured the p r i o c n t l call returns –1
with e r r n o set to E I N V A L. The format of the attribute data returned for a given
class is defined in the s y s / f p p r i o c n t l . h or s y s / t s p r i o c n t l . h header file
and described under the appropriate heading below.

If arg is a N U L L pointer, no attribute data is returned but the p r i o c n t l call still
returns the number of configured classes.

P C _ G E T C L I N F O
Get class name and class attributes for a specific class given class ID. The idtype
and id arguments are ignored. If arg is non-null, it points to a structure of type
p c i n f o _ t. p c _ c i d is the class ID of the class whose attributes you are getting.

On success, the class name is returned in the p c _ c l n a m e buffer, the class attri-
butes are returned in the p c _ c l i n f o buffer, and the p r i o c n t l call returns the
total number of classes configured in the system (including the s y s class). The
format of the attribute data returned for a given class is defined in the
s y s / f p p r i o c n t l . h or s y s / t s p r i o c n t l . h header file and described under the
appropriate heading below.

If arg is a N U L L pointer, no attribute data is returned but the p r i o c n t l call still
returns the number of configured classes.

P C _ S E T P A R M S
Set the class and class-specific scheduling parameters of the specified
process(es). arg points to a structure of type p c p a r m s _ t. p c _ c i d specifies the
class you are setting and the p c _ c l p a r m s buffer contains the class-specific
parameters you are setting. The format of the class-specific parameter data is
defined in the s y s / f p p r i o c n t l . h or s y s / t s p r i o c n t l . h header file and
described under the appropriate class heading below.

When setting parameters for a set of processes, p r i o c n t l acts on the processes
in the set in an implementation-specific order. If p r i o c n t l encounters an error
for one or more of the target processes, it may or may not continue through the
set of processes, depending on the error. If the error is related to permissions
(E P E R M), p r i o c n t l continues through the process set, resetting the parameters
for all target processes for which the calling process has appropriate permis-
sions. p r i o c n t l then returns –1 with e r r n o set to E P E R M to indicate that the

Page 3

FINAL COPY
June 15, 1995

File: ke_os/priocntl
svid

Page: 696

priocntl (KE_OS) priocntl (KE_OS)

operation failed for one or more of the target processes. If p r i o c n t l encounters
an error other than permissions, it does not continue through the set of target
processes but returns the error immediately.

P C _ G E T P A R M S
Get the class and/or class-specific scheduling parameters of a process. arg
points the a structure of type p c p a r m s _ t.

If p c _ c i d specifies a configured class and a single process belonging to that class
is specified by the idtype and id values or the p r o c s e t structure, then the
scheduling parameters of that process are returned in the p c _ c l p a r m s buffer. If
the process specified does not exist or does not belong to the specified class, the
p r i o c n t l call returns –1 with e r r n o set to E S R C H.

If p c _ c i d specifies a configured class and a set of processes is specified, the
scheduling parameters of one of the specified processes belonging to the
specified class are returned in the p c _ c l p a r m s buffer and the p r i o c n t l call
returns the process ID of the selected process. The criteria for selecting a process
to return in this case is class dependent. If none of the specified processes exist
or none of them belong to the specified class the p r i o c n t l call returns –1 with
e r r n o set to E S R C H.

If p c _ c i d is P C _ C L N U L L and a single process is specified the class of the specified
process us returned in p c _ c i d and its scheduling parameters are returned in the
p c _ c l p a r m s buffer.

Fixed Priority Class
The fixed priority class provides a fixed priority preemptive scheduling policy for
those processes requiring fast and deterministic response and absolute
user/application control of scheduling priorities. If the fixed priority class is
configured in the system it should have exclusive control of the highest range of
scheduling priorities on the system. This ensures that a runnable fixed priority pro-
cess is given CPU service before any process belonging to any other class.

The fixed priority class has a range of fixed priority (f p _ p r i) values that may be
assigned to processes within the class. Fixed priorities range from 0 to x, where the
value of x is configurable and can be determined for a specific installation by using
the p r i o c n t l P C _ G E T C I D or P C _ G E T C L I N F O command.

The fixed priority scheduling policy is a fixed priority policy. The scheduling prior-
ity of a fixed priority process is never changed except as the result of an explicit
request by the user/application to change the f p _ p r i value of the process.

For processes in the fixed priority class, the f p _ p r i value is, for all practical pur-
poses, equivalent to the scheduling priority of the process. The f p _ p r i value com-
pletely determines the scheduling priority of a fixed priority process relative to
other processes within its class. Numerically higher f p _ p r i values represent
higher priorities. Since the fixed priority class controls the highest range of schedul-
ing priorities in the system it is guaranteed that the runnable fixed priority process
with the highest f p _ p r i value is always selected to run before any other process in
the system.

Page 4

FINAL COPY
June 15, 1995

File: ke_os/priocntl
svid

Page: 697

priocntl (KE_OS) priocntl (KE_OS)

In addition to providing control over priority, p r i o c n t l provides for control over
the length of the time quantum allotted to processes in the fixed priority class. The
time quantum value specifies the maximum amount of time a process may run
assuming that it does not complete or enter a resource or event wait state (s l e e p).
Note that if another process becomes runnable at a higher priority the currently
running process may be preempted before receiving its full time quantum.

The system’s process scheduler keeps the runnable fixed priority processes on a set
of scheduling queues. There is a separate queue for each configured fixed priority
and all fixed priority processes with a given f p _ p r i value are kept together on the
appropriate queue. The processes on a given queue are ordered in FIFO order (that
is, the process at the front of the queue has been waiting longest for service and
receives the CPU first). Fixed priority processes that wake up after sleeping,
processes that change to the fixed priority class from some other class, processes
that have used their full time quantum, and runnable processes whose priority is
reset by p r i o c n t l are all placed at the back of the appropriate queue for their
priority. A process that is preempted by a higher priority process remains at the
front of the queue (with whatever time is remaining in its time quantum) and runs
before any other process at this priority. Following a f o r k(BA_OS) system call by a
fixed priority process, the parent process continues to run while the child process
(which inherits its parent’s f p _ p r i value) is placed at the back of the queue.

Use the structure of f p i n f o _ t, defined in s y s / f p p r i o c n t l . h which defines the
format used for the attribute data for the fixed priority class.

s h o r t f p _ m a x p r i ; / * M a x i m u m f i x e d p r i o r i t y * /

The p r i o c n t l P C _ G E T C I D and P C _ G E T C L I N F O commands return fixed priority class
attributes in the p c _ c l i n f o buffer in this format.

f p _ m a x p r i specifies the configured maximum f p _ p r i value for the fixed priority
class (if f p _ m a x p r i is x, the valid fixed priority priorities range from 0 to x).

The structure f p p a r m s _ t defined in s y s / f p p r i o c n t l . h defines the format used to
specify the fixed priority class-specific scheduling parameters of a process.

s h o r t f p _ p r i ; / * F i x e d p r i o r i t y * /
u l o n g f p _ t q s e c s ; / * S e c o n d s i n t i m e q u a n t u m * /
l o n g f p _ t q n s e c s ; / * A d d i t i o n a l n a n o s e c o n d s i n q u a n t u m * /

When using the p r i o c n t l P C _ S E T P A R M S or P C _ G E T P A R M S commands, if p c _ c i d
specifies the fixed priority class, the data in the p c _ c l p a r m s buffer is in this format.

The above commands can be used to set the fixed priority to the specified value or
get the current f p _ p r i value. Setting the f p _ p r i value of a process that is
currently running or runnable (not sleeping) causes the process to be placed at the
back of the scheduling queue for the specified priority. The process is placed at the
back of the appropriate queue regardless of whether the priority being set is dif-
ferent from the previous f p _ p r i value of the process. Note that a running process
can voluntarily release the CPU and go to the back of the scheduling queue at the
same priority by resetting its f p _ p r i value to its current fixed priority value. To
change the time quantum of a process without setting the priority or affecting the
process’s position on the queue, the f p _ p r i field should be set to the special value
F P _ N O C H A N G E (defined in s y s / f p p r i o c n t l . h). Specifying F P _ N O C H A N G E when
changing the class of a process to fixed priority from some other class results in the

Page 5

FINAL COPY
June 15, 1995

File: ke_os/priocntl
svid

Page: 698

priocntl (KE_OS) priocntl (KE_OS)

fixed priority being set to zero.

For the p r i o c n t l P C _ G E T P A R M S command, if p c _ c i d specifies the fixed priority
class and more than one fixed priority process is specified, the scheduling parame-
ters of the fixed priority process with the highest f p _ p r i value among the specified
processes are returned and the process ID of this process is returned by the
p r i o c n t l call. If there is more than one process sharing the highest priority, the
one returned is implementation-dependent.

The f p _ t q s e c s and f p _ t q n s e c s fields are used for getting or setting the time
quantum associated with a process or group of processes. f p _ t q s e c s is the
number of seconds in the time quantum and f p _ t q n s e c s is the number of addi-
tional nanoseconds in the quantum. For example setting f p _ t q s e c s to 2 and
f p _ t q n s e c s to 500,000,000 (decimal) would result in a time quantum of two and
one-half seconds. Specifying a value of 1,000,000,000 or greater in the f p _ t q n s e c s
field results in an error return with e r r n o set to E I N V A L. Although the resolution of
the t q _ n s e c s field is very fine, the specified time quantum length is rounded up by
the system to the next integral multiple of the system clock’s resolution. For exam-
ple, the finest resolution currently available on a system is 10 milliseconds (1
‘‘tick’’). Setting f p _ t q s e c s to 0 and f p _ t q n s e c s to 34,000,000 would specify a time
quantum of 34 milliseconds, which would be rounded up to 4 ticks (40 mil-
liseconds) on a machine with 10-millisecond resolution. The maximum time quan-
tum that can be specified is implementation-specific and equal to L O N G _ M A X ticks
(defined in l i m i t s . h). Requesting a quantum greater than this maximum results in
an error return with e r r n o set to E R A N G E (although infinite quantums may be
requested using a special value as explained below). Requesting a time quantum of
zero (setting both f p _ t q s e c s and f p _ t q n s e c s to 0) results in an error return with
e r r n o set to E I N V A L.

The f p _ t q n s e c s field can also be set to one of the following special values (defined
in s y s / f p p r i o c n t l . h), in which case the value of f p _ t q s e c s is ignored.

F P _ T Q I N F Set an infinite time quantum.

F P _ T Q D E F Set the time quantum to the default for this priority

F P _ N O C H A N G E Don’t set the time quantum. This value is useful when
you wish to change the fixed priority of a process without
affecting the time quantum. Specifying this value when
changing the class of a process to fixed priority from
some other class is equivalent to specifying F P _ T Q D E F.

To change the class of a process to fixed priority (from any other class), or to change
the priority or time quantum setting of a fixed priority process, the following condi-
tions must be true:

The calling process must have the appropriate privilege.

The effective user ID of the calling process must match the effective user ID
of the target process (or the calling process have the appropriate privilege).

The fixed priority and time quantum are inherited across the f o r k(BA_OS) and
e x e c(BA_OS) system calls.

Page 6

FINAL COPY
June 15, 1995

File: ke_os/priocntl
svid

Page: 699

priocntl (KE_OS) priocntl (KE_OS)

Time-Sharing Class
The time-sharing scheduling policy provides for a fair and effective allocation of the
CPU resource among processes with varying CPU consumption characteristics. The
objectives of the time-sharing policy are to provide good response time
to interactive processes and good throughput to CPU-bound jobs while providing a
degree of user/application control over scheduling.

The time-sharing class has a range of time-sharing user priority (see t s _ u p r i)
values that may be assigned to processes within the class. A t s _ u p r i value of zero
is defined as the default base priority for the time-sharing class. User priorities
range from –x to +x where the value of x is configurable and can be determined for
a specific installation by using the p r i o c n t l P C _ G E T C I D or P C _ G E T C L I N F O com-
mand.

The purpose of the user priority is to provide some degree of user/application con-
trol over the scheduling of processes in the time-sharing class. Raising or lowering
the t s _ u p r i value of a process in the time-sharing class raises or lowers the
scheduling priority of the process. It is not guaranteed, however, that a process
with a higher t s _ u p r i value will run before one with a lower t s _ u p r i value. This
is because the t s _ u p r i value is just one factor used to determine the scheduling
priority of a time-sharing process. The system may dynamically adjust the internal
scheduling priority of a time-sharing process based on other factors such as recent
CPU usage.

In addition to the system-wide limits on user priority (returned by the P C _ G E T C I D
and P C _ G E T C L I N F O commands) there is a per process user priority limit (see
t s _ u p r i l i m below), which specifies the maximum t s _ u p r i value that may be set
for a given process; by default, t s _ u p r i l i m is zero.

The structure t s i n f o _ t (defined in s y s / t s p r i o c n t l . h) defines the format used
for the attribute data for the time-sharing class.

s h o r t t s _ m a x u p r i ; / * L i m i t s o f u s e r p r i o r i t y r a n g e * /

The p r i o c n t l P C _ G E T C I D and P C _ G E T C L I N F O commands return time-sharing class
attributes in the p c _ c l i n f o buffer in this format.

t s _ m a x u p r i specifies the configured maximum user priority value for the time-
sharing class. If t s _ m a x u p r i is x, the valid range for both user priorities and user
priority limits is from –x to +x.

The structure t s p a r m s _ t defined in s y s / t s p r i o c n t l . h, defines the format used to
specify the time-sharing class-specific scheduling parameters of a process.

s h o r t t s _ u p r i l i m ; / * T i m e - S h a r i n g u s e r p r i o r i t y l i m i t * /
s h o r t t s _ u p r i ; / * T i m e - S h a r i n g u s e r p r i o r i t y * /

When using the p r i o c n t l P C _ S E T P A R M S or P C _ G E T P A R M S commands, if p c _ c i d
specifies the time-sharing class, the data in the p c _ c l p a r m s buffer is in this format.

For the p r i o c n t l P C _ G E T P A R M S command, if p c _ c i d specifies the time-sharing
class and more than one time-sharing process is specified, the scheduling parame-
ters of the time-sharing process with the highest t s _ u p r i value among the specified
processes is returned and the processID of this process is returned by the p r i o c n t l
call. If there is more than one process sharing the highest user priority, the one
returned is implementation-dependent.

Page 7

FINAL COPY
June 15, 1995

File: ke_os/priocntl
svid

Page: 700

priocntl (KE_OS) priocntl (KE_OS)

Any time-sharing process may lower its own t s _ u p r i l i m (or that of another
process with the same user ID).

If the priority of the target process is to be raised above its current value, or if the
target process’s t s _ u p r i l i m is to be raised above a value of 0, the following
conditions must be true:

The calling process must have the appropriate privilege.

The effective user ID of the calling process must match the effective user ID
of the target process (or the calling process have the appropriate privilege).

Attempts by an unprivileged user process to raise a t s _ u p r i l i m or set an initial
t s _ u p r i l i m greater than zero fail with a return value of –1 and e r r n o set to E P E R M.

Any time-sharing process may set its own t s _ u p r i (or that of another process with
the same user ID) to any value less than or equal to the process’s t s _ u p r i l i m.
Attempts to set the t s _ u p r i above the t s _ u p r i l i m (and/or set the t s _ u p r i l i m
below the t s _ u p r i) result in the t s _ u p r i being set equal to the t s _ u p r i l i m.

Either of the t s _ u p r i l i m or t s _ u p r i fields may be set to the special value
T S _ N O C H A N G E (defined in s y s / t s p r i o c n t l . h) to set one value without affecting
the other. Specifying T S _ N O C H A N G E for the t s _ u p r i when the t s _ u p r i l i m is being
set to a value below the current t s _ u p r i causes the t s _ u p r i to be set equal to the
t s _ u p r i l i m being set. Specifying T S _ N O C H A N G E for a parameter when changing
the class of a process to time-sharing (from some other class) causes the parameter
to be set to a default value. The default value for the t s _ u p r i l i m is 0 and the
default for the t s _ u p r i is to set it equal to the t s _ u p r i l i m which is being set.

The time-sharing user priority and user priority limit are inherited across the f o r k
and e x e c system calls.

Return Values
Unless otherwise noted above, p r i o c n t l returns a value of 0 on success. On
failure, p r i o c n t l returns –1 and sets e r r n o to identify the error.

Errors
In the following conditions, p r i o c n t l fails and sets e r r n o to:

E P E R M An attempt was made to change the system time-sharing or fixed
priority defaults, and the calling process does not have appropri-
ate privileges (respectively, for the two classes).

E P E R M The effective user ID of the calling process does not match the
effective user ID of the target process, and the calling process
does not have the appropriate privilege.

E P E R M An attempt was made to change the class of the target process to
fixed priority (from any class) and the calling process does not
have the appropriate privileges.

E P E R M An attempt was made to change the priority of a fixed priority
process and the calling process does not have the privileges.

E P E R M An attempt was made to raise the priority of a time-sharing pro-
cess, or raise the t s _ p r i l i m of the process above 0, and the cal-
ling process does not have the appropriate privilege.

Page 8

FINAL COPY
June 15, 1995

File: ke_os/priocntl
svid

Page: 701

priocntl (KE_OS) priocntl (KE_OS)

E I N V A L The argument cmd was invalid, an invalid or unconfigured class
was specified, or one of the parameters specified was invalid.

E R A N G E The requested time quantum is out of range.

E S R C H None of the specified processes exist.

E F A U L T All or part of the area pointed to by one of the data pointers is
outside the process’s address space.

E N O M E M An attempt to change the class of a process failed because of
insufficient memory.

E A G A I N An attempt to change the class of a process failed because of
insufficient resources other than memory (for example, class-
specific kernel data structures).

FUTURE DIRECTIONS
Real Time Class is now uniformly called Fixed Priority Scheduling Class to better
describe its characteristics.

SEE ALSO
e x e c(BA_OS), f o r k(BA_OS), n i c e(AS_CMD), p r i o c n t l(AU_CMD)

LEVEL
Level 1.

Page 9

FINAL COPY
June 15, 1995

File: ke_os/priocntl
svid

Page: 702

profil (KE_OS) profil (KE_OS)

NAME
p r o f i l – execution time profile

SYNOPSIS
i n c l u d e < u n i s t d . h >

v o i d p r o f i l (u n s i g n e d s h o r t ∗buff, u n s i g n e d i n t bufsiz,
u n s i g n e d i n t offset, u n s i g n e d i n t scale) ;

DESCRIPTION
p r o f i l provides CPU-use statistics by profiling the amount of CPU time expended
by a program. p r o f i l generates the statistics by creating an execution histogram
for a current process. The histogram is defined for a specific region of program
code to be profiled, and the identified region is logically broken up into a set of
equal size subdivisions, each of which corresponds to a count in the histogram.
With each clock tick, the current subdivision is identified and its corresponding his-
togram count is incremented. These counts establish a relative measure of how
much time is being spent in each code subdivision. The resulting histogram counts
for a profiled region can be used to identify those functions that consume a dispro-
portionately high percentage of CPU time.

buff is a buffer of bufsiz bytes in which the histogram counts are stored in an array of
u n s i g n e d s h o r t i n t.

offset, scale, and bufsiz specify the region to be profiled.

offset is effectively the start address of the region to be profiled.

scale, broadly speaking, is a contraction factor that indicates how much smaller the
histogram buffer is than the region to be profiled. More precisely, scale is inter-
preted as an unsigned fixed-point fraction with the binary point implied on the left.
Its value is the reciprocal of the number of bytes in a subdivision, per byte of histo-
gram buffer. Since there are two bytes per histogram counter, the effective ratio of
subdivision bytes per counter is one half the scale.

Profiling is turned off by giving a scale of 0 or 1. It is rendered ineffective by giving
a bufsiz of 0. Profiling is turned off when an e x e c routine is executed, but remains
on in both child and parent after a call to the f o r k routine. Profiling will be turned
off if an update in buff would cause a memory fault.

scale can be computed as (RATIO ∗ 0 2 0 0 0 0 0 L), where RATIO is the desired ratio of
bufsiz to profiled region size, and has a value between 0 and 1. Qualitatively speak-
ing, the closer RATIO is to 1, the higher the resolution of the profile information.

bufsiz can be computed as (size_of_region_to_be_profiled ∗ RATIO).

SEE ALSO
m o n i t o r(SD_LIB), p r o f(SD_CMD)

LEVEL
Level 2: September 30, 1989

NOTICES
Profiling is turned off by giving a scale of 0 or 1, and is rendered ineffective by giv-
ing a bufsiz of 0. Profiling is turned off when an e x e c(BA_OS) is executed, but
remains on in both child and parent processes after a f o r k(BA_OS). Profiling is
turned off if a buff update would cause a memory fault.

Page 1

FINAL COPY
June 15, 1995

File: ke_os/profil
svid

Page: 703

profil (KE_OS) profil (KE_OS)

Considerations for Threads Programming
Statistics are gathered at the process level and represent the combined usage of all
contained threads.

Page 2

FINAL COPY
June 15, 1995

File: ke_os/profil
svid

Page: 704

ptrace (KE_OS) ptrace (KE_OS)

the parent. On failure a value of –1 is returned to the parent process and the
parent’s e r r n o is set to E I O.

6 With this request, a few entries in the child’s user area can be written. data
gives the value that is to be written and addr is the location of the entry. The
few entries that can be written are implementation specific but might
include the general registers and the condition codes of the Processor Status
Word.

7 This request causes the child to resume execution. If the data argument is 0,
the signal that caused the child to stop is canceled before it resumes execu-
tion. If the data argument is a valid signal number, the child resumes execu-
tion as if it had incurred that signal, and any other pending signals are can-
celed. The addr argument must be equal to 1 for this request. On success,
the value of data is returned to the parent. This request fails if data is not 0
or a valid signal number, in which case a value of –1 is returned to the
parent process and the parent’s e r r n o is set to E I O.

8 This request causes the child to terminate with the same consequences as
e x i t(BA_OS).

9 This request is implementation dependent but if operative, it is used to
request single stepping through the instructions of the child.

To forestall possible fraud, p t r a c e inhibits the set-user-ID facility on subsequent
e x e c(BA_OS) calls. If a traced process calls e x e c(BA_OS), it stops before executing
the first instruction of the new image showing signal S I G T R A P.

Return Values
Upon successful completion, return values are specific to the request type. Upon
failure, the p t r a c e returns a value of - 1 and sets e r r n o to indicate an error.

Errors
In the following conditions, p t r a c e fails and sets e r r n o to:

E I O request is an illegal number.

E S R C H pid identifies a child that does not exist or has not executed a p t r a c e
with request 0.

SEE ALSO
s i g n a l(BA_OS), w a i t(BA_OS)

FUTURE DIRECTIONS
Replaced by m m a p(). This will be removed in a future issue of the SVID.

LEVEL
Level 2, July 1992.

Page 2

FINAL COPY
June 15, 1995

File: ke_os/ptrace
svid

Page: 706

semctl (KE_OS) semctl (KE_OS)

NAME
s e m c t l – semaphore control operations

SYNOPSIS
i n c l u d e < s y s / t y p e s . h >
i n c l u d e < s y s / i p c . h >
i n c l u d e < s y s / s e m . h >

u n i o n s e m u n {
i n t v a l ;
s t r u c t s e m i d _ d s ∗b u f ;
u s h o r t ∗a r r a y ;

} ;

i n t s e m c t l (i n t semid, i n t semnum, i n t cmd, . . . /∗ u n i o n s e m u n arg ∗/) ;
DESCRIPTION

s e m c t l provides a variety of semaphore control operations as specified by cmd.

The following cmds are executed with respect to the semaphore specified by semid
and semnum : The level of permission required for each operation is shown with
each command. The symbolic names for the values of cmd are defined by the
< s y s / s e m . h > header file.

G E T V A L Return the value of s e m v a l Requires read permission.

S E T V A L Set the value of s e m v a l to arg. v a l. When this command is success-
fully executed, the s e m a d j value corresponding to the specified sema-
phore in all processes is cleared.

G E T P I D Return the value of (i n t) s e m p i d. Requires read permission.

G E T N C N T Return the value of s e m n c n t. Requires read permission.

G E T Z C N T Return the value of s e m z c n t. Requires read permission.

The following cmds return and set, respectively, every s e m v a l in the set of sema-
phores.

G E T A L L Place s e m v a ls into array pointed to by arg. a r r a y. Requires read per-
mission.

S E T A L L Set s e m v a ls according to the array pointed to by arg. a r r a y. Requires
alter permission. When this cmd is successfully executed, the s e m a d j
values corresponding to each specified semaphore in all processes are
cleared.

The following cmds are also available:

I P C _ S T A T Place the current value of each member of the data structure associ-
ated with semid into the structure pointed to by arg. b u f. Requires
read permission.

I P C _ S E T Set the value of the following members of the data structure associ-
ated with semid to the corresponding value found in the structure
pointed to by arg. b u f:

s e m _ p e r m . u i d
s e m _ p e r m . g i d

Page 1

FINAL COPY
June 15, 1995

File: ke_os/semctl
svid

Page: 707

semctl (KE_OS) semctl (KE_OS)

s e m _ p e r m . m o d e /∗ o n l y a c c e s s p e r m i s s i o n b i t s ∗/
This command can be executed only by a process that has an effective
user I D equal to the value of s e m _ p e r m . c u i d or s e m _ p e r m . u i d in the
data structure associated with semid or to a process that has the
appropriate privilege.

I P C _ R M I D Remove the semaphore identifier specified by semid from the system
and destroy the set of semaphores and data structure associated with
it. This command can be executed only by a process that has an effec-
tive user I D equal to the value of s e m _ p e r m . c u i d or s e m _ p e r m . u i d in
the data structure associated with semid or to a process that has the
appropriate privilege.

Return Values
On success, s e m c t l returns a value that depends on cmd :

G E T V A L the value of s e m v a l
G E T P I D the value of (i n t) s e m p i d
G E T N C N T the value of s e m n c n t
G E T Z C N T the value of s e m z c n t
all others a value of 0

On failure, s e m c t l returns –1 and sets e r r n o to identify the error.

Errors
In the following conditions, s e m c t l fails and sets e r r n o to:

E A C C E S Operation permission is denied to the calling process

E I N V A L semid is not a valid semaphore identifier.

E I N V A L semnum is less than 0 or greater than s e m _ n s e m s.

E I N V A L cmd is not a valid command.

E N O S Y S if the functionality is not supported by the implementation.

E R A N G E cmd is S E T V A L or S E T A L L and the value to which s e m v a l is to be
set is greater than the system imposed maximum.

E P E R M cmd is equal to I P C _ R M I D or I P C _ S E T and the effective user I D of
the calling process is not equal to the value of s e m _ p e r m . c u i d or
s e m _ p e r m . u i d in the data structure associated with semid and the
calling process does not have appropriate privilege.

E F A U L T arg. b u f points to an illegal address.

SEE ALSO
s e m g e t(KE_OS), s e m o p(KE_OS)

FUTURE DIRECTIONS
This interface is designated Level 2 to encourage the use of the new functionality
introduced in the SVID Fourth Edition. In the future this interface will be removed
from the SVID. However the interface will continue to be part of the SVID while it
is required by XPG4.

Page 2

FINAL COPY
June 15, 1995

File: ke_os/semctl
svid

Page: 708

semctl (KE_OS) semctl (KE_OS)

LEVEL
Level 2, July 1993.

Page 3

FINAL COPY
June 15, 1995

File: ke_os/semctl
svid

Page: 709

semget (KE_OS) semget (KE_OS)

NAME
s e m g e t – get set of semaphores

SYNOPSIS
i n c l u d e < s y s / t y p e s . h >
i n c l u d e < s y s / i p c . h >
i n c l u d e < s y s / s e m . h >

i n t s e m g e t (k e y _ t key, i n t nsems, i n t semflg) ;

DESCRIPTION
s e m g e t returns the semaphore identifier associated with key . This identifier is
accessible by any process in the system, subject to normal access restrictions and the
permissions set with semflg.

A semaphore identifier and associated data structure and set containing nsems
semaphores are created for key if one of the following is true:

key is equal to I P C _ P R I V A T E.

key does not already have a semaphore identifier associated with it, and
(semflg& I P C _ C R E A T) is true.

On creation, the data structure associated with the new semaphore identifier is ini-
tialized as follows:

s e m _ p e r m . c u i d, s e m _ p e r m . u i d, s e m _ p e r m . c g i d, and s e m _ p e r m . g i d are
set equal to the effective user I D and effective group I D, respectively, of the
calling process.

The access permission bits of s e m _ p e r m . m o d e are set equal to the access per-
mission bits of semflg .

s e m _ n s e m s is set equal to the value of nsems .

s e m _ o t i m e is set equal to 0 and s e m _ c t i m e is set equal to the current time.

Return Values
On success, s e m g e t returns a non-negative integer, namely a semaphore identifier.
On failure, s e m g e t returns –1 and sets e r r n o to identify the error.

Errors
In the following conditions, s e m g e t fails and sets e r r n o to:

E I N V A L nsems is either less than or equal to zero or greater than the
system-imposed limit.

E A C C E S A semaphore identifier exists for key , but operation permission as
specified by the low-order 9 bits of semflg would not be granted.

E I N V A L A semaphore identifier exists for key , but the number of sema-
phores in the set associated with it is less than nsems , and nsems is
not equal to zero.

E N O E N T A semaphore identifier does not exist for key and
(semflg& I P C _ C R E A T) is false.

Page 1

FINAL COPY
June 15, 1995

File: ke_os/semget
svid

Page: 710

semget (KE_OS) semget (KE_OS)

E N O S P C A semaphore identifier is to be created but the system-imposed
limit on the maximum number of allowed semaphores or sema-
phore identifiers system wide would be exceeded.

E E X I S T A semaphore identifier exists for key but both (semflg& I P C _ C R E A T)
and (semflg& I P C _ E X C L) are both true.

SEE ALSO
s e m c t l(KE_OS), s e m o p(KE_OS)

FUTURE DIRECTIONS
This interface is designated Level 2 to encourage the use of the new functionality
introduced in the SVID Fourth Edition. In the future this interface will be removed
from the SVID. However the interface will continue to be part of the SVID while it
is required by XPG4.

LEVEL
Level 2, July 1993.

Page 2

FINAL COPY
June 15, 1995

File: ke_os/semget
svid

Page: 711

semop (KE_OS) semop (KE_OS)

NAME
s e m o p – semaphore operations

SYNOPSIS
i n c l u d e < s y s / t y p e s . h >
i n c l u d e < s y s / i p c . h >
i n c l u d e < s y s / s e m . h >

i n t s e m o p (i n t semid, s t r u c t s e m b u f ∗sops, s i z e _ t nsops) ;

DESCRIPTION
s e m o p is used to perform atomically an array of semaphore operations on the set of
semaphores associated with the semaphore identifier specified by semid . sops is a
pointer to the array of semaphore-operation structures. nsops is the number of such
structures in the array. The contents of each structure includes the following
members:

s h o r t s e m _ n u m ; /∗ s e m a p h o r e n u m b e r ∗/
s h o r t s e m _ o p ; /∗ s e m a p h o r e o p e r a t i o n ∗/
s h o r t s e m _ f l g ; /∗ o p e r a t i o n f l a g s ∗/

Each semaphore operation specified by sem_op is performed on the corresponding
semaphore specified by semid and sem_num .

sem_op specifies one of three semaphore operations as follows, depending on
whether its value is negative, positive, or zero:

If sem_op is a negative integer, one of the following occurs: Requires alter permis-
sion.

If s e m v a l is greater than or equal to the absolute value of sem_op , the abso-
lute value of sem_op is subtracted from s e m v a l. Also, if (sem_flg& S E M _ U N D O)
is true, the absolute value of sem_op is added to the calling process’s s e m a d j
value [see e x i t(BA_OS)] for the specified semaphore.

If s e m v a l is less than the absolute value of sem_op and
(sem_flg& I P C _ N O W A I T) is true, s e m o p returns immediately.

If s e m v a l is less than the absolute value of sem_op and
(sem_flg& I P C _ N O W A I T) is false, s e m o p increments the s e m n c n t associated
with the specified semaphore and suspends execution of the calling process
until one of the following conditions occur.

s e m v a l becomes greater than or equal to the absolute value of
sem_op . When this occurs, the value of s e m n c n t associated with the
specified semaphore is decremented, the absolute value of sem_op is
subtracted from s e m v a l and, if (sem_flg& S E M _ U N D O) is true, the abso-
lute value of sem_op is added to the calling process’s s e m a d j value
for the specified semaphore.

The semid for which the calling process is awaiting action is removed
from the system [see s e m c t l(KE_OS)]. When this occurs, e r r n o is
set equal to E I D R M, and a value of –1 is returned.

Page 1

FINAL COPY
June 15, 1995

File: ke_os/semop
svid

Page: 712

semop (KE_OS) semop (KE_OS)

E N O S P C The limit on the number of individual processes requesting an
S E M _ U N D O would be exceeded.

E I N V A L semid is not a valid semaphore identifier.

E I N V A L The number of individual semaphores for which the calling pro-
cess requests a S E M _ U N D O would exceed the limit.

E R A N G E An operation would cause a s e m v a l to overflow the system-
imposed limit.

E R A N G E An operation would cause a s e m a d j value to overflow the
system-imposed limit.

E F A U L T sops points to an illegal address.

SEE ALSO
e x e c(BA_OS), e x i t(BA_OS), f o r k(BA_OS), s e m c t l(KE_OS), s e m g e t(KE_OS),

FUTURE DIRECTIONS
This interface is designated Level 2 to encourage the use of the new functionality
introduced in the SVID Fourth Edition. In the future this interface will be removed
from the SVID. However the interface will continue to be part of the SVID while it
is required by XPG4.

LEVEL
Level 2, July 1993.

NOTICES
Considerations for Threads Programming

While one thread is blocked, siblings might still be executing.

The Threads Library provides another semaphore facility for the synchronization of
multithreaded programs. See s e m a p h o r e(3synch). That facility can also be used for
synchronization between processes. See discussion of the U S Y N C _ P R O C E S S flag.

Page 3

FINAL COPY
June 15, 1995

File: ke_os/semop
svid

Page: 714

shmctl(KE_OS) shmctl(KE_OS)

NAME
shmctl — shared memory control operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmctl(int shmid, int cmd, struct shmid_ds *buf);

DESCRIPTION
The function shmctl() provides a variety of shared memory control operations as
specified by cmd. The following values for cmd are available:

IPC_STAT Place the current value of each member of the data structure associ-
ated with shmid into the structure pointed to by buf. The contents of
this structure are defined in the Kernel Extension Definitions chapter.

IPC_SET Set the value of the following members of the data structure associ-
ated with shmid to the corresponding value found in the structure
pointed to by buf:

shm_perm.uid
shm_perm.gid
shm_perm.mode

This cmd can only be executed by a process that has an effective user
ID equal to either the value of shm_perm.cuid or shm_perm.uid
(in the data structure associated with shmid) or by a process with
appropriate privileges.

IPC_RMID Remove the shared memory identifier specified by shmid from the sys-
tem and destroy the shared memory segment and data structure asso-
ciated with it. This cmd can only be executed by a process that has an
effective user ID equal to either the value of shm_perm.cuid or
shm_perm.uid (in the data structure associated with shmid) or by a
process with appropriate privileges.

RETURN VALUE
Upon successful completion, the function shmctl() returns a value of 0; other-
wise, it returns a value of –1 and sets errno to indicate an error.

ERRORS
Under the following conditions, the function shmctl() fails and sets errno to:

EINVAL if the value of shmid is not a valid shared memory identifier; or the
value of cmd is not a valid command.

EACCES if the argument cmd is equal to IPC_STAT and the calling process
does not have read permission.

EPERM if the argument cmd is equal to IPC_RMID or IPC_SET and the pro-
cess does not have appropriate privileges and is not equal to the value
of shm_perm.cuid or shm_perm.uid (in the data structure associ-
ated with shmid).

Page 1

FINAL COPY
June 15, 1995

File: ke_os/shmctl
svid

Page: 715

shmctl(KE_OS) shmctl(KE_OS)

ENOSYS if the functionality is not supported by the implementation.

SEE ALSO
shmget(KE_OS), shmop(KE_OS).

FUTURE DIRECTIONS
This interface is designated Level 2 to encourage the use of mmap which is the pre-
ferred interface for this functionality. In the future this interface will be removed
from the SVID. However the interface will continue to be part of the SVID while it
is required by XPG4.

LEVEL
Level 2, July 1992.

Optional: The function shmctl() may not be present in all implementations of the
Kernel Extension.

Page 2

FINAL COPY
June 15, 1995

File: ke_os/shmctl
svid

Page: 716

shmget(KE_OS) shmget(KE_OS)

NAME
shmget — get shared memory segment

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmget(key_t key, int size, int shmflg);

DESCRIPTION
The function shmget() returns the shared memory identifier associated with key.

A shared memory identifier and associated data structure and shared memory seg-
ment of at least size bytes are created for key if one of the following are true:

The argument key is equal to IPC_PRIVATE.

The argument key does not already have a shared memory identifier associ-
ated with it and (shmflg & IPC_CREAT) is true.

Upon creation, the data structure associated with the new shared memory-
identifier is initialized as follows:

The value of shm_perm.cuid and shm_perm.uid are set equal to the
effective user ID of the calling process.

The value of shm_perm.cgid and shm_perm.gid are set equal to the
effective group ID of the calling process.

The access permission bits of shm_perm.mode are set equal to the access
permission bits of shmflg.

The argument shm_segsz is set equal to the value of size.

The value of shm_lpid, shm_nattch, shm_atime, and shm_dtime are set
equal to 0.

The value of shm_ctime is set equal to the current time.

RETURN VALUE
Upon successful completion, the function shmget() returns a non-negative
integer, namely a shared memory identifier; otherwise, it returns a value of –1 and
sets errno to indicate an error.

ERRORS
Under the following conditions, the function shmget() fails and sets errno to:

EINVAL if the value of size is less than the system imposed minimum or greater
than the system imposed maximum, or a shared memory identifier
exists for the argument key but the size of the segment associated with it
is less than size and size is not equal to 0.

EACCES if a shared memory identifier exists for key but operation permission as
specified by the access permission bits of shmflg would not be granted.

ENOENT if a shared memory identifier does not exist for the argument key and
(shmflg & IPC_CREAT) is false.

Page 1

FINAL COPY
June 15, 1995

File: ke_os/shmget
svid

Page: 717

shmget(KE_OS) shmget(KE_OS)

ENOSPC if a shared memory identifier is to be created but the system imposed
limit on the maximum number of allowed shared memory identifiers
system wide would be exceeded.

ENOSYS if the functionality is not supported by the implementation.

ENOMEM if a shared memory identifier and associated shared memory segment
are to be created, but the amount of available physical memory is not
sufficient to fill the request.

EEXIST if a shared memory identifier exists for the argument key but
((shmflg & IPC_CREAT)&&(shmflg & IPC_EXCL)) is true.

SEE ALSO
shmctl(KE_OS), shmop(KE_OS).

FUTURE DIRECTIONS
This interface is designated Level 2 to encourage the use of mmap which is the pre-
ferred interface for this functionality. In the future this interface will be removed
from the SVID. However the interface will continue to be part of the SVID while it
is required by XPG4.

LEVEL
Level 2, July 1992.

Optional: The function shmget() may not be present in all implementations of the
Kernel Extension.

Page 2

FINAL COPY
June 15, 1995

File: ke_os/shmget
svid

Page: 718

shmop(KE_OS) shmop(KE_OS)

NAME
shmop – shmat, shmdt — shared memory operations

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <sys/sysmacros.h>

void *shmat(int shmid, void *shmaddr, int shmflg);

int shmdt(void *shmaddr);

DESCRIPTION
The function shmat() attaches the shared memory segment associated with the
shared memory identifier specified by shmid to the data segment of the calling pro-
cess. The segment is attached at the address specified by one of the following cri-
teria:

If shmaddr is equal to (void *)0, the segment is attached at the first avail-
able address as selected by the system.

If shmaddr is not equal to (void *)0 and (shmflg & SHM_RND) is true,
the segment is attached at the address given by (shmaddr – (shmaddr %
SHMLBA)).

If shmaddr is not equal to (void *)0 and (shmflg & SHM_RND) is false,
the segment is attached at the address given by shmaddr.

The segment is attached for reading if (shmflg & SHM_RDONLY) is true and the
calling process has read permission; otherwise, if it is not true and the calling pro-
cess has read and write permission, the segment is attached for reading and writing.

The function shmdt() detaches from the calling process’s data segments the shared
memory segment located at the address specified by shmaddr.

The following symbolic names are defined by the <sys/shm.h> header file:

Name Description

SHMLBA segment low boundary address multiple

SHM_RDONLY attach read-only (else read/write)

SHM_RND round attach address to SHMLBA

RETURN VALUE
Upon successful completion, the function shmat() returns the data segment’s start
address of the attached shared memory segment. Upon successful completion, the
function shmdt() returns a value of 0. Otherwise, the functions shmat() and
shmdt() return a value of –1 and set errno to indicate an error.

ERRORS
Under the following conditions, the function shmat() fails and sets errno to:

EACCES if operation permission is denied to the calling process [see the Kernel
Extension Definitions chapter].

Page 1

FINAL COPY
June 15, 1995

File: ke_os/shmop
svid

Page: 719

shmop(KE_OS) shmop(KE_OS)

EMFILE if the number of shared memory segments attached to the calling pro-
cess would exceed the system impose limit.

ENOMEM if the available data space is not large enough to accommodate the
shared memory segment.

ENOSYS if the functionality is not supported by the implementation.

EINVAL if the value of shmid is not a valid shared memory identifier; or the
value of shmaddr is not equal to 0 and the value of
(shmaddr – (shmaddr % SHMLBA)) is an illegal address; or the
value of shmaddr is not equal to 0, (shmflg & SHM_RND) is false and
the value of shmaddr is an illegal address.

Under the following conditions, the function shmdt() fails (and does not detach
the shared memory segment) and sets errno to:

EINVAL if shmaddr is not the start address of a shared memory segment.

SEE ALSO
exec(BA_OS), exit(BA_OS), fork(BA_OS), shmctl(KE_OS), shmget(KE_OS).

FUTURE DIRECTIONS
This interface is designated Level 2 to encourage the use of mmap which is the pre-
ferred interface for this functionality. In the future this interface will be removed
from the SVID. However the interface will continue to be part of the SVID while it
is present in by XPG4.

LEVEL
Level 2, July 1992.

Optional: the functions shmat() and shmdt() may not be present in all imple-
mentations of the Kernel Extension.

Page 2

FINAL COPY
June 15, 1995

File: ke_os/shmop
svid

Page: 720

