

Linux Standard Base Core Specification 3.2

Linux Standard Base Core Specification 3.2
ISO/IEC 23360 Part 1:2007(E)
Copyright © 2007 Linux Foundation

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.1; with no Invariant Sections, with no Front-Cover Texts, and with no Back-
Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Portions of the text may be copyrighted by the following parties:

• The Regents of the University of California

• Free Software Foundation

• Ian F. Darwin

• Paul Vixie

• BSDI (now Wind River)

• Andrew G Morgan

• Jean-loup Gailly and Mark Adler

• Massachusetts Institute of Technology

• Apple Inc.

• Easy Software Products

• artofcode LLC

• Till Kamppeter

• Manfred Wassman

• Python Software Foundation
These excerpts are being used in accordance with their respective licenses.
Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.
UNIX is a registered trademark of The Open Group.
LSB is a trademark of the Linux Foundation in the United States and other countries.
AMD is a trademark of Advanced Micro Devices, Inc.
Intel and Itanium are registered trademarks and Intel386 is a trademark of Intel Corporation.
PowerPC is a registered trademark and PowerPC Architecture is a trademark of the IBM Corporation.
S/390 is a registered trademark of the IBM Corporation.
OpenGL is a registered trademark of Silicon Graphics, Inc.

 ISO/IEC 23360 Part 1:2007(E)

Contents
I Introductory Elements ...1

1 Scope..1
1.1 General..1
1.2 Module Specific Scope..1

2 References ...2
2.1 Normative References ..2
2.2 Informative References/Bibliography ...3

3 Requirements ...6
3.1 Relevant Libraries ...6
3.2 LSB Implementation Conformance ..6
3.3 LSB Application Conformance..7

4 Definitions ..9
5 Terminology ...10
6 Documentation Conventions ...12
7 Relationship To ISO/IEC 9945 POSIX ..13
8 Relationship To Other Linux Foundation Specifications14

II Executable And Linking Format (ELF)..15
9 Introduction..16
10 Low Level System Information..17

10.1 Operating System Interface ...17
10.2 Machine Interface..17

11 Object Format ...18
11.1 Object Files ...18
11.2 Sections ...18
11.3 Special Sections..22
11.4 Symbol Mapping...27
11.5 DWARF Extensions ..27
11.6 Exception Frames ..31
11.7 Symbol Versioning..36
11.8 ABI note tag ...39

12 Dynamic Linking ...41
12.1 Program Loading and Dynamic Linking.......................................41
12.2 Program Header..41
12.3 Dynamic Entries ..41

III Base Libraries ...46
13 Base Libraries ...47

13.1 Introduction ...47
13.2 Program Interpreter ..47
13.3 Interfaces for libc ...47
13.4 Data Definitions for libc ...62
13.5 Interface Definitions for libc ..120
13.6 Interfaces for libm ...241
13.7 Data Definitions for libm..244
13.8 Interface Definitions for libm ..251
13.9 Interfaces for libpthread...273
13.10 Data Definitions for libpthread ...276
13.11 Interface Definitions for libpthread ..281
13.12 Interfaces for libgcc_s ...282
13.13 Data Definitions for libgcc_s..282
13.14 Interfaces for libdl ...283
13.15 Data Definitions for libdl ...284

 © 2007 Linux Foundation iii

 ISO/IEC 23360 Part 1:2007(E)

13.16 Interface Definitions for libdl ..284
13.17 Interfaces for librt ..287
13.18 Data Definitions for librt ..289
13.19 Interfaces for libcrypt..290
13.20 Interfaces for libpam...290
13.21 Data Definitions for libpam ...291
13.22 Interface Definitions for libpam ..292

IV Utility Libraries..306
14 Utility Libraries..307

14.1 Introduction ...307
14.2 Interfaces for libz...307
14.3 Data Definitions for libz ...308
14.4 Interface Definitions for libz ..310
14.5 Interfaces for libncurses..355
14.6 Data Definitions for libncurses..360
14.7 Interfaces for libutil...368
14.8 Interface Definitions for libutil ..369

V Commands and Utilities ..374
15 Commands and Utilities...375

15.1 Commands and Utilities ..375
15.2 Command Behavior..376

VI Execution Environment ..437
16 File System Hierarchy ...438

16.1 /dev: Device Files..438
16.2 /etc: Host-specific system configuration....................................438
16.3 User Accounting Databases...440
16.4 Path For System Administration Utilities....................................440

17 Additional Recommendations ...441
17.1 Recommendations for applications on ownership and

permissions...441
18 Additional Behaviors ..443

18.1 Mandatory Optional Behaviors...443
19 Localization ..445

19.1 Introduction ...445
19.2 Regular Expressions..445
19.3 Pattern Matching Notation ..445

VII System Initialization ...447
20 System Initialization..448

20.1 Cron Jobs ..448
20.2 Init Script Actions..449
20.3 Comment Conventions for Init Scripts ..450
20.4 Installation and Removal of Init Scripts.......................................452
20.5 Run Levels..453
20.6 Facility Names ...454
20.7 Script Names..455
20.8 Init Script Functions..455

VIII Users & Groups...458
21 Users & Groups..459

21.1 User and Group Database..459
21.2 User & Group Names ...459
21.3 User ID Ranges ..460
21.4 Rationale...460

iv © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E)

IX Package Format and Installation...461
22 Software Installation ...462

22.1 Introduction ...462
22.2 Package File Format..462
22.3 Package Script Restrictions ..481
22.4 Package Tools ..482
22.5 Package Naming..482
22.6 Package Dependencies ...483
22.7 Package Architecture Considerations ..483

A Alphabetical Listing of Interfaces..484
A.1 libc..484
A.2 libcrypt ..493
A.3 libdl..493
A.4 libm..494
A.5 libncurses ..497
A.6 libpam ...501
A.7 libpthread ...501
A.8 librt ..503
A.9 libutil ...504
A.10 libz ...504

B Future Directions (Informative)..506
B.1 Introduction ..506
B.2 Commands And Utilities ..507

lsbinstall..507
C GNU Free Documentation License (Informative) ...511

C.1 PREAMBLE ..511
C.2 APPLICABILITY AND DEFINITIONS...511
C.3 VERBATIM COPYING ...512
C.4 COPYING IN QUANTITY ...512
C.5 MODIFICATIONS ...513
C.6 COMBINING DOCUMENTS...514
C.7 COLLECTIONS OF DOCUMENTS ..515
C.8 AGGREGATION WITH INDEPENDENT WORKS515
C.9 TRANSLATION...515
C.10 TERMINATION...515
C.11 FUTURE REVISIONS OF THIS LICENSE..516
C.12 How to use this License for your documents.......................................516

 © 2007 Linux Foundation v

 ISO/IEC 23360 Part 1:2007(E)

List of Figures
11-1 Version Definition Entries ..36
11-2 Version Definition Auxiliary Entries...37
11-3 Version Needed Entries ..37
11-4 Version Needed Auxiliary Entries...38
12-1 Dynamic Structure...41

 © 2007 Linux Foundation vi

 ISO/IEC 23360 Part 1:2007(E)

Foreword
This is version 3.2 of the Linux Standard Base Core Specification. This
specification is part of a family of specifications under the general title "Linux
Standard Base". Developers of applications or implementations interested in
using the LSB trademark should see the Linux Foundation Certification Policy
for details.

 © 2007 Linux Foundation vii

 ISO/IEC 23360 Part 1:2007(E)

Introduction
The LSB defines a binary interface for application programs that are compiled
and packaged for LSB-conforming implementations on many different
hardware architectures. Since a binary specification shall include information
specific to the computer processor architecture for which it is intended, it is not
possible for a single document to specify the interface for all possible LSB-
conforming implementations. Therefore, the LSB is a family of specifications,
rather than a single one.

This document should be used in conjunction with the documents it references.
This document enumerates the system components it includes, but descriptions
of those components may be included entirely or partly in this document, partly
in other documents, or entirely in other reference documents. For example, the
section that describes system service routines includes a list of the system
routines supported in this interface, formal declarations of the data structures
they use that are visible to applications, and a pointer to the underlying
referenced specification for information about the syntax and semantics of each
call. Only those routines not described in standards referenced by this
document, or extensions to those standards, are described in the detail.
Information referenced in this way is as much a part of this document as is the
information explicitly included here.

The specification carries a version number of either the form x.y or x.y.z. This
version number carries the following meaning:

• The first number (x) is the major version number. All versions with the same
major version number should share binary compatibility. Any addition or
deletion of a new library results in a new version number. Interfaces marked
as deprecated may be removed from the specification at a major version
change.

• The second number (y) is the minor version number. Individual interfaces
may be added if all certified implementations already had that (previously
undocumented) interface. Interfaces may be marked as deprecated at a
minor version change. Other minor changes may be permitted at the
discretion of the LSB workgroup.

• The third number (z), if present, is the editorial level. Only editorial changes
should be included in such versions.

Since this specification is a descriptive Application Binary Interface, and not a
source level API specification, it is not possible to make a guarantee of 100%
backward compatibility between major releases. However, it is the intent that
those parts of the binary interface that are visible in the source level API will
remain backward compatible from version to version, except where a feature
marked as "Deprecated" in one release may be removed from a future release.

Implementors are strongly encouraged to make use of symbol versioning to
permit simultaneous support of applications conforming to different releases of
this specification.

 © 2007 Linux Foundation viii

I Introductory Elements

 ISO/IEC 23360 Part 1:2007(E)

1 Scope

1.1 General
The Linux Standard Base (LSB) defines a system interface for compiled
applications and a minimal environment for support of installation scripts. Its
purpose is to enable a uniform industry standard environment for high-volume
applications conforming to the LSB.

These specifications are composed of two basic parts: A common specification
("LSB-generic" or "generic LSB"), ISO/IEC 23360 Part 1, describing those parts of
the interface that remain constant across all implementations of the LSB, and an
architecture-specific part ("LSB-arch" or "archLSB") describing the parts of the
interface that vary by processor architecture. Together, the LSB-generic and the
relevant architecture-specific part of ISO/IEC 23360 for a single hardware
architecture provide a complete interface specification for compiled application
programs on systems that share a common hardware architecture.

ISO/IEC 23360 Part 1, the LSB-generic document, should be used in conjunction
with an architecture-specific part. Whenever a section of the LSB-generic
specification is supplemented by architecture-specific information, the LSB-
generic document includes a reference to the architecture part. Architecture-
specific parts of ISO/IEC 23360 may also contain additional information that is
not referenced in the LSB-generic document.

The LSB contains both a set of Application Program Interfaces (APIs) and
Application Binary Interfaces (ABIs). APIs may appear in the source code of
portable applications, while the compiled binary of that application may use the
larger set of ABIs. A conforming implementation provides all of the ABIs listed
here. The compilation system may replace (e.g. by macro definition) certain
APIs with calls to one or more of the underlying binary interfaces, and may
insert calls to binary interfaces as needed.

The LSB is primarily a binary interface definition. Not all of the source level
APIs available to applications may be contained in this specification.

1.2 Module Specific Scope
This is the Core module of the Linux Standard Base (LSB), ISO/IEC 23360 Part
1. This module provides the fundamental system interfaces, libraries, and
runtime environment upon which all conforming applications and libraries
depend.

Interfaces described in this part of ISO/IEC 23360 are mandatory except where
explicitly listed otherwise. Core interfaces may be supplemented by other
modules; all modules are built upon the core.

 © 2007 Linux Foundation 1

 ISO/IEC 23360 Part 1:2007(E)

2 References

2.1 Normative References
The following referenced documents are indispensable for the application of
this document. For dated references, only the edition cited applies. For undated
references, the latest edition of the referenced document (including any
amendments) applies.

Note: Where copies of a document are available on the World Wide Web, a
Uniform Resource Locator (URL) is given for informative purposes only. This may
point to a more recent copy of the referenced specification, or may be out of date.
Reference copies of specifications at the revision level indicated may be found at the
Linux Foundation's Reference Specifications (http://refspecs.freestandards.org)
site.

Table 2-1 Normative References

Name Title URL

Filesystem Hierarchy
Standard

Filesystem Hierarchy
Standard (FHS) 2.3

http://www.pathname
.com/fhs/

ISO C (1999) ISO/IEC 9899: 1999,
Programming
Languages --C

ISO POSIX (2003) ISO/IEC 9945-1:2003
Information technology
-- Portable Operating
System Interface
(POSIX) -- Part 1: Base
Definitions

ISO/IEC 9945-2:2003
Information technology
-- Portable Operating
System Interface
(POSIX) -- Part 2:
System Interfaces

ISO/IEC 9945-3:2003
Information technology
-- Portable Operating
System Interface
(POSIX) -- Part 3: Shell
and Utilities

ISO/IEC 9945-4:2003
Information technology
-- Portable Operating
System Interface
(POSIX) -- Part 4:
Rationale

Including Technical
Cor. 1: 2004

http://www.unix.org/
version3/

 © 2007 Linux Foundation 2

 ISO/IEC 23360 Part 1:2007(E) 2 References

Name Title URL

Itanium™ C++ ABI Itanium™ C++ ABI
(Revision 1.83)

http://refspecs.linux-
foundation.org/cxxabi-
1.83.html

Large File Support Large File Support http://www.UNIX-
systems.org/version2/
whatsnew/lfs20mar.ht
ml

SUSv2 CAE Specification,
January 1997, System
Interfaces and Headers
(XSH),Issue 5 (ISBN: 1-
85912-181-0, C606)

http://www.opengrou
p.org/publications/cat
alog/un.htm

SVID Issue 3 American Telephone
and Telegraph
Company, System V
Interface Definition,
Issue 3; Morristown, NJ,
UNIX Press, 1989.
(ISBN 0201566524)

SVID Issue 4 System V Interface
Definition, Fourth
Edition

System V ABI System V Application
Binary Interface,
Edition 4.1

http://www.caldera.co
m/developers/devspec
s/gabi41.pdf

System V ABI Update System V Application
Binary Interface -
DRAFT - 17 December
2003

http://www.caldera.co
m/developers/gabi/20
03-12-17/contents.html

X/Open Curses CAE Specification, May
1996, X/Open Curses,
Issue 4, Version 2
(ISBN: 1-85912-171-3,
C610), plus
Corrigendum U018

http://www.opengrou
p.org/publications/cat
alog/un.htm

2.2 Informative References/Bibliography
In addition, the specifications listed below provide essential background
information to implementors of this specification. These references are included
for information only.

Table 2-2 Other References

Name Title URL

DWARF Debugging
Information Format,
Revision 2.0.0

DWARF Debugging
Information Format,
Revision 2.0.0 (July 27,

http://refspecs.linux-
foundation.org/dwarf/
dwarf-2.0.0.pdf

 © 2007 Linux Foundation 3

2 References ISO/IEC 23360 Part 1:2007(E)

Name Title URL
1993)

DWARF Debugging
Information Format,
Revision 3.0.0 (Draft)

DWARF Debugging
Information Format,
Revision 3.0.0 (Draft)

http://refspecs.linux-
foundation.org/dwarf

IEC 60559/IEEE 754
Floating Point

IEC 60559:1989 Binary
floating-point
arithmetic for
microprocessor systems

http://www.ieee.org/

ISO/IEC TR14652 ISO/IEC Technical
Report 14652:2002
Specification method
for cultural conventions

ITU-T V.42 International
Telecommunication
Union
Recommendation V.42
(2002): Error-correcting
procedures for DCEs
using asynchronous-to-
synchronous
conversionITUV

http://www.itu.int/rec
/recommendation.asp?t
ype=folders&lang=e&p
arent=T-REC-V.42

Li18nux Globalization
Specification

LI18NUX 2000
Globalization
Specification, Version
1.0 with Amendment 4

http://www.openi18n.
org/docs/html/LI18N
UX-2000-amd4.htm

Linux Allocated Device
Registry

LINUX ALLOCATED
DEVICES

http://www.lanana.or
g/docs/device-
list/devices.txt

PAM Open Software
Foundation, Request
For Comments: 86.0 ,
October 1995, V. Samar
& R.Schemers (SunSoft)

http://www.opengrou
p.org/tech/rfc/mirror-
rfc/rfc86.0.txt

RFC 1321: The MD5
Message-Digest
Algorithm

IETF RFC 1321: The
MD5 Message-Digest
Algorithm

http://www.ietf.org/rf
c/rfc1321.txt

RFC 1831/1832 RPC &
XDR

IETF RFC 1831 & 1832 http://www.ietf.org/

RFC 1833: Binding
Protocols for ONC RPC
Version 2

IETF RFC 1833: Binding
Protocols for ONC RPC
Version 2

http://www.ietf.org/rf
c/rfc1833.txt

RFC 1950: ZLIB
Compressed Data
Format Specication

IETF RFC 1950: ZLIB
Compressed Data
Format Specification

http://www.ietf.org/rf
c/rfc1950.txt

RFC 1951: DEFLATE
Compressed Data

IETF RFC 1951:
DEFLATE Compressed

http://www.ietf.org/rf
c/rfc1951.txt

4 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 2 References

Name Title URL
Format Specification Data Format

Specification version 1.3

RFC 1952: GZIP File
Format Specification

IETF RFC 1952: GZIP
file format specification
version 4.3

http://www.ietf.org/rf
c/rfc1952.txt

RFC 2440: OpenPGP
Message Format

IETF RFC 2440:
OpenPGP Message
Format

http://www.ietf.org/rf
c/rfc2440.txt

RFC 2821:Simple Mail
Transfer Protocol

IETF RFC 2821: Simple
Mail Transfer Protocol

http://www.ietf.org/rf
c/rfc2821.txt

RFC 2822:Internet
Message Format

IETF RFC 2822: Internet
Message Format

http://www.ietf.org/rf
c/rfc2822.txt

RFC 791:Internet
Protocol

IETF RFC 791: Internet
Protocol Specification

http://www.ietf.org/rf
c/rfc791.txt

RPM Package Format RPM Package Format
V3.0

http://www.rpm.org/
max-rpm/s1-rpm-file-
format-rpm-file-
format.html

SUSv2 Commands and
Utilities

The Single UNIX
Specification(SUS)
Version 2, Commands
and Utilities (XCU),
Issue 5 (ISBN: 1-85912-
191-8, C604)

http://www.opengrou
p.org/publications/cat
alog/un.htm

zlib Manual zlib 1.2 Manual http://www.gzip.org/
zlib/

 © 2007 Linux Foundation 5

 ISO/IEC 23360 Part 1:2007(E)

3 Requirements

3.1 Relevant Libraries
The libraries listed in Table 3-1 shall be available on a Linux Standard Base
system, with the specified runtime names. The libraries listed in Table 3-2 are
architecture specific, but shall be available on all LSB conforming systems. This
list may be supplemented or amended by the relevant architecture specific part
of ISO/IEC 23360.

Table 3-1 Standard Library Names

Library Runtime Name

libdl libdl.so.2

libcrypt libcrypt.so.1

libz libz.so.1

libncurses libncurses.so.5

libutil libutil.so.1

libpthread libpthread.so.0

librt librt.so.1

libpam libpam.so.0

libgcc_s libgcc_s.so.1
Table 3-2 Standard Library Names defined in the Architecture Specific Parts
of ISO/IEC 23360

Library Runtime Name

libm See archLSB

libc See archLSB

proginterp See archLSB
These libraries will be in an implementation-defined directory which the
dynamic linker shall search by default.

3.2 LSB Implementation Conformance
A conforming implementation is necessarily architecture specific, and must
provide the interfaces specified by both the generic LSB Core specification
(ISO/IEC 23360 Part 1) and the relevant architecture specific part of ISO/IEC
23360.

Rationale: An implementation must provide at least the interfaces specified in these
specifications. It may also provide additional interfaces.

A conforming implementation shall satisfy the following requirements:

• A processor architecture represents a family of related processors which may
not have identical feature sets. The architecture specific parts of ISO/IEC
23360 that supplement this specification for a given target processor

 © 2007 Linux Foundation 6

 ISO/IEC 23360 Part 1:2007(E) 3 Requirements

architecture describe a minimum acceptable processor. The implementation
shall provide all features of this processor, whether in hardware or through
emulation transparent to the application.

• The implementation shall be capable of executing compiled applications
having the format and using the system interfaces described in this
document.

• The implementation shall provide libraries containing the interfaces specified
by this document, and shall provide a dynamic linking mechanism that
allows these interfaces to be attached to applications at runtime. All the
interfaces shall behave as specified in this document.

• The map of virtual memory provided by the implementation shall conform to
the requirements of this document.

• The implementation's low-level behavior with respect to function call linkage,
system traps, signals, and other such activities shall conform to the formats
described in this document.

• The implementation shall provide all of the mandatory interfaces in their
entirety.

• The implementation may provide one or more of the optional interfaces. Each
optional interface that is provided shall be provided in its entirety. The
product documentation shall state which optional interfaces are provided.

• The implementation shall provide all files and utilities specified as part of this
document in the format defined here and in other referenced documents. All
commands and utilities shall behave as required by this document. The
implementation shall also provide all mandatory components of an
application's runtime environment that are included or referenced in this
document.

• The implementation, when provided with standard data formats and values
at a named interface, shall provide the behavior defined for those values and
data formats at that interface. However, a conforming implementation may
consist of components which are separately packaged and/or sold. For
example, a vendor of a conforming implementation might sell the hardware,
operating system, and windowing system as separately packaged items.

• The implementation may provide additional interfaces with different names.
It may also provide additional behavior corresponding to data values outside
the standard ranges, for standard named interfaces.

3.3 LSB Application Conformance
A conforming application is necessarily architecture specific, and must conform
to both the generic LSB Core specification (ISO/IEC 23360 Part 1)and the
relevant architecture specific part of ISO/IEC 23360.

A conforming application shall satisfy the following requirements:

• Its executable files shall be either shell scripts or object files in the format
defined for the Object File Format system interface.

• Its object files shall participate in dynamic linking as defined in the Program
Loading and Linking System interface.

• It shall employ only the instructions, traps, and other low-level facilities
defined in the Low-Level System interface as being for use by applications.

 © 2007 Linux Foundation 7

3 Requirements ISO/IEC 23360 Part 1:2007(E)

• If it requires any optional interface defined in this document in order to be
installed or to execute successfully, the requirement for that optional interface
shall be stated in the application's documentation.

• It shall not use any interface or data format that is not required to be provided
by a conforming implementation, unless:

• If such an interface or data format is supplied by another application
through direct invocation of that application during execution, that
application shall be in turn an LSB conforming application.

• The use of that interface or data format, as well as its source, shall be
identified in the documentation of the application.

• It shall not use any values for a named interface that are reserved for vendor
extensions.

A strictly conforming application shall not require or use any interface, facility,
or implementation-defined extension that is not defined in this document in
order to be installed or to execute successfully.

8 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E)

4 Definitions
For the purposes of this document, the following definitions, as specified in the
ISO/IEC Directives, Part 2, 2001, 4th Edition, apply:

can

 be able to; there is a possibility of; it is possible to

cannot

 be unable to; there is no possibilty of; it is not possible to

may

 is permitted; is allowed; is permissible

need not

 it is not required that; no...is required

shall

 is to; is required to; it is required that; has to; only...is permitted; it is
necessary

shall not

 is not allowed [permitted] [acceptable] [permissible]; is required to be not;
is required that...be not; is not to be

should

 it is recommended that; ought to

should not

 it is not recommended that; ought not to

 © 2007 Linux Foundation 9

 ISO/IEC 23360 Part 1:2007(E)

5 Terminology
For the purposes of this document, the following terms apply:

archLSB

 The architectural part of the LSB Specification which describes the specific
parts of the interface that are platform specific. The archLSB is
complementary to the gLSB.

Binary Standard

 The total set of interfaces that are available to be used in the compiled
binary code of a conforming application.

gLSB

 The common part of the LSB Specification that describes those parts of the
interface that remain constant across all hardware implementations of the
LSB.

implementation-defined

 Describes a value or behavior that is not defined by this document but is
selected by an implementor. The value or behavior may vary among
implementations that conform to this document. An application should not
rely on the existence of the value or behavior. An application that relies on
such a value or behavior cannot be assured to be portable across
conforming implementations. The implementor shall document such a
value or behavior so that it can be used correctly by an application.

Shell Script

 A file that is read by an interpreter (e.g., awk). The first line of the shell
script includes a reference to its interpreter binary.

Source Standard

 The set of interfaces that are available to be used in the source code of a
conforming application.

undefined

 Describes the nature of a value or behavior not defined by this document
which results from use of an invalid program construct or invalid data
input. The value or behavior may vary among implementations that
conform to this document. An application should not rely on the existence
or validity of the value or behavior. An application that relies on any
particular value or behavior cannot be assured to be portable across
conforming implementations.

unspecified

 Describes the nature of a value or behavior not specified by this document
which results from use of a valid program construct or valid data input.
The value or behavior may vary among implementations that conform to
this document. An application should not rely on the existence or validity
of the value or behavior. An application that relies on any particular value
or behavior cannot be assured to be portable across conforming
implementations.

 © 2007 Linux Foundation 10

 ISO/IEC 23360 Part 1:2007(E) 5 Terminology

Other terms and definitions used in this document shall have the same meaning
as defined in Chapter 3 of the Base Definitions volume of ISO POSIX (2003).

 © 2007 Linux Foundation 11

 ISO/IEC 23360 Part 1:2007(E)

6 Documentation Conventions
Throughout this document, the following typographic conventions are used:

function()

 the name of a function

command

 the name of a command or utility

CONSTANT

 a constant value

parameter

 a parameter

variable

 a variable

Throughout this specification, several tables of interfaces are presented. Each
entry in these tables has the following format:

name

 the name of the interface

(symver)

 An optional symbol version identifier, if required.

[refno]

 A reference number indexing the table of referenced specifications that
follows this table.

For example,

forkpty(GLIBC_2.0) [SUSv3]
refers to the interface named forkpty() with symbol version GLIBC_2.0 that is
defined in the SUSv3 reference.

Note: Symbol versions are defined in the architecture specific parts of ISO/IEC
23360 only.

 © 2007 Linux Foundation 12

 ISO/IEC 23360 Part 1:2007(E)

7 Relationship To ISO/IEC 9945 POSIX
This specification includes many interfaces described in ISO POSIX (2003).
Unless otherwise specified, such interfaces should behave exactly as described
in that specification. Any conflict between the requirements described here and
the ISO POSIX (2003) standard is unintentional, except as explicitly noted
otherwise.

Note: In addition to the differences noted inline in this specification, PDTR 24715
has extracted the differences between this specification and ISO POSIX (2003) into a
single place. It is the long term plan of the Linux Foundation to converge the LSB
Core Specification with ISO/IEC 9945 POSIX.

The LSB Specification Authority is responsible for deciding the meaning of
conformance to normative referenced standards in the LSB context. Problem
Reports regarding underlying or referenced standards in any other context will
be referred to the relevant maintenance body for that standard.

 © 2007 Linux Foundation 13

 ISO/IEC 23360 Part 1:2007(E)

8 Relationship To Other Linux Foundation Specifications
The LSB is the base for several other specification projects under the umbrella of
the Linux Foundation (LF). This specification is the foundation, and other
specifications build on the interfaces defined here. However, beyond those
specifications listed as Normative References, this specification has no
dependencies on other LF projects.

 © 2007 Linux Foundation 14

II Executable And Linking Format (ELF)

 ISO/IEC 23360 Part 1:2007(E)

9 Introduction
Executable and Linking Format (ELF) defines the object format for compiled
applications. This specification supplements the information found in System V
ABI Update and is intended to document additions made since the publication
of that document.

 © 2007 Linux Foundation 16

 ISO/IEC 23360 Part 1:2007(E)

10 Low Level System Information

10.1 Operating System Interface
LSB-conforming applications shall assume that stack, heap and other allocated
memory regions will be non-executable. The application must take steps to
make them executable if needed.

10.2 Machine Interface

10.2.1 Data Representation
LSB-conforming applications shall use the data representation as defined in the
Arcitecture specific ELF documents.

10.2.1.1 Fundamental Types
In addition to the fundamental types specified in the relevant architecture
specific part of ISO/IEC 23360, a 1 byte data type is defined here.

Table 10-1 Scalar Types

Type C C++ sizeof Align-
ment
(bytes)

Architec-
ture Rep-
resenta-
tion

_Bool bool

1 1 byte

Integral

 © 2007 Linux Foundation 17

 ISO/IEC 23360 Part 1:2007(E)

11 Object Format

11.1 Object Files
LSB-conforming implementations shall support the object file Executable and
Linking Format (ELF), which is defined by the following documents:

• System V ABI

• System V ABI Update

• this specification

• the relevant architecture specific part of ISO/IEC 23360

Conforming implementations may also support other unspecified object file
formats.

11.2 Sections

11.2.1 Introduction
As described in System V ABI, an ELF object file contains a number of sections.

11.2.2 Sections Types
The section header table is an array of Elf32_Shdr or Elf64_Shdr structures as
described in System V ABI. The sh_type member shall be either a value from
Table 11-1, drawn from the System V ABI, or one of the additional values
specified in Table 11-2.

A section header's sh_type member specifies the sections's semantics.

11.2.2.1 ELF Section Types
The following section types are defined in the System V ABI and the System V
ABI Update.

Table 11-1 ELF Section Types

Name Value Description

SHT_DYNAMIC 0x6 The section holds in-
formation for dynamic
linking. Currently, an
object file shall have
only one dynamic sec-
tion, but this restriction
may be relaxed in the
future. See `Dynamic
Section' in Chapter 5 of
System V ABI Update
for details.

SHT_DYNSYM 0xb This section holds a
minimal set of symbols
adequate for dynamic
linking. See also
SHT_SYMTAB. Cur-
rently, an object file

 © 2007 Linux Foundation 18

 ISO/IEC 23360 Part 1:2007(E) 11 Object Format

Name Value Description
may have either a sec-
tion of SHT_SYMTAB
type or a section of
SHT_DYNSYM type,
but not both. This re-
striction may be relaxed
in the future.

SHT_FINI_ARRAY 0xf This section contains an
array of pointers to
termination functions,
as described in `Initiali-
zation and Termination
Functions' in Chapter 5
of System V ABI Up-
date. Each pointer in
the array is taken as a
parameterless proce-
dure with a void return.

SHT_HASH 0x5 The section holds a
symbol hash table. Cur-
rently, an object file
shall have only one
hash table, but this re-
striction may be relaxed
in the future. See `Hash
Table' in Chapter 5 of
System V ABI Update
for details.

SHT_INIT_ARRAY 0xe This section contains an
array of pointers to ini-
tialization functions, as
described in `Initializa-
tion and Termination
Functions' in Chapter 5
of System V ABI Up-
date. Each pointer in
the array is taken as a
parameterless proce-
dure with a void return.

SHT_NOBITS 0x8 A section of this type
occupies no space in the
file but otherwise re-
sembles
SHT_PROGBITS. Al-
though this section con-
tains no bytes, the
sh_offset member con-
tains the conceptual file
offset.

SHT_NOTE 0x7 The section holds in-

 © 2007 Linux Foundation 19

11 Object Format ISO/IEC 23360 Part 1:2007(E)

Name Value Description
formation that marks
the file in some way.
See `Note Section' in
Chapter 5 of System V
ABI Update for details.

SHT_NULL 0x0 This value marks the
section header as inac-
tive; it does not have an
associated section.
Other members of the
section header have
undefined values.

SHT_PREINIT_ARRAY 0x10 This section contains an
array of pointers to
functions that are in-
voked before all other
initialization functions,
as described in `Initiali-
zation and Termination
Functions' in Chapter 5
of System V ABI Up-
date. Each pointer in
the array is taken as a
parameterless proceure
with a void return.

SHT_PROGBITS 0x1 The section holds in-
formation defined by
the program, whose
format and meaning are
determined solely by
the program.

SHT_REL 0x9 The section holds relo-
cation entries without
explicit addends, such
as type Elf32_Rel for the
32-bit class of object
files or type Elf64_Rel
for the 64-bit class of
object files. An object
file may have multiple
relocation sections. See
`Relocation' in Chapter
4 of System V ABI Up-
date for details.

SHT_RELA 0x4 The section holds relo-
cation entries with ex-
plicit addends, such as
type Elf32_Rela for the
32-bit class of object
files or type Elf64_Rela

20 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 11 Object Format

Name Value Description
for the 64-bit class of
object files. An object
file may have multiple
relocation sections. See
`Relocation' in Chapter
4 of System V ABI Up-
date for details.

SHT_STRTAB 0x3 The section holds a
string table. An object
file may have multiple
string table sections. See
`String Table' in Chap-
ter 4 of System V ABI
Update for details.

SHT_SYMTAB 0x2 This section holds a
symbol table. Currently,
an object file may have
either a section of
SHT_SYMTAB type or
a section of
SHT_DYNSYM type,
but not both. This re-
striction may be relaxed
in the future. Typically,
SHT_SYMTAB pro-
vides symbols for link
editing, though it may
also be used for dy-
namic linking. As a
complete symbol table,
it may contain many
symbols unnecessary
for dynamic linking.

11.2.2.2 Additional Section Types
The following additional section types are defined here.

Table 11-2 Additional Section Types

Name Value Description

SHT_GNU_verdef 0x6ffffffd This section contains
the symbol versions
that are provided.

SHT_GNU_verneed 0x6ffffffe This section contains
the symbol versions
that are required.

SHT_GNU_versym 0x6fffffff This section contains
the Symbol Version Ta-
ble.

 © 2007 Linux Foundation 21

11 Object Format ISO/IEC 23360 Part 1:2007(E)

11.3 Special Sections

11.3.1 Special Sections
Various sections hold program and control information. Sections in the lists
below are used by the system and have the indicated types and attributes.

11.3.1.1 ELF Special Sections
The following sections are defined in the System V ABI and the System V ABI
Update.

Table 11-3 ELF Special Sections

Name Type Attributes

.bss SHT_NOBITS SHF_ALLOC+SHF_WR
ITE

.comment SHT_PROGBITS 0

.data SHT_PROGBITS SHF_ALLOC+SHF_WR
ITE

.data1 SHT_PROGBITS SHF_ALLOC+SHF_WR
ITE

.debug SHT_PROGBITS 0

.dynamic SHT_DYNAMIC SHF_ALLOC+SHF_WR
ITE

.dynstr SHT_STRTAB SHF_ALLOC

.dynsym SHT_DYNSYM SHF_ALLOC

.fini SHT_PROGBITS SHF_ALLOC+SHF_EX
ECINSTR

.fini_array SHT_FINI_ARRAY SHF_ALLOC+SHF_WR
ITE

.hash SHT_HASH SHF_ALLOC

.init SHT_PROGBITS SHF_ALLOC+SHF_EX
ECINSTR

.init_array SHT_INIT_ARRAY
SHF_ALLOC+SHF_WR
ITE

.interp SHT_PROGBITS SHF_ALLOC

.line SHT_PROGBITS 0

.note SHT_NOTE 0

.preinit_array SHT_PREINIT_ARRAY SHF_ALLOC+SHF_WR
ITE

.rodata SHT_PROGBITS SHF_ALLOC+SHF_ME
RGE+SHF_STRINGS

.rodata1 SHT_PROGBITS SHF_ALLOC+SHF_ME

22 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 11 Object Format

Name Type Attributes
RGE+SHF_STRINGS

.shstrtab SHT_STRTAB 0

.strtab SHT_STRTAB SHF_ALLOC

.symtab SHT_SYMTAB SHF_ALLOC

.tbss SHT_NOBITS SHF_ALLOC+SHF_WR
ITE+SHF_TLS

.tdata SHT_PROGBITS SHF_ALLOC+SHF_WR
ITE+SHF_TLS

.text SHT_PROGBITS SHF_ALLOC+SHF_EX
ECINSTR

.bss

 This section holds data that contributes to the program's memory image.
The program may treat this data as uninitialized. However, the system
shall initialize this data with zeroes when the program begins to run. The
section occupies no file space, as indicated by the section type,
SHT_NOBITS.

.comment

 This section holds version control information.

.data

 This section holds initialized data that contribute to the program's memory
image.

.data1

 This section holds initialized data that contribute to the program's memory
image.

.debug

 This section holds information for symbolic debugging. The contents are
unspecified. All section names with the prefix .debug hold information for
symbolic debugging. The contents of these sections are unspecified.

.dynamic

 This section holds dynamic linking information. The section's attributes
will include the SHF_ALLOC bit. Whether the SHF_WRITE bit is set is
processor specific. See Chapter 5 of System V ABI Update for more
information.

.dynstr

 This section holds strings needed for dynamic linking, most commonly the
strings that represent the names associated with symbol table entries. See
Chapter 5 of System V ABI Update for more information.

 © 2007 Linux Foundation 23

11 Object Format ISO/IEC 23360 Part 1:2007(E)

.dynsym

 This section holds the dynamic linking symbol table, as described in
`Symbol Table' of System V ABI Update.

.fini

 This section holds executable instructions that contribute to the process
termination code. That is, when a program exits normally, the system
arranges to execute the code in this section.

.fini_array

 This section holds an array of function pointers that contributes to a single
termination array for the executable or shared object containing the section.

.hash

 This section holds a symbol hash table. See `Hash Table' in Chapter 5 of
System V ABI Update for more information.

.init

 This section holds executable instructions that contribute to the process
initialization code. When a program starts to run, the system arranges to
execute the code in this section before calling the main program entry point
(called main for C programs).

.init_array

 This section holds an array of function pointers that contributes to a single
initialization array for the executable or shared object containing the
section.

.interp

 This section holds the path name of a program interpreter. If the file has a
loadable segment that includes relocation, the sections' attributes will
include the SHF_ALLOC bit; otherwise, that bit will be off. See Chapter 5 of
System V ABI Update for more information.

.line

 This section holds line number information for symbolic debugging, which
describes the correspondence between the source program and the machine
code. The contents are unspecified.

.note

 This section holds information in the format that `Note Section' in Chapter
5 of System V ABI Update describes.

.preinit_array

 This section holds an array of function pointers that contributes to a single
pre-initialization array for the executable or shared object containing the
section.

.rodata

 This section holds read-only data that typically contribute to a non-writable
segment in the process image. See `Program Header' in Chapter 5 of System
V ABI Update for more information.

24 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 11 Object Format

.rodata1

 This section holds read-only data that typically contribute to a non-writable
segment in the process image. See `Program Header' in Chapter 5 of System
V ABI Update for more information.

.shstrtab

 This section holds section names.

.strtab

 This section holds strings, most commonly the strings that represent the
names associated with symbol table entries. If the file has a loadable
segment that includes the symbol string table, the section's attributes will
include the SHF_ALLOC bit; otherwise, that bit will be off.

.symtab

 This section holds a symbol table, as `Symbol Table' in Chapter 4 of System
V ABI Update describes. If the file has a loadable segment that includes the
symbol table, the section's attributes will include the SHF_ALLOC bit;
otherwise, that bit will be off.

.tbss

 This section holds uninitialized thread-local data that contribute to the
program's memory image. By definition, the system initializes the data
with zeros when the data is instantiated for each new execution flow. The
section occupies no file space, as indicated by the section type,
SHT_NOBITS. Implementations need not support thread-local storage.

.tdata

 This section holds initialized thread-local data that contributes to the
program's memory image. A copy of its contents is instantiated by the
system for each new execution flow. Implementations need not support
thread-local storage.

.text

 This section holds the `text', or executable instructions, of a program.

11.3.1.2 Additional Special Sections
Object files in an LSB conforming application may also contain one or more of
the additional special sections described below.

Table 11-4 Additional Special Sections

Name Type Attributes

.ctors SHT_PROGBITS SHF_ALLOC+SHF_WR
ITE

.data.rel.ro SHT_PROGBITS SHF_ALLOC+SHF_WR
ITE

.dtors SHT_PROGBITS SHF_ALLOC+SHF_WR
ITE

.eh_frame SHT_PROGBITS SHF_ALLOC

 © 2007 Linux Foundation 25

11 Object Format ISO/IEC 23360 Part 1:2007(E)

Name Type Attributes

.eh_frame_hdr SHT_PROGBITS SHF_ALLOC

.gcc_except_table SHT_PROGBITS SHF_ALLOC

.gnu.version SHT_GNU_versym SHF_ALLOC

.gnu.version_d SHT_GNU_verdef SHF_ALLOC

.gnu.version_r SHT_GNU_verneed SHF_ALLOC

.got.plt SHT_PROGBITS SHF_ALLOC+SHF_WR
ITE

.jcr SHT_PROGBITS SHF_ALLOC+SHF_WR
ITE

.note.ABI-tag SHT_NOTE SHF_ALLOC

.stab SHT_PROGBITS 0

.stabstr SHT_STRTAB 0
.ctors

 This section contains a list of global constructor function pointers.

.data.rel.ro

 This section holds initialized data that contribute to the program's memory
image. This section may be made read-only after relocations have been
applied.

.dtors

 This section contains a list of global destructor function pointers.

.eh_frame

 This section contains information necessary for frame unwinding during
exception handling. See Section 11.6.1.

.eh_frame_hdr

 This section contains a pointer to the .eh_frame section which is accessible
to the runtime support code of a C++ application. This section may also
contain a binary search table which may be used by the runtime support
code to more efficiently access records in the .eh_frame section. See Section
11.6.2.

.gcc_except_table

 This section holds Language Specific Data.

.gnu.version

 This section contains the Symbol Version Table. See Section 11.7.2.

.gnu.version_d

 This section contains the Version Definitions. See Section 11.7.3.

26 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 11 Object Format

.gnu.version_r

 This section contains the Version Requirements. See Section 11.7.4.

.got.plt

 This section holds the read-only portion of the GLobal Offset Table. This
section may be made read-only after relocations have been applied.

.jcr

 This section contains information necessary for registering compiled Java
classes. The contents are compiler-specific and used by compiler
initialization functions.

.note.ABI-tag

 Specify ABI details. See Section 11.8.

.stab

 This section contains debugging information. The contents are not specified
as part of the LSB.

.stabstr

 This section contains strings associated with the debugging infomation
contained in the .stab section.

11.4 Symbol Mapping

11.4.1 Introduction
Symbols in a source program are translated by the compilation system into
symbols that exist in the object file.

11.4.1.1 C Language
External C symbols shall be unchanged in an object file's symbol table.

11.5 DWARF Extensions
The LSB does not specify debugging information, however, some additional
sections contain information which is encoded using the the encoding as
specified by DWARF Debugging Information Format, Revision 2.0.0 with
extensions defined here.

Note: The extensions specified here also exist in DWARF Debugging Information
Format, Revision 3.0.0 (Draft). It is expected that future versions of the LSB will
reference the final version of that document, and that the definitions here will be
taken from that document instead of being specified here.

11.5.1 DWARF Exception Header Encoding
The DWARF Exception Header Encoding is used to describe the type of data
used in the .eh_frame and .eh_frame_hdr section. The upper 4 bits indicate
how the value is to be applied. The lower 4 bits indicate the format of the data.

Table 11-5 DWARF Exception Header value format

Name Value Meaning

 © 2007 Linux Foundation 27

11 Object Format ISO/IEC 23360 Part 1:2007(E)

Name Value Meaning

DW_EH_PE_absptr 0x00 The Value is a literal
pointer whose size is
determined by the
architecture.

DW_EH_PE_uleb128 0x01 Unsigned value is
encoded using the Little
Endian Base 128
(LEB128) as defined by
DWARF Debugging
Information Format,
Revision 2.0.0.

DW_EH_PE_udata2 0x02 A 2 bytes unsigned
value.

DW_EH_PE_udata4 0x03 A 4 bytes unsigned
value.

DW_EH_PE_udata8 0x04 An 8 bytes unsigned
value.

DW_EH_PE_sleb128 0x09 Signed value is encoded
using the Little Endian
Base 128 (LEB128) as
defined by DWARF
Debugging Information
Format, Revision 2.0.0.

DW_EH_PE_sdata2 0x0A A 2 bytes signed value.

DW_EH_PE_sdata4 0x0B A 4 bytes signed value.

DW_EH_PE_sdata8 0x0C An 8 bytes signed
value.

Table 11-6 DWARF Exception Header application

Name Value Meaning

DW_EH_PE_pcrel 0x10 Value is relative to the
current program
counter.

DW_EH_PE_textrel 0x20 Value is relative to the
beginning of the .text
section.

DW_EH_PE_datarel 0x30 Value is relative to the
beginning of the .got or
.eh_frame_hdr section.

DW_EH_PE_funcrel 0x40 Value is relative to the
beginning of the
function.

DW_EH_PE_aligned 0x50 Value is aligned to an
address unit sized

28 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 11 Object Format

Name Value Meaning
boundary.

One special encoding, 0xff (DW_EH_PE_omit), shall be used to indicate that no
value ispresent.

11.5.2 DWARF CFI Extensions
In addition to the Call Frame Instructions defined in section 6.4.2 of DWARF
Debugging Information Format, Revision 2.0.0, the following additional Call
Frame Instructions may also be used.

Table 11-7 Additional DWARF Call Frame Instructions

Name Value Meaning

DW_CFA_expression 0x10 The
DW_CFA_expression
instruction takes two
operands: an unsigned
LEB128 value
representing a register
number, and a
DW_FORM_block
value representing a
DWARF expression.
The required action is
to establish the DWARF
expression as the means
by which the address in
which the given register
contents are found may
be computed. The value
of the CFA is pushed on
the DWARF evaluation
stack prior to execution
of the DWARF
expression. The
DW_OP_call2,
DW_OP_call4,
DW_OP_call_ref and
DW_OP_push_object_a
ddress DWARF
operators (see Section
2.4.1 of DWARF
Debugging Information
Format, Revision 2.0.0)
cannot be used in such
a DWARF expression.

DW_CFA_offset_exten
ded_sf

0x11 The
DW_CFA_offset_exten
ded_sf instruction takes
two operands: an
unsigned LEB128 value

 © 2007 Linux Foundation 29

11 Object Format ISO/IEC 23360 Part 1:2007(E)

Name Value Meaning
representing a register
number and a signed
LEB128 factored offset.
This instruction is
identical to
DW_CFA_offset_exten
ded except that the
second operand is
signed.

DW_CFA_def_cfa_sf 0x12 The
DW_CFA_def_cfa_sf
instruction takes two
operands: an unsigned
LEB128 value
representing a register
number and a signed
LEB128 factored offset.
This instruction is
identical to
DW_CFA_def_cfa
except that the second
operand is signed and
factored.

DW_CFA_def_cfa_offse
t_sf

0x13 The
DW_CFA_def_cfa_offse
t_sf instruction takes a
signed LEB128 operand
representing a factored
offset. This instruction
is identical to
DW_CFA_def_cfa_offse
t except that the
operand is signed and
factored.

DW_CFA_GNU_args_s
ize

0x2e The
DW_CFA_GNU_args_s
ize instruction takes an
unsigned LEB128
operand representing
an argument size. This
instruction specifies the
total of the size of the
arguments which have
been pushed onto the
stack.

DW_CFA_GNU_negati
ve_offset_extended

0x2f The
DW_CFA_def_cfa_sf
instruction takes two
operands: an unsigned
LEB128 value

30 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 11 Object Format

Name Value Meaning
representing a register
number and an
unsigned LEB128 which
represents the
magnitude of the offset.
This instruction is
identical to
DW_CFA_offset_exten
ded_sf except that the
operand is subtracted to
produce the offset. This
instructions is obsoleted
by
DW_CFA_offset_exten
ded_sf.

11.6 Exception Frames
When using languages that support exceptions, such as C++, additional
information must be provided to the runtime environment that describes the
call frames that must be unwound during the processing of an exception. This
information is contained in the special sections .eh_frame and .eh_framehdr.

Note: The format of the .eh_frame section is similar in format and purpose to the
.debug_frame section which is specified in DWARF Debugging Information
Format, Revision 3.0.0 (Draft). Readers are advised that there are some subtle
difference, and care should be taken when comparing the two sections.

11.6.1 The .eh_frame section
The .eh_frame section shall contain 1 or more Call Frame Information (CFI)
records. The number of records present shall be determined by size of the
section as contained in the section header. Each CFI record contains a Common
Information Entry (CIE) record followed by 1 or more Frame Description Entry
(FDE) records. Both CIEs and FDEs shall be aligned to an addressing unit sized
boundary.

Table 11-8 Call Frame Information Format

Common Information Entry Record

Frame Description Entry Record(s)

11.6.1.1 The Common Information Entry Format

Table 11-9 Common Information Entry Format

Length Required

Extended Length Optional

CIE ID Required

Version Required

Augmentation String Required

 © 2007 Linux Foundation 31

11 Object Format ISO/IEC 23360 Part 1:2007(E)

Code Alignment Factor Required

Data Alignment Factor Required

Return Address Register Required

Augmentation Data Length Optional

Augmentation Data Optional

Initial Instructions Required

Padding

Length

 A 4 byte unsigned value indicating the length in bytes of the CIE structure,
not including the Length field itself. If Length contains the value 0xffffffff,
then the length is contained in the Extended Length field. If Length
contains the value 0, then this CIE shall be considered a terminator and
processing shall end.

Extended Length

 A 8 byte unsigned value indicating the length in bytes of the CIE structure,
not including the Length and Extended Length fields.

CIE ID

 A 4 byte unsigned value that is used to distinguish CIE records from FDE
records. This value shall always be 0, which indicates this record is a CIE.

Version

 A 1 byte value that identifies the version number of the frame information
structure. This value shall be 1.

Augmentation String

 This value is a NUL terminated string that identifies the augmentation to
the CIE or to the FDEs associated with this CIE. A zero length string
indicates that no augmentation data is present. The augmentation string is
case sensitive and shall be interpreted as described below.

Code Alignment Factor

 An unsigned LEB128 encoded value that is factored out of all advance
location instructions that are associated with this CIE or its FDEs. This
value shall be multiplied by the delta argument of an adavance location
instruction to obtain the new location value.

Data Alignment Factor

 A signed LEB128 encoded value that is factored out of all offset instructions
that are associated with this CIE or its FDEs. This value shall be multiplied
by the register offset argument of an offset instruction to obtain the new
offset value.

Augmentation Length

 An unsigned LEB128 encoded value indicating the length in bytes of the
Augmentation Data. This field is only present if the Augmentation String
contains the character 'z'.

32 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 11 Object Format

Augmentation Data

 A block of data whose contents are defined by the contents of the
Augmentation String as described below. This field is only present if the
Augmentation String contains the character 'z'. The size of this data is given
by the Augentation Length.

Initial Instructions

 Initial set of Call Frame Instructions. The number of instructions is
determined by the remaining space in the CIE record.

Padding

 Extra bytes to align the CIE structure to an addressing unit size boundary.

11.6.1.1.1 Augmentation String Format

The Agumentation String indicates the presence of some optional fields, and
how those fields should be intepreted. This string is case sensitive. Each
character in the augmentation string in the CIE can be interpreted as below:

'z'

 A 'z' may be present as the first character of the string. If present, the
Augmentation Data field shall be present. The contents of the
Augmentation Data shall be intepreted according to other characters in the
Augmentation String.

'L'

 A 'L' may be present at any position after the first character of the string.
This character may only be present if 'z' is the first character of the string. If
present, it indicates the presence of one argument in the Augmentation
Data of the CIE, and a corresponding argument in the Augmentation Data
of the FDE. The argument in the Augmentation Data of the CIE is 1-byte
and represents the pointer encoding used for the argument in the
Augmentation Data of the FDE, which is the address of a language-specific
data area (LSDA). The size of the LSDA pointer is specified by the pointer
encoding used.

'P'

 A 'P' may be present at any position after the first character of the string.
This character may only be present if 'z' is the first character of the string. If
present, it indicates the presence of two arguments in the Augmentation
Data of the CIE. The first argument is 1-byte and represents the pointer
encoding used for the second argument, which is the address of a
personality routine handler. The personality routine is used to handle
language and vendor-specific tasks. The system unwind library interface
accesses the language-specific exception handling semantics via the pointer
to the personality routine. The personality routine does not have an ABI-
specific name. The size of the personality routine pointer is specified by the
pointer encoding used.

'R'

 A 'R' may be present at any position after the first character of the string.
This character may only be present if 'z' is the first character of the string. If
present, The Augmentation Data shall include a 1 byte argument that
represents the pointer encoding for the address pointers used in the FDE.

 © 2007 Linux Foundation 33

11 Object Format ISO/IEC 23360 Part 1:2007(E)

11.6.1.2 The Frame Description Entry Format

Table 11-10 Frame Description Entry Format

Length Required

Extended Length Optional

CIE Pointer Required

PC Begin Required

PC Range Required

Augmentation Data Length Optional

Augmentation Data Optional

Call Frame Instructions Required

Padding

Length

 A 4 byte unsigned value indicating the length in bytes of the CIE structure,
not including the Length field itself. If Length contains the value 0xffffffff,
then the length is contained the Extended Length field. If Length contains
the value 0, then this CIE shall be considered a terminator and processing
shall end.

Extended Length

 A 8 byte unsigned value indicating the length in bytes of the CIE structure,
not including the Length field itself.

CIE Pointer

 A 4 byte unsigned value that when subtracted from the offset of the the CIE
Pointer in the current FDE yields the offset of the start of the associated
CIE. This value shall never be 0.

PC Begin

 An encoded value that indicates the address of the initial location
associated with this FDE. The encoding format is specified in the
Augmentation Data.

PC Range

 An absolute value that indicates the number of bytes of instructions
associated with this FDE.

Augmentation Length

 An unsigned LEB128 encoded value indicating the length in bytes of the
Augmentation Data. This field is only present if the Augmentation String in
the associated CIE contains the character 'z'.

Augmentation Data

 A block of data whose contents are defined by the contents of the
Augmentation String in the associated CIE as described above. This field is
only present if the Augmentation String in the associated CIE contains the
character 'z'. The size of this data is given by the Augentation Length.

34 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 11 Object Format

Call Frame Instructions

 A set of Call Frame Instructions.

Padding

 Extra bytes to align the FDE structure to an addressing unit size boundary.

11.6.2 The .eh_frame_hdr section
The .eh_frame_hdr section contains additional information about the
.eh_frame section. A pointer to the start of the .eh_frame data, and optionally,
a binary search table of pointers to the .eh_frame records are found in this
section.

Data in this section is encoded according to Section 11.5.1.

Table 11-11 .eh_frame_hdr Section Format

Encoding Field

unsigned byte version

unsigned byte eh_frame_ptr_enc

unsigned byte fde_count_enc

unsigned byte table_enc

encoded eh_frame_ptr

encoded fde_count
 binary search table
version

 Version of the .eh_frame_hdr format. This value shall be 1.

eh_frame_ptr_enc

 The encoding format of the eh_frame_ptr field.

fde_count_enc

 The encoding format of the fde_count field. A value of DW_EH_PE_omit
indicates the binary search table is not present.

table_enc

 The encoding format of the entries in the binary search table. A value of
DW_EH_PE_omit indicates the binary search table is not present.

eh_frame_ptr

 The encoded value of the pointer to the start of the .eh_frame section.

fde_count

 The encoded value of the count of entries in the binary search table.

binary search table

 A binary search table containing fde_count entries. Each entry of the table
consist of two encoded values, the initial location, and the address. The
entries are sorted in an increasing order by the initial location value.

 © 2007 Linux Foundation 35

11 Object Format ISO/IEC 23360 Part 1:2007(E)

11.7 Symbol Versioning

11.7.1 Introduction
This chapter describes the Symbol Versioning mechanism. All ELF objects may
provide or depend on versioned symbols. Symbol Versioning is implemented
by 3 section types: SHT_GNU_versym, SHT_GNU_verdef, and SHT_GNU_verneed.

The prefix Elfxx in the following descriptions and code fragments stands for
either "Elf32" or "Elf64", depending on the architecture.

Versions are described by strings. The structures that are used for symbol
versions also contain a member that holds the ELF hashing values of the strings.
This allows for more efficient processing.

11.7.2 Symbol Version Table
The special section .gnu.version which has a section type of SHT_GNU_versym
shall contain the Symbol Version Table. This section shall have the same
number of entries as the Dynamic Symbol Table in the .dynsym section.

The .gnu.version section shall contain an array of elements of type
Elfxx_Half. Each entry specifies the version defined for or required by the
corresponding symbol in the Dynamic Symbol Table.

The values in the Symbol Version Table are specific to the object in which they
are located. These values are identifiers that are provided by the the vna_other
member of the Elfxx_Vernaux structure or the vd_ndx member of the
Elfxx_Verdef structure.

The values 0 and 1 are reserved.

0

 The symbol is local, not available outside the object.

1

 The symbol is defined in this object and is globally available.

All other values are used to identify version strings located in one of the other
Symbol Version sections. The value itself is not the version associated with the
symbol. The string identified by the value defines the version of the symbol.

11.7.3 Version Definitions
The special section .gnu.version_d which has a section type of
SHT_GNU_verdef shall contain symbol version definitions. The number of
entries in this section shall be contained in the DT_VERDEFNUM entry of the
Dynamic Section .dynamic. The sh_link member of the section header (see
figure 4-8 in the System V ABI) shall point to the section that contains the
strings referenced by this section.

The section shall contain an array of Elfxx_Verdef structures, as described in
Figure 11-1, optionally followed by an array of Elfxx_Verdaux structures, as
defined in Figure 11-2.

typedef struct {
 Elfxx_Half vd_version;
 Elfxx_Half vd_flags;
 Elfxx_Half vd_ndx;
 Elfxx_Half vd_cnt;
 Elfxx_Word vd_hash;

36 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 11 Object Format

 Elfxx_Word vd_aux;
 Elfxx_Word vd_next;
} Elfxx_Verdef;

Figure 11-1 Version Definition Entries

vd_version

 Version revision. This field shall be set to 1.

vd_flags

 Version information flag bitmask.

vd_ndx

 Version index numeric value referencing the SHT_GNU_versym section.

vd_cnt

 Number of associated verdaux array entries.

vd_hash

 Version name hash value (ELF hash function).

vd_aux

 Offset in bytes to a corresponding entry in an array of Elfxx_Verdaux
structures as defined in Figure 11-2

vd_next

 Offset to the next verdef entry, in bytes.

typedef struct {
 Elfxx_Word vda_name;
 Elfxx_Word vda_next;
} Elfxx_Verdaux;

Figure 11-2 Version Definition Auxiliary Entries

vda_name

 Offset to the version or dependency name string in the section header, in
bytes.

vda_next

 Offset to the next verdaux entry, in bytes.

11.7.4 Version Requirements
The special section .gnu.version_r which has a section type of
SHT_GNU_verneed shall contain required symbol version definitions. The
number of entries in this section shall be contained in the DT_VERNEEDNUM entry
of the Dynamic Section .dynamic. The sh_link member of the section header
(see figure 4-8 in System V ABI) shall point to the section that contains the
strings referenced by this section.

The section shall contain an array of Elfxx_Verneed structures, as described in
Figure 11-3, optionally followed by an array of Elfxx_Vernaux structures, as
defined in Figure 11-4.

typedef struct {
 Elfxx_Half vn_version;
 Elfxx_Half vn_cnt;

 © 2007 Linux Foundation 37

11 Object Format ISO/IEC 23360 Part 1:2007(E)

 Elfxx_Word vn_file;
 Elfxx_Word vn_aux;
 Elfxx_Word vn_next;
} Elfxx_Verneed;

Figure 11-3 Version Needed Entries

vn_version

 Version of structure. This value is currently set to 1, and will be reset if the
versioning implementation is incompatibly altered.

vn_cnt

 Number of associated verneed array entries.

vn_file

 Offset to the file name string in the section header, in bytes.

vn_aux

 Offset to a corresponding entry in the vernaux array, in bytes.

vn_next

 Offset to the next verneed entry, in bytes.

typedef struct {
 Elfxx_Word vna_hash;
 Elfxx_Half vna_flags;
 Elfxx_Half vna_other;
 Elfxx_Word vna_name;
 Elfxx_Word vna_next;
} Elfxx_Vernaux;

Figure 11-4 Version Needed Auxiliary Entries

vna_hash

 Dependency name hash value (ELF hash function).

vna_flags

 Dependency information flag bitmask.

vna_other

 Object file version identifier used in the .gnu.version symbol version array.
Bit number 15 controls whether or not the object is hidden; if this bit is set,
the object cannot be used and the static linker will ignore the symbol's
presence in the object.

vna_name

 Offset to the dependency name string in the section header, in bytes.

vna_next

 Offset to the next vernaux entry, in bytes.

11.7.5 Startup Sequence
When loading a sharable object the system shall analyze version definition data
from the loaded object to assure that it meets the version requirements of the
calling object. This step is referred to as definition testing. The dynamic loader

38 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 11 Object Format

shall retrieve the entries in the caller's Elfxx_Verneed array and attempt to find
matching definition information in the loaded Elfxx_Verdef table.

Each object and dependency shall be tested in turn. If a symbol definition is
missing and the vna_flags bit for VER_FLG_WEAK is not set, the loader shall
return an error and exit. If the vna_flags bit for VER_FLG_WEAK is set in the
Elfxx_Vernaux entry, and the loader shall issue a warning and continue
operation.

When the versions referenced by undefined symbols in the loaded object are
found, version availability is certified. The test completes without error and the
object shall be made available.

11.7.6 Symbol Resolution
When symbol versioning is used in an object, relocations extend definition
testing beyond the simple match of symbol name strings: the version of the
reference shall also equal the name of the definition.

The same index that is used in the symbol table can be referenced in the
SHT_GNU_versym section, and the value of this index is then used to acquire
name data. The corresponding requirement string is retrieved from the
Elfxx_Verneed array, and likewise, the corresponding definition string from
the Elfxx_Verdef table.

If the high order bit (bit number 15) of the version symbolis set, the object
cannot be used and the static linker shall ignore the symbol's presence in the
object.

When an object with a reference and an object with the definition are being
linked, the following rules shall govern the result:

• The object with the reference and the object with the definitions both use
versioning. All described matching is processed in this case. A fatal error shall
be triggered when no matching definition can be found in the object whose
name is the one referenced by the vn_name element in the Elfxx_Verneed
entry.

• The object with the reference does not use versioning, while the object with
the definitions does. In this instance, only the definitions with index numbers
1 and 2 will be used in the reference match, the same identified by the static
linker as the base definition. In cases where the static linker was not used,
such as in calls to dlopen(), a version that does not have the base definition
index shall be acceptable if it is the only version for which the symbol is
defined.

• The object with the reference uses versioning, but the object with the
definitions specifies none. A matching symbol shall be accepted in this case.
A fatal error shall be triggered if a corruption in the required symbols list
obscures an outdated object file and causes a match on the object filename in
the Elfxx_Verneed entry.

• Neither the object with the reference nor the object with the definitions use
versioning. The behavior in this instance shall default to pre-existing symbol
rules.

11.8 ABI note tag
Every executable shall contain a section named .note.ABI-tag of type
SHT_NOTE. This section is structured as a note section as documented in the ELF
spec. The section shall contain at least the following entry. The name field

 © 2007 Linux Foundation 39

11 Object Format ISO/IEC 23360 Part 1:2007(E)

(namesz/name) contains the string "GNU". The type field shall be 1. The descsz
field shall be at least 16, and the first 16 bytes of the desc field shall be as
follows.

The first 32-bit word of the desc field shall be 0 (this signifies a Linux
executable). The second, third, and fourth 32-bit words of the desc field contain
the earliest compatible kernel version. For example, if the 3 words are 2, 2, and
5, this signifies a 2.2.5 kernel.

40 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E)

12 Dynamic Linking

12.1 Program Loading and Dynamic Linking
LSB-conforming implementations shall support the object file information and
system actions that create running programs as specified in the System V ABI
and System V ABI Update and as further required by this specification and the
relevant architecture specific part of ISO/IEC 23360.

Any shared object that is loaded shall contain sufficient DT_NEEDED records to
satisfy the symbols on the shared library.

12.2 Program Header
In addition to the Segment Types defined in the System V ABI and System V
ABI Update the following Segment Types shall also be supported.

Table 12-1 Linux Segment Types

Name Value

PT_GNU_EH_FRAME 0x6474e550

PT_GNU_STACK 0x6474e551

PT_GNU_RELRO 0x6474e552
PT_GNU_EH_FRAME

 The array element specifies the location and size of the exception handling
information as defined by the .eh_frame_hdr section.

PT_GNU_STACK

 The p_flags member specifies the permissions on the segment containing
the stack and is used to indicate wether the stack should be executable. The
absense of this header indicates that the stack will be executable.

PT_GNU_RELRO

 the array element specifies the location and size of a segment which may be
made read-only after relocations have been processed.

12.3 Dynamic Entries

12.3.1 Introduction
As described in System V ABI, if an object file participates in dynamic linking,
its program header table shall have an element of type PT_DYNAMIC. This
`segment' contains the .dynamic section. A special symbol, _DYNAMIC, labels the
section, which contains an array of the following structures.

typedef struct {
 Elf32_Sword d_tag;
 union {
 Elf32_Word d_val;
 Elf32_Addr d_ptr;
 } d_un;
} Elf32_Dyn;

extern Elf32_Dyn _DYNAMIC[];

 © 2007 Linux Foundation 41

12 Dynamic Linking ISO/IEC 23360 Part 1:2007(E)

typedef struct {
 Elf64_Sxword d_tag;
 union {
 Elf64_Xword d_val;
 Elf64_Addr d_ptr;
 } d_un;
} Elf64_Dyn;

extern Elf64_Dyn _DYNAMIC[];

Figure 12-1 Dynamic Structure

For each object with this type, d_tag controls the interpretation of d_un.

12.3.2 Dynamic Entries

12.3.2.1 ELF Dynamic Entries
The following dynamic entries are defined in the System V ABI and System V
ABI Update.

DT_BIND_NOW

 Process relocations of object

DT_DEBUG

 For debugging; unspecified

DT_FINI

 Address of termination function

DT_HASH

 Address of symbol hash table

DT_HIPROC

 End of processor-specific

DT_INIT

 Address of init function

DT_JMPREL

 Address of PLT relocs

DT_LOPROC

 Start of processor-specific

DT_NEEDED

 Name of needed library

DT_NULL

 Marks end of dynamic section

DT_PLTREL

 Type of reloc in PLT

42 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 12 Dynamic Linking

DT_PLTRELSZ

 Size in bytes of PLT relocs

DT_REL

 Address of Rel relocs

DT_RELA

 Address of Rela relocs

DT_RELAENT

 Size of one Rela reloc

DT_RELASZ

 Total size of Rela relocs

DT_RELENT

 Size of one Rel reloc

DT_RELSZ

 Total size of Rel relocs

DT_RPATH

 Library search path

DT_SONAME

 Name of shared object

DT_STRSZ

 Size of string table

DT_STRTAB

 Address of string table

DT_SYMBOLIC

 Start symbol search here

DT_SYMENT

 Size of one symbol table entry

DT_SYMTAB

 Address of symbol table

DT_TEXTREL

 Reloc might modify .text

12.3.2.2 Additional Dynamic Entries
An LSB conforming object may also use the following additional Dynamic Entry
types.

 © 2007 Linux Foundation 43

12 Dynamic Linking ISO/IEC 23360 Part 1:2007(E)

DT_ADDRRNGHI

 Values from DT_ADDRRNGLO through DT_ADDRRNGHI are reserved
for definition by an archLSB.

DT_ADDRRNGLO

 Values from DT_ADDRRNGLO through DT_ADDRRNGHI are reserved
for definition by an archLSB.

DT_AUXILIARY

 Shared object to load before self

DT_FILTER

 Shared object to get values from

DT_FINI_ARRAY

 The address of an array of pointers to termination functions.

DT_FINI_ARRAYSZ

 Size in bytes of DT_FINI_ARRAY

DT_HIOS

 Values from DT_LOOS through DT_HIOS are reserved for definition by
specific operating systems.

DT_INIT_ARRAY

 The address of an array of pointers to initialization functions.

DT_INIT_ARRAYSZ

 Size in bytes of DT_INIT_ARRAY

DT_LOOS

 Values from DT_LOOS through DT_HIOS are reserved for definition by
specific operating systems.

DT_NUM

 Number of dynamic entry tags defined (excepting reserved ranges).

DT_POSFLAG_1

 Flags for DT_* entries, effecting the following DT_* entry

DT_RELCOUNT

 All Elf32_Rel R_*_RELATIVE relocations have been placed into a single
block and this entry specifies the number of entries in that block. This
permits ld.so.1 to streamline the processing of RELATIVE relocations.

DT_RUNPATH

 null-terminated library search path string

DT_SYMINENT

 Entry size of syminfo

44 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 12 Dynamic Linking

DT_SYMINFO

 Address of the Syminfo table.

DT_SYMINSZ

 Size of syminfo table (in bytes)

DT_VALRNGHI

 Entries which fall between DT_VALRNGHI & DT_VALRNGLO use the
Dyn.d_un.d_val field of the Elf*_Dyn structure.

DT_VALRNGLO

 Entries which fall between DT_VALRNGHI & DT_VALRNGLO use the
Dyn.d_un.d_val field of the Elf*_Dyn structure.

DT_VERDEF

 Address of version definition table

DT_VERDEFNUM

 Number of version definitions

DT_VERNEED

 Address of table with needed versions

DT_VERNEEDNUM

 Number of needed versions

DT_VERSYM

 Address of the table provided by the .gnu.version section.

 © 2007 Linux Foundation 45

III Base Libraries

 ISO/IEC 23360 Part 1:2007(E)

13 Base Libraries

13.1 Introduction
An LSB-conforming implementation shall support the following base libraries
which provide interfaces for accessing the operating system, processor and
other hardware in the system.

• libc

• libm

• libgcc_s

• libdl

• librt

• libcrypt

• libpam

There are three main parts to the definition of each of these libraries.

The "Interfaces" section defines the required library name and version, and the
required public symbols (interfaces and global data), as well as symbol versions,
if any.

The "Interface Definitions" section provides complete or partial definitions of
certain interfaces where either this specification is the source specification, or
where there are variations from the source specification. If an interface
definition requires one or more header files, one of those headers shall include
the function prototype for the interface.

For source definitions of interfaces which include a reference to a header file,
the contents of such header files form a part of the specification. The "Data
Definitions" section provides the binary-level details for the header files from
the source specifications, such as values for macros and enumerated types, as
well as structure layouts, sizes and padding, etc. These data definitions,
although presented in the form of header files for convenience, should not be
taken a representing complete header files, as they are a supplement to the
source specifications. Application developers should follow the guidelines of
the source specifications when determining which header files need to be
included to completely resolve all references.

Note: While the Data Definitions supplement the source specifications, this
specification itself does not require conforming implementations to supply any
header files.

13.2 Program Interpreter
The Program Interpreter is specified in the appropriate architecture specific part
of ISO/IEC 23360.

13.3 Interfaces for libc
Table 13-1 defines the library name and shared object name for the libc library

Table 13-1 libc Definition

Library: libc

 © 2007 Linux Foundation 47

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

SONAME: See archLSB.
The behavior of the interfaces in this library is specified by the following speci-
fications:

[LFS] Large File Support
[LSB] This Specification
[SUSv2] SUSv2
[SUSv3] ISO POSIX (2003)
[SVID.3] SVID Issue 3
[SVID.4] SVID Issue 4

13.3.1 RPC

13.3.1.1 Interfaces for RPC
An LSB conforming implementation shall provide the generic functions for RPC
specified in Table 13-2, with the full mandatory functionality as described in the
referenced underlying specification.

Table 13-2 libc - RPC Function Interfaces

authnone_create
[SVID.4]

clnt_create
[SVID.4]

clnt_pcreateerror
[SVID.4]

clnt_perrno
[SVID.4]

clnt_perror
[SVID.4]

clnt_spcreateerro
r [SVID.4]

clnt_sperrno
[SVID.4]

clnt_sperror
[SVID.4]

key_decryptsessi
on [SVID.3]

pmap_getport
[LSB]

pmap_set [LSB] pmap_unset
[LSB]

svc_getreqset
[SVID.3]

svc_register
[LSB]

svc_run [LSB] svc_sendreply
[LSB]

svcerr_auth
[SVID.3]

svcerr_decode
[SVID.3]

svcerr_noproc
[SVID.3]

svcerr_noprog
[SVID.3]

svcerr_progvers
[SVID.3]

svcerr_systemerr
[SVID.3]

svcerr_weakauth
[SVID.3]

svctcp_create
[LSB]

svcudp_create
[LSB]

xdr_accepted_re
ply [SVID.3]

xdr_array
[SVID.3]

xdr_bool
[SVID.3]

xdr_bytes
[SVID.3]

xdr_callhdr
[SVID.3]

xdr_callmsg
[SVID.3]

xdr_char
[SVID.3]

xdr_double
[SVID.3]

xdr_enum
[SVID.3]

xdr_float
[SVID.3]

xdr_free [SVID.3]

xdr_int [SVID.3] xdr_long
[SVID.3]

xdr_opaque
[SVID.3]

xdr_opaque_aut
h [SVID.3]

xdr_pointer
[SVID.3]

xdr_reference
[SVID.3]

xdr_rejected_repl
y [SVID.3]

xdr_replymsg
[SVID.3]

xdr_short
[SVID.3]

xdr_string
[SVID.3]

xdr_u_char
[SVID.3]

xdr_u_int [LSB]

xdr_u_long
[SVID.3]

xdr_u_short
[SVID.3]

xdr_union
[SVID.3]

xdr_vector
[SVID.3]

48 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

xdr_void
[SVID.3]

xdr_wrapstring
[SVID.3]

xdrmem_create
[SVID.3]

xdrrec_create
[SVID.3]

xdrrec_eof
[SVID.3]

xdrstdio_create
[LSB]

13.3.2 System Calls

13.3.2.1 Interfaces for System Calls
An LSB conforming implementation shall provide the generic functions for
System Calls specified in Table 13-3, with the full mandatory functionality as
described in the referenced underlying specification.

Table 13-3 libc - System Calls Function Interfaces

__fxstat [LSB] __getpgid [LSB] __lxstat [LSB] __xmknod [LSB]

__xstat [LSB] access [SUSv3] acct [LSB] alarm [SUSv3]

brk [SUSv2] chdir [SUSv3] chmod [SUSv3] chown [SUSv3]

chroot [SUSv2] clock [SUSv3] close [SUSv3] closedir [SUSv3]

creat [SUSv3] dup [SUSv3] dup2 [SUSv3] execl [SUSv3]

execle [SUSv3] execlp [SUSv3] execv [SUSv3] execve [SUSv3]

execvp [SUSv3] exit [SUSv3] fchdir [SUSv3] fchmod [SUSv3]

fchown [SUSv3] fcntl [LSB] fdatasync
[SUSv3]

flock [LSB]

fork [SUSv3] fstatfs [LSB] fstatvfs [SUSv3] fsync [SUSv3]

ftime [SUSv3] ftruncate
[SUSv3]

getcontext
[SUSv3]

getdtablesize
[LSB]

getegid [SUSv3] geteuid [SUSv3] getgid [SUSv3] getgroups
[SUSv3]

getitimer
[SUSv3]

getloadavg [LSB] getpagesize
[LSB]

getpgid [SUSv3]

getpgrp [SUSv3] getpid [SUSv3] getppid [SUSv3] getpriority
[SUSv3]

getrlimit [SUSv3] getrusage
[SUSv3]

getsid [SUSv3] getuid [SUSv3]

getwd [SUSv3] initgroups [LSB] ioctl [LSB] kill [LSB]

killpg [SUSv3] lchown [SUSv3] link [LSB] lockf [SUSv3]

lseek [SUSv3] mkdir [SUSv3] mkfifo [SUSv3] mlock [SUSv3]

mlockall [SUSv3] mmap [SUSv3] mprotect
[SUSv3]

mremap [LSB]

msync [SUSv3] munlock [SUSv3] munlockall
[SUSv3]

munmap
[SUSv3]

nanosleep nice [SUSv3] open [SUSv3] opendir [SUSv3]

 © 2007 Linux Foundation 49

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

[SUSv3]

pathconf [SUSv3] pause [SUSv3] pipe [SUSv3] poll [SUSv3]

pselect [SUSv3] read [SUSv3] readdir [SUSv3] readdir_r
[SUSv3]

readlink [SUSv3] readv [SUSv3] rename [SUSv3] rmdir [SUSv3]

sbrk [SUSv2] sched_get_priorit
y_max [SUSv3]

sched_get_priorit
y_min [SUSv3]

sched_getparam
[SUSv3]

sched_getschedu
ler [SUSv3]

sched_rr_get_int
erval [SUSv3]

sched_setparam
[SUSv3]

sched_setschedul
er [LSB]

sched_yield
[SUSv3]

select [SUSv3] setcontext
[SUSv3]

setegid [SUSv3]

seteuid [SUSv3] setgid [SUSv3] setitimer [SUSv3] setpgid [SUSv3]

setpgrp [SUSv3] setpriority
[SUSv3]

setregid [SUSv3] setreuid [SUSv3]

setrlimit [SUSv3] setrlimit64 [LFS] setsid [SUSv3] setuid [SUSv3]

sleep [SUSv3] statfs [LSB] statvfs [SUSv3] stime [LSB]

symlink [SUSv3] sync [SUSv3] sysconf [LSB] time [SUSv3]

times [SUSv3] truncate [SUSv3] ulimit [SUSv3] umask [SUSv3]

uname [SUSv3] unlink [LSB] utime [SUSv3] utimes [SUSv3]

vfork [SUSv3] wait [SUSv3] wait4 [LSB] waitid [SUSv3]

waitpid [LSB] write [SUSv3] writev [SUSv3]

An LSB conforming implementation shall provide the generic deprecated
functions for System Calls specified in Table 13-4, with the full mandatory
functionality as described in the referenced underlying specification.

Note: These interfaces are deprecated, and applications should avoid using them.
These interfaces may be withdrawn in future releases of this specification.

Table 13-4 libc - System Calls Deprecated Function Interfaces

fstatfs [LSB] getdtablesize
[LSB]

getpagesize
[LSB]

getwd [SUSv3]

statfs [LSB]

13.3.3 Standard I/O

13.3.3.1 Interfaces for Standard I/O
An LSB conforming implementation shall provide the generic functions for
Standard I/O specified in Table 13-5, with the full mandatory functionality as
described in the referenced underlying specification.

Table 13-5 libc - Standard I/O Function Interfaces

_IO_feof [LSB] _IO_getc [LSB] _IO_putc [LSB] _IO_puts [LSB]

50 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

asprintf [LSB] clearerr [SUSv3] ctermid [SUSv3] fclose [SUSv3]

fdopen [SUSv3] feof [SUSv3] ferror [SUSv3] fflush [SUSv3]

fflush_unlocked
[LSB]

fgetc [SUSv3] fgetpos [SUSv3] fgets [SUSv3]

fgetwc_unlocked
[LSB]

fileno [SUSv3] flockfile [SUSv3] fopen [SUSv3]

fprintf [SUSv3] fputc [SUSv3] fputs [SUSv3] fread [SUSv3]

freopen [SUSv3] fscanf [LSB] fseek [SUSv3] fseeko [SUSv3]

fsetpos [SUSv3] ftell [SUSv3] ftello [SUSv3] fwrite [SUSv3]

getc [SUSv3] getc_unlocked
[SUSv3]

getchar [SUSv3] getchar_unlocke
d [SUSv3]

getw [SUSv2] pclose [SUSv3] popen [SUSv3] printf [SUSv3]

putc [SUSv3] putc_unlocked
[SUSv3]

putchar [SUSv3] putchar_unlocke
d [SUSv3]

puts [SUSv3] putw [SUSv2] remove [SUSv3] rewind [SUSv3]

rewinddir
[SUSv3]

scanf [LSB] seekdir [SUSv3] setbuf [SUSv3]

setbuffer [LSB] setvbuf [SUSv3] snprintf [SUSv3] sprintf [SUSv3]

sscanf [LSB] telldir [SUSv3] tempnam
[SUSv3]

ungetc [SUSv3]

vasprintf [LSB] vdprintf [LSB] vfprintf [SUSv3] vprintf [SUSv3]

vsnprintf
[SUSv3]

vsprintf [SUSv3]

An LSB conforming implementation shall provide the generic data interfaces for
Standard I/O specified in Table 13-6, with the full mandatory functionality as
described in the referenced underlying specification.

Table 13-6 libc - Standard I/O Data Interfaces

stderr [SUSv3] stdin [SUSv3] stdout [SUSv3]

13.3.4 Signal Handling

13.3.4.1 Interfaces for Signal Handling
An LSB conforming implementation shall provide the generic functions for
Signal Handling specified in Table 13-7, with the full mandatory functionality as
described in the referenced underlying specification.

Table 13-7 libc - Signal Handling Function Interfaces

__libc_current_si
grtmax [LSB]

__libc_current_si
grtmin [LSB]

__sigsetjmp
[LSB]

__sysv_signal
[LSB]

__xpg_sigpause
[LSB]

bsd_signal
[SUSv3]

psignal [LSB] raise [SUSv3]

 © 2007 Linux Foundation 51

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

sigaction [SUSv3] sigaddset
[SUSv3]

sigaltstack
[SUSv3]

sigandset [LSB]

sigdelset [SUSv3] sigemptyset
[SUSv3]

sigfillset [SUSv3] sighold [SUSv3]

sigignore
[SUSv3]

siginterrupt
[SUSv3]

sigisemptyset
[LSB]

sigismember
[SUSv3]

siglongjmp
[SUSv3]

signal [SUSv3] sigorset [LSB] sigpause [LSB]

sigpending
[SUSv3]

sigprocmask
[SUSv3]

sigqueue
[SUSv3]

sigrelse [SUSv3]

sigreturn [LSB] sigset [SUSv3] sigsuspend
[SUSv3]

sigtimedwait
[SUSv3]

sigwait [SUSv3] sigwaitinfo
[SUSv3]

An LSB conforming implementation shall provide the generic deprecated
functions for Signal Handling specified in Table 13-8, with the full mandatory
functionality as described in the referenced underlying specification.

Note: These interfaces are deprecated, and applications should avoid using them.
These interfaces may be withdrawn in future releases of this specification.

Table 13-8 libc - Signal Handling Deprecated Function Interfaces

sigpause [LSB]

An LSB conforming implementation shall provide the generic data interfaces for
Signal Handling specified in Table 13-9, with the full mandatory functionality as
described in the referenced underlying specification.

Table 13-9 libc - Signal Handling Data Interfaces

_sys_siglist [LSB]

13.3.5 Localization Functions

13.3.5.1 Interfaces for Localization Functions
An LSB conforming implementation shall provide the generic functions for
Localization Functions specified in Table 13-10, with the full mandatory
functionality as described in the referenced underlying specification.

Table 13-10 libc - Localization Functions Function Interfaces

bind_textdomain
_codeset [LSB]

bindtextdomain
[LSB]

catclose [SUSv3] catgets [SUSv3]

catopen [SUSv3] dcgettext [LSB] dcngettext [LSB] dgettext [LSB]

dngettext [LSB] duplocale(GLIBC
_2.3) [LSB]

freelocale(GLIBC
_2.3) [LSB]

gettext [LSB]

iconv [SUSv3] iconv_close
[SUSv3]

iconv_open
[SUSv3]

localeconv
[SUSv3]

52 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

newlocale(GLIB
C_2.3) [LSB]

ngettext [LSB] nl_langinfo
[SUSv3]

setlocale [SUSv3]

textdomain [LSB] uselocale(GLIBC
_2.3) [LSB]

An LSB conforming implementation shall provide the generic data interfaces for
Localization Functions specified in Table 13-11, with the full mandatory
functionality as described in the referenced underlying specification.

Table 13-11 libc - Localization Functions Data Interfaces

_nl_msg_cat_cntr
[LSB]

13.3.6 Posix Spawn Option

13.3.6.1 Interfaces for Posix Spawn Option
An LSB conforming implementation shall provide the generic functions for
Posix Spawn Option specified in Table 13-12, with the full mandatory
functionality as described in the referenced underlying specification.

Table 13-12 libc - Posix Spawn Option Function Interfaces

posix_spawn
[SUSv3]

posix_spawn_file
_actions_addclos
e [SUSv3]

posix_spawn_file
_actions_adddup
2 [SUSv3]

posix_spawn_file
_actions_addope
n [SUSv3]

posix_spawn_file
_actions_destroy
[SUSv3]

posix_spawn_file
_actions_init
[SUSv3]

posix_spawnattr
_destroy [SUSv3]

posix_spawnattr
_getflags [SUSv3]

posix_spawnattr
_getpgroup
[SUSv3]

posix_spawnattr
_getschedparam
[SUSv3]

posix_spawnattr
_getschedpolicy
[SUSv3]

posix_spawnattr
_getsigdefault
[SUSv3]

posix_spawnattr
_getsigmask
[SUSv3]

posix_spawnattr
_init [SUSv3]

posix_spawnattr
_setflags [SUSv3]

posix_spawnattr
_setpgroup
[SUSv3]

posix_spawnattr
_setschedparam
[SUSv3]

posix_spawnattr
_setschedpolicy
[SUSv3]

posix_spawnattr
_setsigdefault
[SUSv3]

posix_spawnattr
_setsigmask
[SUSv3]

posix_spawnp
[SUSv3]

13.3.7 Posix Advisory Option

13.3.7.1 Interfaces for Posix Advisory Option
An LSB conforming implementation shall provide the generic functions for
Posix Advisory Option specified in Table 13-13, with the full mandatory
functionality as described in the referenced underlying specification.

Table 13-13 libc - Posix Advisory Option Function Interfaces

posix_fadvise posix_fallocate posix_madvise posix_memalign

 © 2007 Linux Foundation 53

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

[SUSv3] [SUSv3] [SUSv3] [SUSv3]

13.3.8 Socket Interface

13.3.8.1 Interfaces for Socket Interface
An LSB conforming implementation shall provide the generic functions for
Socket Interface specified in Table 13-14, with the full mandatory functionality
as described in the referenced underlying specification.

Table 13-14 libc - Socket Interface Function Interfaces

__h_errno_locati
on [LSB]

accept [SUSv3] bind [SUSv3] bindresvport
[LSB]

connect [SUSv3] gethostid
[SUSv3]

gethostname
[SUSv3]

getpeername
[SUSv3]

getsockname
[SUSv3]

getsockopt [LSB] if_freenameindex
[SUSv3]

if_indextoname
[SUSv3]

if_nameindex
[SUSv3]

if_nametoindex
[SUSv3]

listen [SUSv3] recv [SUSv3]

recvfrom
[SUSv3]

recvmsg [SUSv3] send [SUSv3] sendmsg [SUSv3]

sendto [SUSv3] setsockopt [LSB] shutdown
[SUSv3]

sockatmark
[SUSv3]

socket [SUSv3] socketpair
[SUSv3]

An LSB conforming implementation shall provide the generic data interfaces for
Socket Interface specified in Table 13-15, with the full mandatory functionality
as described in the referenced underlying specification.

Table 13-15 libc - Socket Interface Data Interfaces

in6addr_any
[SUSv3]

in6addr_loopbac
k [SUSv3]

13.3.9 Wide Characters

13.3.9.1 Interfaces for Wide Characters
An LSB conforming implementation shall provide the generic functions for
Wide Characters specified in Table 13-16, with the full mandatory functionality
as described in the referenced underlying specification.

Table 13-16 libc - Wide Characters Function Interfaces

__wcstod_intern
al [LSB]

__wcstof_interna
l [LSB]

__wcstol_interna
l [LSB]

__wcstold_intern
al [LSB]

__wcstoul_intern
al [LSB]

btowc [SUSv3] fgetwc [SUSv3] fgetws [SUSv3]

fputwc [SUSv3] fputws [SUSv3] fwide [SUSv3] fwprintf [SUSv3]

54 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

fwscanf [LSB] getwc [SUSv3] getwchar
[SUSv3]

mblen [SUSv3]

mbrlen [SUSv3] mbrtowc
[SUSv3]

mbsinit [SUSv3] mbsnrtowcs
[LSB]

mbsrtowcs
[SUSv3]

mbstowcs
[SUSv3]

mbtowc [SUSv3] putwc [SUSv3]

putwchar
[SUSv3]

swprintf [SUSv3] swscanf [LSB] towctrans
[SUSv3]

towlower
[SUSv3]

towupper
[SUSv3]

ungetwc [SUSv3] vfwprintf
[SUSv3]

vfwscanf [LSB] vswprintf
[SUSv3]

vswscanf [LSB] vwprintf [SUSv3]

vwscanf [LSB] wcpcpy [LSB] wcpncpy [LSB] wcrtomb
[SUSv3]

wcscasecmp
[LSB]

wcscat [SUSv3] wcschr [SUSv3] wcscmp [SUSv3]

wcscoll [SUSv3] wcscpy [SUSv3] wcscspn [SUSv3] wcsdup [LSB]

wcsftime
[SUSv3]

wcslen [SUSv3] wcsncasecmp
[LSB]

wcsncat [SUSv3]

wcsncmp
[SUSv3]

wcsncpy [SUSv3] wcsnlen [LSB] wcsnrtombs
[LSB]

wcspbrk [SUSv3] wcsrchr [SUSv3] wcsrtombs
[SUSv3]

wcsspn [SUSv3]

wcsstr [SUSv3] wcstod [SUSv3] wcstof [SUSv3] wcstoimax
[SUSv3]

wcstok [SUSv3] wcstol [SUSv3] wcstold [SUSv3] wcstoll [SUSv3]

wcstombs
[SUSv3]

wcstoq [LSB] wcstoul [SUSv3] wcstoull [SUSv3]

wcstoumax
[SUSv3]

wcstouq [LSB] wcswcs [SUSv3] wcswidth
[SUSv3]

wcsxfrm [SUSv3] wctob [SUSv3] wctomb [SUSv3] wctrans [SUSv3]

wctype [SUSv3] wcwidth [SUSv3] wmemchr
[SUSv3]

wmemcmp
[SUSv3]

wmemcpy
[SUSv3]

wmemmove
[SUSv3]

wmemset
[SUSv3]

wprintf [SUSv3]

wscanf [LSB]

13.3.10 String Functions

13.3.10.1 Interfaces for String Functions
An LSB conforming implementation shall provide the generic functions for
String Functions specified in Table 13-17, with the full mandatory functionality
as described in the referenced underlying specification.

 © 2007 Linux Foundation 55

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

Table 13-17 libc - String Functions Function Interfaces

__mempcpy
[LSB]

__rawmemchr
[LSB]

__stpcpy [LSB] __strdup [LSB]

__strtod_internal
[LSB]

__strtof_internal
[LSB]

__strtok_r [LSB] __strtol_internal
[LSB]

__strtold_interna
l [LSB]

__strtoll_internal
[LSB]

__strtoul_interna
l [LSB]

__strtoull_intern
al [LSB]

__xpg_strerror_r(
GLIBC_2.3.4)
[LSB]

bcmp [SUSv3] bcopy [SUSv3] bzero [SUSv3]

ffs [SUSv3] index [SUSv3] memccpy
[SUSv3]

memchr [SUSv3]

memcmp
[SUSv3]

memcpy [SUSv3] memmove
[SUSv3]

memrchr [LSB]

memset [SUSv3] rindex [SUSv3] stpcpy [LSB] stpncpy [LSB]

strcasecmp
[SUSv3]

strcasestr [LSB] strcat [SUSv3] strchr [SUSv3]

strcmp [SUSv3] strcoll [SUSv3] strcpy [SUSv3] strcspn [SUSv3]

strdup [SUSv3] strerror [SUSv3] strerror_r [LSB] strfmon [SUSv3]

strftime [SUSv3] strlen [SUSv3] strncasecmp
[SUSv3]

strncat [SUSv3]

strncmp [SUSv3] strncpy [SUSv3] strndup [LSB] strnlen [LSB]

strpbrk [SUSv3] strptime [LSB] strrchr [SUSv3] strsep [LSB]

strsignal [LSB] strspn [SUSv3] strstr [SUSv3] strtof [SUSv3]

strtoimax
[SUSv3]

strtok [SUSv3] strtok_r [SUSv3] strtold [SUSv3]

strtoll [SUSv3] strtoq [LSB] strtoull [SUSv3] strtoumax
[SUSv3]

strtouq [LSB] strxfrm [SUSv3] swab [SUSv3]

An LSB conforming implementation shall provide the generic deprecated
functions for String Functions specified in Table 13-18, with the full mandatory
functionality as described in the referenced underlying specification.

Note: These interfaces are deprecated, and applications should avoid using them.
These interfaces may be withdrawn in future releases of this specification.

Table 13-18 libc - String Functions Deprecated Function Interfaces

strerror_r [LSB]

56 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

13.3.11 IPC Functions

13.3.11.1 Interfaces for IPC Functions
An LSB conforming implementation shall provide the generic functions for IPC
Functions specified in Table 13-19, with the full mandatory functionality as
described in the referenced underlying specification.

Table 13-19 libc - IPC Functions Function Interfaces

ftok [SUSv3] msgctl [SUSv3] msgget [SUSv3] msgrcv [SUSv3]

msgsnd [SUSv3] semctl [SUSv3] semget [SUSv3] semop [SUSv3]

shmat [SUSv3] shmctl [SUSv3] shmdt [SUSv3] shmget [SUSv3]

13.3.12 Regular Expressions

13.3.12.1 Interfaces for Regular Expressions
An LSB conforming implementation shall provide the generic functions for
Regular Expressions specified in Table 13-20, with the full mandatory
functionality as described in the referenced underlying specification.

Table 13-20 libc - Regular Expressions Function Interfaces

regcomp [SUSv3] regerror [SUSv3] regexec [LSB] regfree [SUSv3]

13.3.13 Character Type Functions

13.3.13.1 Interfaces for Character Type Functions
An LSB conforming implementation shall provide the generic functions for
Character Type Functions specified in Table 13-21, with the full mandatory
functionality as described in the referenced underlying specification.

Table 13-21 libc - Character Type Functions Function Interfaces

__ctype_b_loc(G
LIBC_2.3) [LSB]

__ctype_get_mb_
cur_max [LSB]

__ctype_tolower
_loc(GLIBC_2.3)
[LSB]

__ctype_toupper
_loc(GLIBC_2.3)
[LSB]

_tolower [SUSv3] _toupper
[SUSv3]

isalnum [SUSv3] isalpha [SUSv3]

isascii [SUSv3] iscntrl [SUSv3] isdigit [SUSv3] isgraph [SUSv3]

islower [SUSv3] isprint [SUSv3] ispunct [SUSv3] isspace [SUSv3]

isupper [SUSv3] iswalnum
[SUSv3]

iswalpha
[SUSv3]

iswblank
[SUSv3]

iswcntrl [SUSv3] iswctype [SUSv3] iswdigit [SUSv3] iswgraph
[SUSv3]

iswlower
[SUSv3]

iswprint [SUSv3] iswpunct
[SUSv3]

iswspace
[SUSv3]

iswupper
[SUSv3]

iswxdigit
[SUSv3]

isxdigit [SUSv3] toascii [SUSv3]

 © 2007 Linux Foundation 57

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

tolower [SUSv3] toupper [SUSv3]

13.3.14 Time Manipulation

13.3.14.1 Interfaces for Time Manipulation
An LSB conforming implementation shall provide the generic functions for
Time Manipulation specified in Table 13-22, with the full mandatory
functionality as described in the referenced underlying specification.

Table 13-22 libc - Time Manipulation Function Interfaces

adjtime [LSB] asctime [SUSv3] asctime_r
[SUSv3]

ctime [SUSv3]

ctime_r [SUSv3] difftime [SUSv3] gmtime [SUSv3] gmtime_r
[SUSv3]

localtime
[SUSv3]

localtime_r
[SUSv3]

mktime [SUSv3] tzset [SUSv3]

ualarm [SUSv3]

An LSB conforming implementation shall provide the generic data interfaces for
Time Manipulation specified in Table 13-23, with the full mandatory
functionality as described in the referenced underlying specification.

Table 13-23 libc - Time Manipulation Data Interfaces

__daylight [LSB] __timezone [LSB] __tzname [LSB] daylight [SUSv3]

timezone
[SUSv3]

tzname [SUSv3]

13.3.15 Terminal Interface Functions

13.3.15.1 Interfaces for Terminal Interface Functions
An LSB conforming implementation shall provide the generic functions for
Terminal Interface Functions specified in Table 13-24, with the full mandatory
functionality as described in the referenced underlying specification.

Table 13-24 libc - Terminal Interface Functions Function Interfaces

cfgetispeed
[SUSv3]

cfgetospeed
[SUSv3]

cfmakeraw [LSB] cfsetispeed
[SUSv3]

cfsetospeed
[SUSv3]

cfsetspeed [LSB] tcdrain [SUSv3] tcflow [SUSv3]

tcflush [SUSv3] tcgetattr [SUSv3] tcgetpgrp
[SUSv3]

tcgetsid [SUSv3]

tcsendbreak
[SUSv3]

tcsetattr [SUSv3] tcsetpgrp
[SUSv3]

58 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

13.3.16 System Database Interface

13.3.16.1 Interfaces for System Database Interface
An LSB conforming implementation shall provide the generic functions for
System Database Interface specified in Table 13-25, with the full mandatory
functionality as described in the referenced underlying specification.

Table 13-25 libc - System Database Interface Function Interfaces

endgrent
[SUSv3]

endprotoent
[SUSv3]

endpwent
[SUSv3]

endservent
[SUSv3]

endutent [LSB] endutxent
[SUSv3]

getgrent [SUSv3] getgrgid [SUSv3]

getgrgid_r
[SUSv3]

getgrnam
[SUSv3]

getgrnam_r
[SUSv3]

getgrouplist
[LSB]

gethostbyaddr
[SUSv3]

gethostbyaddr_r
[LSB]

gethostbyname
[SUSv3]

gethostbyname2
[LSB]

gethostbyname2
_r [LSB]

gethostbyname_r
[LSB]

getprotobyname
[SUSv3]

getprotobynumb
er [SUSv3]

getprotoent
[SUSv3]

getpwent
[SUSv3]

getpwnam
[SUSv3]

getpwnam_r
[SUSv3]

getpwuid
[SUSv3]

getpwuid_r
[SUSv3]

getservbyname
[SUSv3]

getservbyport
[SUSv3]

getservent
[SUSv3]

getutent [LSB] getutent_r [LSB] getutxent
[SUSv3]

getutxid [SUSv3] getutxline
[SUSv3]

pututxline
[SUSv3]

setgrent [SUSv3]

setgroups [LSB] setprotoent
[SUSv3]

setpwent
[SUSv3]

setservent
[SUSv3]

 setutent [LSB] setutxent
[SUSv3]

utmpname [LSB]

An LSB conforming implementation shall provide the generic deprecated
functions for System Database Interface specified in Table 13-26, with the full
mandatory functionality as described in the referenced underlying specification.

Table 13-26 libc - System Database Interface Deprecated Function Interfaces

gethostbyaddr
[SUSv3]

gethostbyaddr_r
[LSB]

gethostbyname
[SUSv3]

gethostbyname2
[LSB]

Note: These interfaces are deprecated, and applications should avoid using them.
These interfaces may be withdrawn in future releases of this specification.

 gethostbyname2
_r [LSB]

gethostbyname_r
[LSB]

 © 2007 Linux Foundation 59

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

13.3.17 Language Support

13.3.17.1 Interfaces for Language Support
An LSB conforming implementation shall provide the generic functions for
Language Support specified in Table 13-27, with the full mandatory
functionality as described in the referenced underlying specification.

Table 13-27 libc - Language Support Function Interfaces

__libc_start_mai
n [LSB]

__register_atfork
(GLIBC_2.3.2)
[LSB]

13.3.18 Large File Support

13.3.18.1 Interfaces for Large File Support
An LSB conforming implementation shall provide the generic functions for
Large File Support specified in Table 13-28, with the full mandatory
functionality as described in the referenced underlying specification.

Table 13-28 libc - Large File Support Function Interfaces

__fxstat64 [LSB] __lxstat64 [LSB] __xstat64 [LSB] creat64 [LFS]

fgetpos64 [LFS] fopen64 [LFS] freopen64 [LFS] fseeko64 [LFS]

fsetpos64 [LFS] fstatfs64 [LSB] fstatvfs64 [LFS] ftello64 [LFS]

ftruncate64 [LFS] ftw64 [LFS] getrlimit64 [LFS] lockf64 [LFS]

mkstemp64 [LFS] mmap64 [LFS] nftw64 [LFS] posix_fadvise64
[LSB]

posix_fallocate64
[LSB]

readdir64 [LFS] readdir64_r
[LSB]

statfs64 [LSB]

 statvfs64 [LFS] tmpfile64 [LFS] truncate64 [LFS]
An LSB conforming implementation shall provide the generic deprecated
functions for Large File Support specified in Table 13-29, with the full
mandatory functionality as described in the referenced underlying specification.

Table 13-29 libc - Large File Support Deprecated Function Interfaces

fstatfs64 [LSB] statfs64 [LSB]

Note: These interfaces are deprecated, and applications should avoid using them.
These interfaces may be withdrawn in future releases of this specification.

13.3.19 Standard Library

13.3.19.1 Interfaces for Standard Library
An LSB conforming implementation shall provide the generic functions for
Standard Library specified in Table 13-30, with the full mandatory functionality
as described in the referenced underlying specification.

60 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

Table 13-30 libc - Standard Library Function Interfaces

_Exit [SUSv3] __assert_fail
[LSB]

__cxa_atexit
[LSB]

__cxa_finalize
[LSB]

__errno_location
[LSB]

__fpending [LSB] __getpagesize
[LSB]

__isinf [LSB]

__isinff [LSB] __isinfl [LSB] __isnan [LSB] __isnanf [LSB]

__isnanl [LSB] __sysconf [LSB] __xpg_basename
[LSB]

_exit [SUSv3]

_longjmp
[SUSv3]

_setjmp [SUSv3] a64l [SUSv3] abort [SUSv3]

abs [SUSv3] atof [SUSv3] atoi [SUSv3] atol [SUSv3]

atoll [SUSv3] basename [LSB] bsearch [SUSv3] calloc [SUSv3]

closelog [SUSv3] confstr [SUSv3] cuserid [SUSv2] daemon [LSB]

dirname [SUSv3] div [SUSv3] drand48 [SUSv3] ecvt [SUSv3]

erand48 [SUSv3] err [LSB] error [LSB] errx [LSB]

fcvt [SUSv3] fmtmsg [SUSv3] fnmatch [SUSv3] fpathconf
[SUSv3]

free [SUSv3] freeaddrinfo
[SUSv3]

ftrylockfile
[SUSv3]

ftw [SUSv3]

funlockfile
[SUSv3]

gai_strerror
[SUSv3]

gcvt [SUSv3] getaddrinfo
[SUSv3]

getcwd [SUSv3] getdate [SUSv3] getdomainname
[LSB]

getenv [SUSv3]

getlogin [SUSv3] getlogin_r
[SUSv3]

getnameinfo
[SUSv3]

getopt [LSB]

getopt_long
[LSB]

getopt_long_onl
y [LSB]

getsubopt
[SUSv3]

gettimeofday
[SUSv3]

glob [SUSv3] glob64 [LSB] globfree [SUSv3] globfree64 [LSB]

grantpt [SUSv3] hcreate [SUSv3] hdestroy [SUSv3] hsearch [SUSv3]

htonl [SUSv3] htons [SUSv3] imaxabs [SUSv3] imaxdiv [SUSv3]

inet_addr
[SUSv3]

inet_aton [LSB] inet_ntoa
[SUSv3]

inet_ntop
[SUSv3]

inet_pton
[SUSv3]

initstate [SUSv3] insque [SUSv3] isatty [SUSv3]

isblank [SUSv3] jrand48 [SUSv3] l64a [SUSv3] labs [SUSv3]

lcong48 [SUSv3] ldiv [SUSv3] lfind [SUSv3] llabs [SUSv3]

lldiv [SUSv3] longjmp [SUSv3] lrand48 [SUSv3] lsearch [SUSv3]

makecontext
[SUSv3]

malloc [SUSv3] memmem [LSB] mkstemp
[SUSv3]

 © 2007 Linux Foundation 61

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

mktemp [SUSv3] mrand48 [SUSv3] nftw [SUSv3] nrand48 [SUSv3]

ntohl [SUSv3] ntohs [SUSv3] openlog [SUSv3] perror [SUSv3]

posix_openpt
[SUSv3]

ptsname [SUSv3] putenv [SUSv3] qsort [SUSv3]

rand [SUSv3] rand_r [SUSv3] random [SUSv3] realloc [SUSv3]

realpath [SUSv3] remque [SUSv3] seed48 [SUSv3] setenv [SUSv3]

sethostname
[LSB]

setlogmask
[SUSv3]

setstate [SUSv3] srand [SUSv3]

srand48 [SUSv3] srandom [SUSv3] strtod [SUSv3] strtol [SUSv3]

strtoul [SUSv3] swapcontext
[SUSv3]

syslog [SUSv3] system [LSB]

tdelete [SUSv3] tfind [SUSv3] tmpfile [SUSv3] tmpnam [SUSv3]

tsearch [SUSv3] ttyname [SUSv3] ttyname_r
[SUSv3]

twalk [SUSv3]

unlockpt [SUSv3] unsetenv
[SUSv3]

usleep [SUSv3] verrx [LSB]

vfscanf [LSB] vscanf [LSB] vsscanf [LSB] vsyslog [LSB]

warn [LSB] warnx [LSB] wordexp
[SUSv3]

wordfree
[SUSv3]

An LSB conforming implementation shall provide the generic deprecated
functions for Standard Library specified in Table 13-31, with the full mandatory
functionality as described in the referenced underlying specification.

Table 13-31 libc - Standard Library Deprecated Function Interfaces

basename [LSB] getdomainname
[LSB]

inet_aton [LSB]

Note: These interfaces are deprecated, and applications should avoid using them.
These interfaces may be withdrawn in future releases of this specification.

An LSB conforming implementation shall provide the generic data interfaces for
Standard Library specified in Table 13-32, with the full mandatory functionality
as described in the referenced underlying specification.

Table 13-32 libc - Standard Library Data Interfaces

__environ [LSB] _environ [LSB] _sys_errlist [LSB] environ [SUSv3]

getdate_err
[SUSv3]

optarg [SUSv3] opterr [SUSv3] optind [SUSv3]

optopt [SUSv3]

13.4 Data Definitions for libc
This section defines global identifiers and their values that are associated with
interfaces contained in libc. These definitions are organized into groups that

62 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

correspond to system headers. This convention is used as a convenience for the
reader, and does not imply the existence of these headers, or their content.
Where an interface is defined as requiring a particular system header file all of
the data definitions for that system header file presented here shall be in effect.

This section gives data definitions to promote binary application portability, not
to repeat source interface definitions available elsewhere. System providers and
application developers should use this ABI to supplement - not to replace -
source interface definition specifications.

This specification uses the ISO C (1999) C Language as the reference
programming language, and data definitions are specified in ISO C format. The
C language is used here as a convenient notation. Using a C language
description of these data objects does not preclude their use by other
programming languages.

extern uint32_t htonl(uint32_t);
extern uint16_t htons(uint16_t);
extern in_addr_t inet_addr(const char *);
extern int inet_aton(const char *, struct in_addr *);
extern char *inet_ntoa(struct in_addr);
extern const char *inet_ntop(int, const void *, char *,
socklen_t);
extern int inet_pton(int, const char *, void *);
extern uint32_t ntohl(uint32_t);
extern uint16_t ntohs(uint16_t);

13.4.2 assert.h
The assert.h header shall define the assert() macro. It refers to the macro
NDEBUG, which is not defined in this header. If NDEBUG is defined before the
inclusion of this header, the assert() macro shall be defined as described
below, otherwise the macro shall behave as described in assert() in ISO/IEC
9945 POSIX.

extern void __assert_fail(const char *, const char *, unsigned
int,
 const char *);

13.4.3 ctype.h

extern int _tolower(int);
extern int _toupper(int);
extern int isalnum(int);
extern int isalpha(int);
extern int isascii(int);
extern int iscntrl(int);
extern int isdigit(int);
extern int isgraph(int);
extern int islower(int);
extern int isprint(int);
extern int ispunct(int);
extern int isspace(int);
extern int isupper(int);
extern int isxdigit(int);
extern int toascii(int);
extern int tolower(int);
extern int toupper(int);

13.4.1 arpa/inet.h

 © 2007 Linux Foundation 63

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

extern int isblank(int);
extern const unsigned short **__ctype_b_loc(void);
extern const int32_t **__ctype_toupper_loc(void);
extern const int32_t **__ctype_tolower_loc(void);

13.4.4 dirent.h

typedef struct __dirstream DIR;

struct dirent {
 long int d_ino;
 off_t d_off;
 unsigned short d_reclen;
 unsigned char d_type;
 char d_name[256];
};
struct dirent64 {
 uint64_t d_ino;
 int64_t d_off;
 unsigned short d_reclen;
 unsigned char d_type;
 char d_name[256];
};
extern int readdir64_r(DIR *, struct dirent64 *, struct dirent64
**);
extern void rewinddir(DIR *);
extern void seekdir(DIR *, long int);
extern long int telldir(DIR *);
extern int closedir(DIR *);
extern DIR *opendir(const char *);
extern struct dirent *readdir(DIR *);
extern struct dirent64 *readdir64(DIR *);
extern int readdir_r(DIR *, struct dirent *, struct dirent **);

13.4.5 err.h

extern void err(int, const char *, ...);
extern void errx(int, const char *, ...);
extern void warn(const char *, ...);
extern void warnx(const char *, ...);
extern void error(int, int, const char *, ...);

13.4.6 errno.h
ISO POSIX (2003) requires that each error value shall be unique, with
permission for EAGAIN and EWOULDBLOCK possibly having the same value.
This specification also requires that ENOTSUP and EOPNOTSUPP have the
same value.

Note: A defect report against ISO POSIX (2003) has been filed to request that
specification also permit these two symbols to have the same value.

#define errno (*__errno_location())

#define EPERM 1
#define ECHILD 10
#define ENETDOWN 100
#define ENETUNREACH 101
#define ENETRESET 102
#define ECONNABORTED 103
#define ECONNRESET 104
#define ENOBUFS 105

64 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

#define EISCONN 106
#define ENOTCONN 107
#define ESHUTDOWN 108
#define ETOOMANYREFS 109
#define EAGAIN 11
#define ETIMEDOUT 110
#define ECONNREFUSED 111
#define EHOSTDOWN 112
#define EHOSTUNREACH 113
#define EALREADY 114
#define EINPROGRESS 115
#define ESTALE 116
#define EUCLEAN 117
#define ENOTNAM 118
#define ENAVAIL 119
#define ENOMEM 12
#define EISNAM 120
#define EREMOTEIO 121
#define EDQUOT 122
#define ENOMEDIUM 123
#define EMEDIUMTYPE 124
#define ECANCELED 125
#define EACCES 13
#define EFAULT 14
#define ENOTBLK 15
#define EBUSY 16
#define EEXIST 17
#define EXDEV 18
#define ENODEV 19
#define ENOENT 2
#define ENOTDIR 20
#define EISDIR 21
#define EINVAL 22
#define ENFILE 23
#define EMFILE 24
#define ENOTTY 25
#define ETXTBSY 26
#define EFBIG 27
#define ENOSPC 28
#define ESPIPE 29
#define ESRCH 3
#define EROFS 30
#define EMLINK 31
#define EPIPE 32
#define EDOM 33
#define ERANGE 34
#define EDEADLK 35
#define ENAMETOOLONG 36
#define ENOLCK 37
#define ENOSYS 38
#define ENOTEMPTY 39
#define EINTR 4
#define ELOOP 40
#define ENOMSG 42
#define EIDRM 43
#define ECHRNG 44
#define EL2NSYNC 45
#define EL3HLT 46
#define EL3RST 47
#define ELNRNG 48
#define EUNATCH 49
#define EIO 5
#define ENOANO 55
#define EBADRQC 56
#define EBADSLT 57
#define EBFONT 59

 © 2007 Linux Foundation 65

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

#define ENXIO 6
#define ENOSTR 60
#define ENODATA 61
#define ETIME 62
#define ENOSR 63
#define ENONET 64
#define ENOPKG 65
#define EREMOTE 66
#define ENOLINK 67
#define EADV 68
#define ESRMNT 69
#define E2BIG 7
#define ECOMM 70
#define EPROTO 71
#define EMULTIHOP 72
#define EDOTDOT 73
#define EBADMSG 74
#define EOVERFLOW 75
#define ENOTUNIQ 76
#define EBADFD 77
#define EREMCHG 78
#define ELIBACC 79
#define ENOEXEC 8
#define ELIBBAD 80
#define ELIBSCN 81
#define ELIBMAX 82
#define ELIBEXEC 83
#define EILSEQ 84
#define ERESTART 85
#define ESTRPIPE 86
#define EUSERS 87
#define ENOTSOCK 88
#define EDESTADDRREQ 89
#define EBADF 9
#define EMSGSIZE 90
#define EPROTOTYPE 91
#define ENOPROTOOPT 92
#define EPROTONOSUPPORT 93
#define ESOCKTNOSUPPORT 94
#define EOPNOTSUPP 95
#define EPFNOSUPPORT 96
#define EAFNOSUPPORT 97
#define EADDRINUSE 98
#define EADDRNOTAVAIL 99
#define EWOULDBLOCK EAGAIN
#define ENOTSUP EOPNOTSUPP

extern int *__errno_location(void);

13.4.7 fcntl.h

#define O_RDONLY 00
#define O_ACCMODE 0003
#define O_WRONLY 01
#define O_CREAT 0100
#define O_TRUNC 01000
#define O_SYNC 010000
#define O_RDWR 02
#define O_EXCL 0200
#define O_APPEND 02000
#define O_ASYNC 020000
#define O_NOCTTY 0400
#define O_NDELAY 04000
#define O_NONBLOCK 04000
#define FD_CLOEXEC 1

66 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

struct flock {
 short l_type;
 short l_whence;
 off_t l_start;
 off_t l_len;
 pid_t l_pid;
};
struct flock64 {
 short l_type;
 short l_whence;
 loff_t l_start;
 loff_t l_len;
 pid_t l_pid;
};

#define F_DUPFD 0
#define F_RDLCK 0
#define F_GETFD 1
#define F_WRLCK 1
#define F_SETSIG 10
#define F_GETSIG 11
#define F_SETFD 2
#define F_UNLCK 2
#define F_GETFL 3
#define F_SETFL 4
#define F_GETLK 5
#define F_SETLK 6
#define F_SETLKW 7
#define F_SETOWN 8
#define F_GETOWN 9

extern int posix_fadvise(int, off_t, off_t, int);
extern int posix_fallocate(int, off_t, off_t);
extern int posix_fadvise64(int, off64_t, off64_t, int);
extern int posix_fallocate64(int, off64_t, off64_t);
extern int creat(const char *, mode_t);
extern int creat64(const char *, mode_t);
extern int fcntl(int, int, ...);
extern int open(const char *, int, ...);
extern int open64(const char *, int, ...);

13.4.8 fmtmsg.h

#define MM_HARD 1
#define MM_NRECOV 128
#define MM_UTIL 16
#define MM_SOFT 2
#define MM_OPSYS 32
#define MM_FIRM 4
#define MM_RECOVER 64
#define MM_APPL 8

#define MM_NOSEV 0
#define MM_HALT 1
#define MM_ERROR 2

#define MM_NULLLBL ((char *) 0)

extern int fmtmsg(long int, const char *, int, const char *,
const char *,
 const char *);

 © 2007 Linux Foundation 67

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

13.4.9 fnmatch.h

#define FNM_PATHNAME (1<<0)
#define FNM_NOESCAPE (1<<1)
#define FNM_PERIOD (1<<2)
#define FNM_NOMATCH 1

extern int fnmatch(const char *, const char *, int);

13.4.10 ftw.h

#define FTW_D FTW_D
#define FTW_DNR FTW_DNR
#define FTW_DP FTW_DP
#define FTW_F FTW_F
#define FTW_NS FTW_NS
#define FTW_SL FTW_SL
#define FTW_SLN FTW_SLN

enum {
 FTW_F,
 FTW_D,
 FTW_DNR,
 FTW_NS,
 FTW_SL,
 FTW_DP,
 FTW_SLN
};

enum {
 FTW_PHYS = 1,
 FTW_MOUNT = 2,
 FTW_CHDIR = 4,
 FTW_DEPTH = 8
};

struct FTW {
 int base;
 int level;
};

typedef int (*__ftw_func_t) (char *__filename, struct stat *
__status,
 int __flag);
typedef int (*__ftw64_func_t) (char *__filename, struct stat64 *
__status,
 int __flag);
typedef int (*__nftw_func_t) (char *__filename, struct stat *
__status,
 int __flag, struct FTW * __info);
typedef int (*__nftw64_func_t) (char *__filename, struct stat64 *
__status,
 int __flag, struct FTW * __info);
extern int ftw(const char *, __ftw_func_t, int);
extern int ftw64(const char *, __ftw64_func_t, int);
extern int nftw(const char *, __nftw_func_t, int, int);
extern int nftw64(const char *, __nftw64_func_t, int, int);

13.4.11 getopt.h

#define no_argument 0
#define required_argument 1

68 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

#define optional_argument 2

struct option {
 const char *name;
 int has_arg;
 int *flag;
 int val;
};
extern int getopt_long(int, char *const, const char *,
 const struct option *, int *);
extern int getopt_long_only(int, char *const, const char *,
 const struct option *, int *);

13.4.12 glob.h

#define GLOB_ERR (1<<0)
#define GLOB_MARK (1<<1)
#define GLOB_BRACE (1<<10)
#define GLOB_NOMAGIC (1<<11)
#define GLOB_TILDE (1<<12)
#define GLOB_ONLYDIR (1<<13)
#define GLOB_TILDE_CHECK (1<<14)
#define GLOB_NOSORT (1<<2)
#define GLOB_DOOFFS (1<<3)
#define GLOB_NOCHECK (1<<4)
#define GLOB_APPEND (1<<5)
#define GLOB_NOESCAPE (1<<6)
#define GLOB_PERIOD (1<<7)
#define GLOB_MAGCHAR (1<<8)
#define GLOB_ALTDIRFUNC (1<<9)

#define GLOB_NOSPACE 1
#define GLOB_ABORTED 2
#define GLOB_NOMATCH 3
#define GLOB_NOSYS 4

typedef struct {
 size_t gl_pathc;
 char **gl_pathv;
 size_t gl_offs;
 int gl_flags;
 void (*gl_closedir) (void *);
 struct dirent *(*gl_readdir) (void *);
 void *(*gl_opendir) (const char *);
 int (*gl_lstat) (const char *, struct stat *);
 int (*gl_stat) (const char *, struct stat *);
} glob_t;

typedef struct {
 size_t gl_pathc;
 char **gl_pathv;
 size_t gl_offs;
 int gl_flags;
 void (*gl_closedir) (void *);
 struct dirent64 *(*gl_readdir) (void *);
 void *(*gl_opendir) (const char *);
 int (*gl_lstat) (const char *, struct stat *);
 int (*gl_stat) (const char *, struct stat *);
} glob64_t;
extern int glob(const char *, int, int (*gl_stat) (const char
*p1, int p2)
 , glob_t *);
extern int glob64(const char *, int,
 int (*gl_stat) (const char *p1, int p2)
 , glob64_t *);

 © 2007 Linux Foundation 69

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

extern void globfree(glob_t *);
extern void globfree64(glob64_t *);

13.4.13 grp.h

struct group {
 char *gr_name;
 char *gr_passwd;
 gid_t gr_gid;
 char **gr_mem;
};

extern void endgrent(void);
extern struct group *getgrent(void);
extern struct group *getgrgid(gid_t);
extern struct group *getgrnam(const char *);
extern int initgroups(const char *, gid_t);
extern void setgrent(void);
extern int setgroups(size_t, const gid_t *);
extern int getgrgid_r(gid_t, struct group *, char *, size_t,
 struct group **);
extern int getgrnam_r(const char *, struct group *, char *,
size_t,
 struct group **);
extern int getgrouplist(const char *, gid_t, gid_t *, int *);

13.4.14 iconv.h

typedef void *iconv_t;
extern size_t iconv(iconv_t, char **, size_t *, char **, size_t
*);
extern int iconv_close(iconv_t);
extern iconv_t iconv_open(const char *, const char *);

13.4.15 inttypes.h

typedef lldiv_t imaxdiv_t;

extern intmax_t strtoimax(const char *, char **, int);
extern uintmax_t strtoumax(const char *, char **, int);
extern intmax_t wcstoimax(const wchar_t *, wchar_t * *, int);
extern uintmax_t wcstoumax(const wchar_t *, wchar_t * *, int);
extern intmax_t imaxabs(intmax_t);
extern imaxdiv_t imaxdiv(intmax_t, intmax_t);

13.4.16 langinfo.h

#define ABDAY_1 0x20000
#define ABDAY_2 0x20001
#define ABDAY_3 0x20002
#define ABDAY_4 0x20003
#define ABDAY_5 0x20004
#define ABDAY_6 0x20005
#define ABDAY_7 0x20006

#define DAY_1 0x20007
#define DAY_2 0x20008
#define DAY_3 0x20009
#define DAY_4 0x2000A
#define DAY_5 0x2000B
#define DAY_6 0x2000C

70 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

#define DAY_7 0x2000D

#define ABMON_1 0x2000E
#define ABMON_2 0x2000F
#define ABMON_3 0x20010
#define ABMON_4 0x20011
#define ABMON_5 0x20012
#define ABMON_6 0x20013
#define ABMON_7 0x20014
#define ABMON_8 0x20015
#define ABMON_9 0x20016
#define ABMON_10 0x20017
#define ABMON_11 0x20018
#define ABMON_12 0x20019

#define MON_1 0x2001A
#define MON_2 0x2001B
#define MON_3 0x2001C
#define MON_4 0x2001D
#define MON_5 0x2001E
#define MON_6 0x2001F
#define MON_7 0x20020
#define MON_8 0x20021
#define MON_9 0x20022
#define MON_10 0x20023
#define MON_11 0x20024
#define MON_12 0x20025

#define AM_STR 0x20026
#define PM_STR 0x20027

#define D_T_FMT 0x20028
#define D_FMT 0x20029
#define T_FMT 0x2002A
#define T_FMT_AMPM 0x2002B

#define ERA 0x2002C
#define ERA_D_FMT 0x2002E
#define ALT_DIGITS 0x2002F
#define ERA_D_T_FMT 0x20030
#define ERA_T_FMT 0x20031

#define CODESET 14

#define CRNCYSTR 0x4000F

#define RADIXCHAR 0x10000
#define THOUSEP 0x10001
#define YESEXPR 0x50000
#define NOEXPR 0x50001
#define YESSTR 0x50002
#define NOSTR 0x50003

extern char *nl_langinfo(nl_item);

13.4.17 libgen.h

#define basename __xpg_basename

extern char *dirname(char *);
extern char *__xpg_basename(char *);

13.4.18 libintl.h

 © 2007 Linux Foundation 71

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

extern char *bindtextdomain(const char *, const char *);
extern char *dcgettext(const char *, const char *, int);
extern char *dgettext(const char *, const char *);
extern char *gettext(const char *);
extern char *textdomain(const char *);
extern char *bind_textdomain_codeset(const char *, const char *);
extern char *dcngettext(const char *, const char *, const char *,
 unsigned long int, int);
extern char *dngettext(const char *, const char *, const char *,
 unsigned long int);
extern char *ngettext(const char *, const char *, unsigned long
int);

13.4.19 limits.h

#define LLONG_MIN (-LLONG_MAX-1LL)
#define _POSIX_AIO_MAX 1
#define _POSIX_QLIMIT 1
#define _POSIX2_BC_STRING_MAX 1000
#define _POSIX2_CHARCLASS_NAME_MAX 14
#define _POSIX_NAME_MAX 14
#define _POSIX_UIO_MAXIOV 16
#define ULLONG_MAX 18446744073709551615ULL
#define _POSIX2_COLL_WEIGHTS_MAX 2
#define _POSIX_AIO_LISTIO_MAX 2
#define _POSIX_OPEN_MAX 20
#define _POSIX_CLOCKRES_MIN 20000000
#define CHARCLASS_NAME_MAX 2048
#define LINE_MAX 2048
#define _POSIX2_BC_DIM_MAX 2048
#define _POSIX2_LINE_MAX 2048
#define _POSIX_CHILD_MAX 25
#define COLL_WEIGHTS_MAX 255
#define _POSIX2_RE_DUP_MAX 255
#define _POSIX_HOST_NAME_MAX 255
#define _POSIX_MAX_CANON 255
#define _POSIX_MAX_INPUT 255
#define _POSIX_RE_DUP_MAX 255
#define _POSIX_SYMLINK_MAX 255
#define OPEN_MAX 256
#define _POSIX_PATH_MAX 256
#define _POSIX_SEM_NSEMS_MAX 256
#define _POSIX2_EXPR_NEST_MAX 32
#define _POSIX_DELAYTIMER_MAX 32
#define _POSIX_MQ_PRIO_MAX 32
#define _POSIX_SIGQUEUE_MAX 32
#define _POSIX_TIMER_MAX 32
#define _POSIX_SEM_VALUE_MAX 32767
#define _POSIX_SSIZE_MAX 32767
#define PATH_MAX 4096
#define _POSIX_ARG_MAX 4096
#define _POSIX_PIPE_BUF 512
#define _POSIX_TZNAME_MAX 6
#define _POSIX_LINK_MAX 8
#define _POSIX_MQ_OPEN_MAX 8
#define _POSIX_NGROUPS_MAX 8
#define _POSIX_RTSIG_MAX 8
#define _POSIX_STREAM_MAX 8
#define _POSIX_SYMLOOP_MAX 8
#define _POSIX_LOGIN_NAME_MAX 9
#define _POSIX_TTY_NAME_MAX 9
#define LLONG_MAX 9223372036854775807LL
#define _POSIX2_BC_BASE_MAX 99
#define _POSIX2_BC_SCALE_MAX 99
#define SSIZE_MAX LONG_MAX

72 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

#define BC_BASE_MAX _POSIX2_BC_BASE_MAX
#define BC_DIM_MAX _POSIX2_BC_DIM_MAX
#define BC_SCALE_MAX _POSIX2_BC_SCALE_MAX
#define BC_STRING_MAX _POSIX2_BC_STRING_MAX
#define EXPR_NEST_MAX _POSIX2_EXPR_NEST_MAX
#define _POSIX_FD_SETSIZE _POSIX_OPEN_MAX
#define _POSIX_HIWAT _POSIX_PIPE_BUF

#define MB_LEN_MAX 16

#define SCHAR_MIN (-128)
#define SCHAR_MAX 127
#define UCHAR_MAX 255
#define CHAR_BIT 8

#define SHRT_MIN (-32768)
#define SHRT_MAX 32767
#define USHRT_MAX 65535

#define INT_MIN (-INT_MAX-1)
#define INT_MAX 2147483647
#define UINT_MAX 4294967295U

#define LONG_MIN (-LONG_MAX-1L)

#define PTHREAD_KEYS_MAX 1024
#define PTHREAD_THREADS_MAX 16384
#define PTHREAD_DESTRUCTOR_ITERATIONS 4

13.4.20 locale.h

struct lconv {
 char *decimal_point;
 char *thousands_sep;
 char *grouping;
 char *int_curr_symbol;
 char *currency_symbol;
 char *mon_decimal_point;
 char *mon_thousands_sep;
 char *mon_grouping;
 char *positive_sign;
 char *negative_sign;
 char int_frac_digits;
 char frac_digits;
 char p_cs_precedes;
 char p_sep_by_space;
 char n_cs_precedes;
 char n_sep_by_space;
 char p_sign_posn;
 char n_sign_posn;
 char int_p_cs_precedes;
 char int_p_sep_by_space;
 char int_n_cs_precedes;
 char int_n_sep_by_space;
 char int_p_sign_posn;
 char int_n_sign_posn;
};

#define LC_GLOBAL_LOCALE ((locale_t) -1L)
#define LC_CTYPE 0
#define LC_NUMERIC 1
#define LC_TELEPHONE 10
#define LC_MEASUREMENT 11
#define LC_IDENTIFICATION 12
#define LC_TIME 2

 © 2007 Linux Foundation 73

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

#define LC_COLLATE 3
#define LC_MONETARY 4
#define LC_MESSAGES 5
#define LC_ALL 6
#define LC_PAPER 7
#define LC_NAME 8
#define LC_ADDRESS 9

struct __locale_struct {
 struct locale_data *__locales[13];
 const unsigned short *__ctype_b;
 const int *__ctype_tolower;
 const int *__ctype_toupper;
 const char *__names[13];
};
typedef struct __locale_struct *__locale_t;

typedef struct __locale_struct *locale_t;

#define LC_ADDRESS_MASK (1 << LC_ADDRESS)
#define LC_COLLATE_MASK (1 << LC_COLLATE)
#define LC_IDENTIFICATION_MASK (1 << LC_IDENTIFICATION)
#define LC_MEASUREMENT_MASK (1 << LC_MEASUREMENT)
#define LC_MESSAGES_MASK (1 << LC_MESSAGES)
#define LC_MONETARY_MASK (1 << LC_MONETARY)
#define LC_NAME_MASK (1 << LC_NAME)
#define LC_NUMERIC_MASK (1 << LC_NUMERIC)
#define LC_PAPER_MASK (1 << LC_PAPER)
#define LC_TELEPHONE_MASK (1 << LC_TELEPHONE)
#define LC_TIME_MASK (1 << LC_TIME)
#define LC_CTYPE_MASK (1<<LC_CTYPE)
#define LC_ALL_MASK \
 (LC_CTYPE_MASK| LC_NUMERIC_MASK| LC_TIME_MASK|
LC_COLLATE_MASK| LC_MONETARY_MASK|\
 LC_MESSAGES_MASK| LC_PAPER_MASK| LC_NAME_MASK|
LC_ADDRESS_MASK| LC_TELEPHONE_MASK|\
 LC_MEASUREMENT_MASK| LC_IDENTIFICATION_MASK)

extern struct lconv *localeconv(void);
extern char *setlocale(int, const char *);
extern locale_t uselocale(locale_t);
extern void freelocale(locale_t);
extern locale_t duplocale(locale_t);
extern locale_t newlocale(int, const char *, locale_t);

13.4.21 monetary.h

extern ssize_t strfmon(char *, size_t, const char *, ...);

13.4.22 net/if.h

#define IF_NAMESIZE 16

#define IFF_UP 0x01
#define IFF_BROADCAST 0x02
#define IFF_DEBUG 0x04
#define IFF_LOOPBACK 0x08
#define IFF_POINTOPOINT 0x10
#define IFF_PROMISC 0x100
#define IFF_MULTICAST 0x1000
#define IFF_NOTRAILERS 0x20
#define IFF_RUNNING 0x40
#define IFF_NOARP 0x80

74 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

struct if_nameindex {
 unsigned int if_index;
 char *if_name;
};

struct ifaddr {
 struct sockaddr ifa_addr;
 union {
 struct sockaddr ifu_broadaddr;
 struct sockaddr ifu_dstaddr;
 } ifa_ifu;
 void *ifa_ifp;
 void *ifa_next;
};

#define IFNAMSIZ IF_NAMESIZE

struct ifreq {
 union {
 char ifrn_name[IFNAMSIZ];
 } ifr_ifrn;
 union {
 struct sockaddr ifru_addr;
 struct sockaddr ifru_dstaddr;
 struct sockaddr ifru_broadaddr;
 struct sockaddr ifru_netmask;
 struct sockaddr ifru_hwaddr;
 short ifru_flags;
 int ifru_ivalue;
 int ifru_mtu;
 char ifru_slave[IFNAMSIZ];
 char ifru_newname[IFNAMSIZ];
 caddr_t ifru_data;
 struct ifmap ifru_map;
 } ifr_ifru;
};

struct ifconf {
 int ifc_len;
 union {
 caddr_t ifcu_buf;
 struct ifreq *ifcu_req;
 } ifc_ifcu;
};
extern void if_freenameindex(struct if_nameindex *);
extern char *if_indextoname(unsigned int, char *);
extern struct if_nameindex *if_nameindex(void);
extern unsigned int if_nametoindex(const char *);

13.4.23 netdb.h

#define NETDB_INTERNAL -1
#define NETDB_SUCCESS 0
#define HOST_NOT_FOUND 1
#define IPPORT_RESERVED 1024
#define NI_MAXHOST 1025
#define TRY_AGAIN 2
#define NO_RECOVERY 3
#define NI_MAXSERV 32
#define NO_DATA 4
#define h_addr h_addr_list[0]
#define NO_ADDRESS NO_DATA

struct servent {
 char *s_name;

 © 2007 Linux Foundation 75

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

 char **s_aliases;
 int s_port;
 char *s_proto;
};
struct hostent {
 char *h_name;
 char **h_aliases;
 int h_addrtype;
 int h_length;
 char **h_addr_list;
};
struct protoent {
 char *p_name;
 char **p_aliases;
 int p_proto;
};
struct netent {
 char *n_name;
 char **n_aliases;
 int n_addrtype;
 unsigned int n_net;
};

#define AI_PASSIVE 0x0001
#define AI_CANONNAME 0x0002
#define AI_NUMERICHOST 0x0004

struct addrinfo {
 int ai_flags;
 int ai_family;
 int ai_socktype;
 int ai_protocol;
 socklen_t ai_addrlen;
 struct sockaddr *ai_addr;
 char *ai_canonname;
 struct addrinfo *ai_next;
};

#define NI_NUMERICHOST 1
#define NI_DGRAM 16
#define NI_NUMERICSERV 2
#define NI_NOFQDN 4
#define NI_NAMEREQD 8

#define EAI_BADFLAGS -1
#define EAI_MEMORY -10
#define EAI_SYSTEM -11
#define EAI_NONAME -2
#define EAI_AGAIN -3
#define EAI_FAIL -4
#define EAI_NODATA -5
#define EAI_FAMILY -6
#define EAI_SOCKTYPE -7
#define EAI_SERVICE -8
#define EAI_ADDRFAMILY -9

extern int gethostbyname2_r(const char *, int, struct hostent *,
char *,
 size_t, struct hostent **, int *);
extern void endprotoent(void);
extern void endservent(void);
extern void freeaddrinfo(struct addrinfo *);
extern const char *gai_strerror(int);
extern int getaddrinfo(const char *, const char *, const struct
addrinfo *,
 struct addrinfo **);

76 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

extern struct hostent *gethostbyaddr(const void *, socklen_t,
int);
extern struct hostent *gethostbyname(const char *);
extern struct hostent *gethostbyname2(const char *, int);
extern struct protoent *getprotobyname(const char *);
extern struct protoent *getprotobynumber(int);
extern struct protoent *getprotoent(void);
extern struct servent *getservbyname(const char *, const char *);
extern struct servent *getservbyport(int, const char *);
extern struct servent *getservent(void);
extern void setprotoent(int);
extern void setservent(int);
extern int *__h_errno_location(void);
extern int gethostbyaddr_r(const void *, socklen_t, int, struct
hostent *,
 char *, size_t, struct hostent **, int
*);
extern int gethostbyname_r(const char *, struct hostent *, char
*, size_t,
 struct hostent **, int *);

13.4.24 netinet/in.h

#define IPPROTO_IP 0
#define IPPROTO_ICMP 1
#define IPPROTO_UDP 17
#define IPPROTO_IGMP 2
#define IPPROTO_RAW 255
#define IPPROTO_IPV6 41
#define IPPROTO_ICMPV6 58
#define IPPROTO_TCP 6

typedef uint16_t in_port_t;

struct in_addr {
 uint32_t s_addr;
};
typedef uint32_t in_addr_t;

#define INADDR_NONE ((in_addr_t) 0xffffffff)
#define INADDR_BROADCAST (0xffffffff)
#define INADDR_ANY 0

struct in6_addr {
 union {
 uint8_t u6_addr8[16];
 uint16_t u6_addr16[8];
 uint32_t u6_addr32[4];
 } in6_u;
};

#define IN6ADDR_ANY_INIT { { {
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 } } }
#define IN6ADDR_LOOPBACK_INIT { { {
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1 } } }

#define INET_ADDRSTRLEN 16

struct sockaddr_in {
 sa_family_t sin_family;
 unsigned short sin_port;
 struct in_addr sin_addr;
 unsigned char sin_zero[8];
};

 © 2007 Linux Foundation 77

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

#define INET6_ADDRSTRLEN 46

struct sockaddr_in6 {
 unsigned short sin6_family;
 uint16_t sin6_port;
 uint32_t sin6_flowinfo;
 struct in6_addr sin6_addr;
 uint32_t sin6_scope_id;
};

#define SOL_IP 0
#define IP_TOS 1
#define IPV6_UNICAST_HOPS 16
#define IPV6_MULTICAST_IF 17
#define IPV6_MULTICAST_HOPS 18
#define IPV6_MULTICAST_LOOP 19
#define IP_TTL 2
#define IPV6_JOIN_GROUP 20
#define IPV6_LEAVE_GROUP 21
#define IPV6_V6ONLY 26
#define IP_MULTICAST_IF 32
#define IP_MULTICAST_TTL 33
#define IP_MULTICAST_LOOP 34
#define IP_ADD_MEMBERSHIP 35
#define IP_DROP_MEMBERSHIP 36
#define IP_OPTIONS 4

struct ipv6_mreq {
 struct in6_addr ipv6mr_multiaddr;
 int ipv6mr_interface;
};
struct ip_mreq {
 struct in_addr imr_multiaddr;
 struct in_addr imr_interface;
};
extern int bindresvport(int, struct sockaddr_in *);
extern const struct in6_addr in6addr_any;
extern const struct in6_addr in6addr_loopback;

13.4.25 netinet/ip.h

#define IPTOS_LOWCOST 0x02
#define IPTOS_RELIABILITY 0x04
#define IPTOS_THROUGHPUT 0x08
#define IPTOS_LOWDELAY 0x10
#define IPTOS_TOS_MASK 0x1e
#define IPTOS_MINCOST IPTOS_LOWCOST

#define IPTOS_PREC_MASK 0xe0

13.4.26 netinet/tcp.h

#define TCP_NODELAY 1
#define SOL_TCP 6

13.4.27 netinet/udp.h

#define SOL_UDP 17

13.4.28 nl_types.h

78 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

#define NL_CAT_LOCALE 1
#define NL_SETD 1

typedef void *nl_catd;

typedef int nl_item;
extern int catclose(nl_catd);
extern char *catgets(nl_catd, int, int, const char *);
extern nl_catd catopen(const char *, int);

13.4.29 poll.h

extern int poll(struct pollfd *, nfds_t, int);

13.4.30 pty.h

extern int openpty(int *, int *, char *, struct termios *,
 struct winsize *);
extern int forkpty(int *, char *, struct termios *, struct
winsize *);

13.4.31 pwd.h

struct passwd {
 char *pw_name;
 char *pw_passwd;
 uid_t pw_uid;
 gid_t pw_gid;
 char *pw_gecos;
 char *pw_dir;
 char *pw_shell;
};
extern void endpwent(void);
extern struct passwd *getpwent(void);
extern struct passwd *getpwnam(const char *);
extern struct passwd *getpwuid(uid_t);
extern void setpwent(void);
extern int getpwnam_r(const char *, struct passwd *, char *,
size_t,
 struct passwd **);
extern int getpwuid_r(uid_t, struct passwd *, char *, size_t,
 struct passwd **);

13.4.32 regex.h

#define RE_DUP_MAX (0x7fff)

typedef unsigned long int reg_syntax_t;

typedef struct re_pattern_buffer {
 unsigned char *buffer;
 unsigned long int allocated;
 unsigned long int used;
 reg_syntax_t syntax;
 char *fastmap;
 char *translate;
 size_t re_nsub;
 unsigned int can_be_null:1;
 unsigned int regs_allocated:2;
 unsigned int fastmap_accurate:1;
 unsigned int no_sub:1;

 © 2007 Linux Foundation 79

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

 unsigned int not_bol:1;
 unsigned int not_eol:1;
 unsigned int newline_anchor:1;
} regex_t;
typedef int regoff_t;
typedef struct {
 regoff_t rm_so;
 regoff_t rm_eo;
} regmatch_t;

#define REG_ICASE (REG_EXTENDED<<1)
#define REG_NEWLINE (REG_ICASE<<1)
#define REG_NOSUB (REG_NEWLINE<<1)
#define REG_EXTENDED 1

#define REG_NOTEOL (1<<1)
#define REG_NOTBOL 1

typedef enum {
 REG_ENOSYS = -1,
 REG_NOERROR = 0,
 REG_NOMATCH = 1,
 REG_BADPAT = 2,
 REG_ECOLLATE = 3,
 REG_ECTYPE = 4,
 REG_EESCAPE = 5,
 REG_ESUBREG = 6,
 REG_EBRACK = 7,
 REG_EPAREN = 8,
 REG_EBRACE = 9,
 REG_BADBR = 10,
 REG_ERANGE = 11,
 REG_ESPACE = 12,
 REG_BADRPT = 13,
 REG_EEND = 14,
 REG_ESIZE = 15,
 REG_ERPAREN = 16
} reg_errcode_t;
extern int regcomp(regex_t *, const char *, int);
extern size_t regerror(int, const regex_t *, char *, size_t);
extern int regexec(const regex_t *, const char *, size_t,
regmatch_t, int);
extern void regfree(regex_t *);

13.4.33 rpc/auth.h

#define auth_destroy(auth) ((*((auth)->ah_ops-
>ah_destroy))(auth))

enum auth_stat {
 AUTH_OK = 0,
 AUTH_BADCRED = 1,
 AUTH_REJECTEDCRED = 2,
 AUTH_BADVERF = 3,
 AUTH_REJECTEDVERF = 4,
 AUTH_TOOWEAK = 5,
 AUTH_INVALIDRESP = 6,
 AUTH_FAILED = 7
};

union des_block {
 struct {
 u_int32_t high;
 u_int32_t low;
 } key;

80 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

 char c[8];
};

struct opaque_auth {
 enum_t oa_flavor;
 caddr_t oa_base;
 u_int oa_length;
};

typedef struct AUTH {
 struct opaque_auth ah_cred;
 struct opaque_auth ah_verf;
 union des_block ah_key;
 struct auth_ops *ah_ops;
 caddr_t ah_private;
} AUTH;

struct auth_ops {
 void (*ah_nextverf) (struct AUTH *);
 int (*ah_marshal) (struct AUTH *, XDR *);
 int (*ah_validate) (struct AUTH *, struct opaque_auth *);
 int (*ah_refresh) (struct AUTH *);
 void (*ah_destroy) (struct AUTH *);
};
extern struct AUTH *authnone_create(void);
extern int key_decryptsession(char *, union des_block *);
extern bool_t xdr_opaque_auth(XDR *, struct opaque_auth *);

13.4.34 rpc/clnt.h

#define clnt_control(cl,rq,in) ((*(cl)->cl_ops-
>cl_control)(cl,rq,in))
#define clnt_abort(rh) ((*(rh)->cl_ops->cl_abort)(rh))
#define clnt_destroy(rh) ((*(rh)->cl_ops->cl_destroy)(rh))
#define clnt_freeres(rh,xres,resp) ((*(rh)->cl_ops-
>cl_freeres)(rh,xres,resp))
#define clnt_geterr(rh,errp) ((*(rh)->cl_ops->cl_geterr)(rh,
errp))
#define NULLPROC ((u_long)0)
#define CLSET_TIMEOUT 1
#define CLGET_XID 10
#define CLSET_XID 11
#define CLGET_VERS 12
#define CLSET_VERS 13
#define CLGET_PROG 14
#define CLSET_PROG 15
#define CLGET_TIMEOUT 2
#define CLGET_SERVER_ADDR 3
#define CLSET_RETRY_TIMEOUT 4
#define CLGET_RETRY_TIMEOUT 5
#define CLGET_FD 6
#define CLGET_SVC_ADDR 7
#define CLSET_FD_CLOSE 8
#define CLSET_FD_NCLOSE 9
#define clnt_call(rh, proc, xargs, argsp, xres, resp, secs) \
 ((*(rh)->cl_ops->cl_call)(rh, proc, xargs, argsp, xres,
resp, secs))

enum clnt_stat {
 RPC_SUCCESS = 0,
 RPC_CANTENCODEARGS = 1,
 RPC_CANTDECODERES = 2,
 RPC_CANTSEND = 3,
 RPC_CANTRECV = 4,
 RPC_TIMEDOUT = 5,

 © 2007 Linux Foundation 81

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

 RPC_VERSMISMATCH = 6,
 RPC_AUTHERROR = 7,
 RPC_PROGUNAVAIL = 8,
 RPC_PROGVERSMISMATCH = 9,
 RPC_PROCUNAVAIL = 10,
 RPC_CANTDECODEARGS = 11,
 RPC_SYSTEMERROR = 12,
 RPC_NOBROADCAST = 21,
 RPC_UNKNOWNHOST = 13,
 RPC_UNKNOWNPROTO = 17,
 RPC_UNKNOWNADDR = 19,
 RPC_RPCBFAILURE = 14,
 RPC_PROGNOTREGISTERED = 15,
 RPC_N2AXLATEFAILURE = 22,
 RPC_FAILED = 16,
 RPC_INTR = 18,
 RPC_TLIERROR = 20,
 RPC_UDERROR = 23,
 RPC_INPROGRESS = 24,
 RPC_STALERACHANDLE = 25
};
struct rpc_err {
 enum clnt_stat re_status;
 union {
 int RE_errno;
 enum auth_stat RE_why;
 struct {
 u_long low;
 u_long high;
 } RE_vers;
 struct {
 long int s1;
 long int s2;
 } RE_lb;
 } ru;
};

typedef struct CLIENT {
 struct AUTH *cl_auth;
 struct clnt_ops *cl_ops;
 caddr_t cl_private;
} CLIENT;

struct clnt_ops {
 enum clnt_stat (*cl_call) (struct CLIENT *, u_long,
xdrproc_t, caddr_t,
 xdrproc_t, caddr_t, struct
timeval);
 void (*cl_abort) (void);
 void (*cl_geterr) (struct CLIENT *, struct rpc_err *);
 bool_t(*cl_freeres) (struct CLIENT *, xdrproc_t, caddr_t);
 void (*cl_destroy) (struct CLIENT *);
 bool_t(*cl_control) (struct CLIENT *, int, char *);
};
extern struct CLIENT *clnt_create(const char *, const u_long,
const u_long,
 const char *);
extern void clnt_pcreateerror(const char *);
extern void clnt_perrno(enum clnt_stat);
extern void clnt_perror(struct CLIENT *, const char *);
extern char *clnt_spcreateerror(const char *);
extern char *clnt_sperrno(enum clnt_stat);
extern char *clnt_sperror(struct CLIENT *, const char *);

82 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

13.4.35 rpc/pmap_clnt.h

extern u_short pmap_getport(struct sockaddr_in *, const u_long,
 const u_long, u_int);
extern bool_t pmap_set(const u_long, const u_long, int, u_short);
extern bool_t pmap_unset(u_long, u_long);

13.4.36 rpc/rpc_msg.h

enum msg_type {
 CALL = 0,
 REPLY = 1
};
enum reply_stat {
 MSG_ACCEPTED = 0,
 MSG_DENIED = 1
};
enum accept_stat {
 SUCCESS = 0,
 PROG_UNAVAIL = 1,
 PROG_MISMATCH = 2,
 PROC_UNAVAIL = 3,
 GARBAGE_ARGS = 4,
 SYSTEM_ERR = 5
};
enum reject_stat {
 RPC_MISMATCH = 0,
 AUTH_ERROR = 1
};

struct accepted_reply {
 struct opaque_auth ar_verf;
 enum accept_stat ar_stat;
 union {
 struct {
 unsigned long int low;
 unsigned long int high;
 } AR_versions;
 struct {
 caddr_t where;
 xdrproc_t proc;
 } AR_results;
 } ru;
};

struct rejected_reply {
 enum reject_stat rj_stat;
 union {
 struct {
 unsigned long int low;
 unsigned long int high;
 } RJ_versions;
 enum auth_stat RJ_why;
 } ru;
};

struct reply_body {
 enum reply_stat rp_stat;
 union {
 struct accepted_reply RP_ar;
 struct rejected_reply RP_dr;
 } ru;
};

 © 2007 Linux Foundation 83

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

struct call_body {
 unsigned long int cb_rpcvers;
 unsigned long int cb_prog;
 unsigned long int cb_vers;
 unsigned long int cb_proc;
 struct opaque_auth cb_cred;
 struct opaque_auth cb_verf;
};

struct rpc_msg {
 unsigned long int rm_xid;
 enum msg_type rm_direction;
 union {
 struct call_body RM_cmb;
 struct reply_body RM_rmb;
 } ru;
};
extern bool_t xdr_accepted_reply(XDR *, struct accepted_reply *);
extern bool_t xdr_callhdr(XDR *, struct rpc_msg *);
extern bool_t xdr_callmsg(XDR *, struct rpc_msg *);
extern bool_t xdr_rejected_reply(XDR *, struct rejected_reply *);
extern bool_t xdr_replymsg(XDR *, struct rpc_msg *);

13.4.37 rpc/svc.h

#define svc_getcaller(x) (&(x)->xp_raddr)
#define svc_destroy(xprt) (*(xprt)->xp_ops-
>xp_destroy)(xprt)
#define svc_recv(xprt,msg) (*(xprt)->xp_ops-
>xp_recv)((xprt), (msg))
#define svc_reply(xprt,msg) (*(xprt)->xp_ops->xp_reply)
((xprt), (msg))
#define svc_stat(xprt) (*(xprt)->xp_ops->xp_stat)(xprt)
#define RPC_ANYSOCK -1
#define svc_freeargs(xprt,xargs, argsp) \
 (*(xprt)->xp_ops->xp_freeargs)((xprt), (xargs), (argsp))
#define svc_getargs(xprt,xargs, argsp) \
 (*(xprt)->xp_ops->xp_getargs)((xprt), (xargs), (argsp))

enum xprt_stat {
 XPRT_DIED,
 XPRT_MOREREQS,
 XPRT_IDLE
};

typedef struct SVCXPRT {
 int xp_sock;
 u_short xp_port;
 struct xp_ops *xp_ops;
 int xp_addrlen;
 struct sockaddr_in xp_raddr;
 struct opaque_auth xp_verf;
 caddr_t xp_p1;
 caddr_t xp_p2;
 char xp_pad[256];
} SVCXPRT;

struct svc_req {
 rpcprog_t rq_prog;
 rpcvers_t rq_vers;
 rpcproc_t rq_proc;
 struct opaque_auth rq_cred;
 caddr_t rq_clntcred;
 SVCXPRT *rq_xprt;
};

84 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

typedef void (*__dispatch_fn_t) (struct svc_req *, SVCXPRT *);

struct xp_ops {
 bool_t(*xp_recv) (SVCXPRT * __xprt, struct rpc_msg * __msg);
 enum xprt_stat (*xp_stat) (SVCXPRT * __xprt);
 bool_t(*xp_getargs) (SVCXPRT * __xprt, xdrproc_t __xdr_args,
 caddr_t args_ptr);
 bool_t(*xp_reply) (SVCXPRT * __xprt, struct rpc_msg *
__msg);
 bool_t(*xp_freeargs) (SVCXPRT * __xprt, xdrproc_t
__xdr_args,
 caddr_t args_ptr);
 void (*xp_destroy) (SVCXPRT * __xprt);
};
extern void svc_getreqset(fd_set *);
extern bool_t svc_register(SVCXPRT *, rpcprog_t, rpcvers_t,
 __dispatch_fn_t, rpcprot_t);
extern void svc_run(void);
extern bool_t svc_sendreply(SVCXPRT *, xdrproc_t, caddr_t);
extern void svcerr_auth(SVCXPRT *, enum auth_stat);
extern void svcerr_decode(SVCXPRT *);
extern void svcerr_noproc(SVCXPRT *);
extern void svcerr_noprog(SVCXPRT *);
extern void svcerr_progvers(SVCXPRT *, rpcvers_t, rpcvers_t);
extern void svcerr_systemerr(SVCXPRT *);
extern void svcerr_weakauth(SVCXPRT *);
extern SVCXPRT *svctcp_create(int, u_int, u_int);
extern SVCXPRT *svcudp_create(int);

13.4.38 rpc/types.h

typedef int bool_t;
typedef int enum_t;
typedef unsigned long int rpcprog_t;
typedef unsigned long int rpcvers_t;
typedef unsigned long int rpcproc_t;
typedef unsigned long int rpcprot_t;

13.4.39 rpc/xdr.h

enum xdr_op {
 XDR_ENCODE,
 XDR_DECODE,
 XDR_FREE
};
typedef struct XDR {
 enum xdr_op x_op;
 struct xdr_ops *x_ops;
 caddr_t x_public;
 caddr_t x_private;
 caddr_t x_base;
 int x_handy;
} XDR;

struct xdr_ops {
 bool_t(*x_getlong) (XDR * __xdrs, long int *__lp);
 bool_t(*x_putlong) (XDR * __xdrs, long int *__lp);
 bool_t(*x_getbytes) (XDR * __xdrs, caddr_t __addr, u_int
__len);
 bool_t(*x_putbytes) (XDR * __xdrs, char *__addr, u_int
__len);
 u_int(*x_getpostn) (XDR * __xdrs);
 bool_t(*x_setpostn) (XDR * __xdrs, u_int __pos);

 © 2007 Linux Foundation 85

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

 int32_t *(*x_inline) (XDR * __xdrs, int __len);
 void (*x_destroy) (XDR * __xdrs);
 bool_t(*x_getint32) (XDR * __xdrs, int32_t * __ip);
 bool_t(*x_putint32) (XDR * __xdrs, int32_t * __ip);
};

typedef bool_t(*xdrproc_t) (XDR *, void *, ...);

struct xdr_discrim {
 int value;
 xdrproc_t proc;
};
extern void xdrstdio_create(XDR *, FILE *, enum xdr_op);
extern bool_t xdr_array(XDR *, caddr_t *, u_int *, u_int, u_int,
 xdrproc_t);
extern bool_t xdr_bool(XDR *, bool_t *);
extern bool_t xdr_bytes(XDR *, char **, u_int *, u_int);
extern bool_t xdr_char(XDR *, char *);
extern bool_t xdr_double(XDR *, double *);
extern bool_t xdr_enum(XDR *, enum_t *);
extern bool_t xdr_float(XDR *, float *);
extern void xdr_free(xdrproc_t, char *);
extern bool_t xdr_int(XDR *, int *);
extern bool_t xdr_long(XDR *, long int *);
extern bool_t xdr_opaque(XDR *, caddr_t, u_int);
extern bool_t xdr_pointer(XDR *, char **, u_int, xdrproc_t);
extern bool_t xdr_reference(XDR *, caddr_t *, u_int, xdrproc_t);
extern bool_t xdr_short(XDR *, short *);
extern bool_t xdr_string(XDR *, char **, u_int);
extern bool_t xdr_u_char(XDR *, u_char *);
extern bool_t xdr_u_int(XDR *, u_int *);
extern bool_t xdr_u_long(XDR *, u_long *);
extern bool_t xdr_u_short(XDR *, u_short *);
extern bool_t xdr_union(XDR *, enum_t *, char *,
 const struct xdr_discrim *, xdrproc_t);
extern bool_t xdr_vector(XDR *, char *, u_int, u_int, xdrproc_t);
extern bool_t xdr_void(void);
extern bool_t xdr_wrapstring(XDR *, char **);
extern void xdrmem_create(XDR *, caddr_t, u_int, enum xdr_op);
extern void xdrrec_create(XDR *, u_int, u_int, caddr_t,
 int (*proc) (char *p1, char *p2, int
p3)
 , int (*proc) (char *p1, char *p2, int
p3)
);
extern bool_t xdrrec_eof(XDR *);

13.4.40 sched.h

#define SCHED_OTHER 0
#define SCHED_FIFO 1
#define SCHED_RR 2

struct sched_param {
 int sched_priority;
};
extern int sched_get_priority_max(int);
extern int sched_get_priority_min(int);
extern int sched_getparam(pid_t, struct sched_param *);
extern int sched_getscheduler(pid_t);
extern int sched_rr_get_interval(pid_t, struct timespec *);
extern int sched_setparam(pid_t, const struct sched_param *);
extern int sched_setscheduler(pid_t, int, const struct
sched_param *);
extern int sched_yield(void);

86 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

13.4.41 search.h

typedef struct entry {
 char *key;
 void *data;
} ENTRY;
typedef enum {
 FIND,
 ENTER
} ACTION;
typedef enum {
 preorder,
 postorder,
 endorder,
 leaf
} VISIT;

typedef void (*__action_fn_t) (void *__nodep, VISIT __value, int
__level);
extern int hcreate(size_t);
extern ENTRY *hsearch(ENTRY, ACTION);
extern void insque(void *, void *);
extern void *lfind(const void *, const void *, size_t *, size_t,
 __compar_fn_t);
extern void *lsearch(const void *, void *, size_t *, size_t,
 __compar_fn_t);
extern void remque(void *);
extern void hdestroy(void);
extern void *tdelete(const void *, void **, __compar_fn_t);
extern void *tfind(const void *, void *const *, __compar_fn_t);
extern void *tsearch(const void *, void **, __compar_fn_t);
extern void twalk(const void *, __action_fn_t);

13.4.42 setjmp.h

#define setjmp(env) _setjmp(env)
#define sigsetjmp(a,b) __sigsetjmp(a,b)

struct __jmp_buf_tag {
 __jmp_buf __jmpbuf;
 int __mask_was_saved;
 sigset_t __saved_mask;
};

typedef struct __jmp_buf_tag jmp_buf[1];
typedef jmp_buf sigjmp_buf;
extern int __sigsetjmp(jmp_buf, int);
extern void longjmp(jmp_buf, int);
extern void siglongjmp(sigjmp_buf, int);
extern void _longjmp(jmp_buf, int);
extern int _setjmp(jmp_buf);

13.4.43 signal.h

#define sigpause __xpg_sigpause

#define _SIGSET_NWORDS (1024/(8*sizeof(unsigned long)))
#define SIGRTMAX (__libc_current_sigrtmax ())
#define SIGRTMIN (__libc_current_sigrtmin ())
#define SIG_BLOCK 0
#define SIG_UNBLOCK 1
#define SIG_SETMASK 2

 © 2007 Linux Foundation 87

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

#define NSIG 65

typedef int sig_atomic_t;

typedef void (*sighandler_t) (int);

#define SIG_HOLD ((sighandler_t) 2)
#define SIG_ERR ((sighandler_t)-1)
#define SIG_DFL ((sighandler_t)0)
#define SIG_IGN ((sighandler_t)1)

#define SIGHUP 1
#define SIGUSR1 10
#define SIGSEGV 11
#define SIGUSR2 12
#define SIGPIPE 13
#define SIGALRM 14
#define SIGTERM 15
#define SIGSTKFLT 16
#define SIGCHLD 17
#define SIGCONT 18
#define SIGSTOP 19
#define SIGINT 2
#define SIGTSTP 20
#define SIGTTIN 21
#define SIGTTOU 22
#define SIGURG 23
#define SIGXCPU 24
#define SIGXFSZ 25
#define SIGVTALRM 26
#define SIGPROF 27
#define SIGWINCH 28
#define SIGIO 29
#define SIGQUIT 3
#define SIGPWR 30
#define SIGSYS 31
#define SIGUNUSED 31
#define SIGILL 4
#define SIGTRAP 5
#define SIGABRT 6
#define SIGIOT 6
#define SIGBUS 7
#define SIGFPE 8
#define SIGKILL 9
#define SIGCLD SIGCHLD
#define SIGPOLL SIGIO

#define SV_ONSTACK (1<<0)
#define SV_INTERRUPT (1<<1)
#define SV_RESETHAND (1<<2)

typedef union sigval {
 int sival_int;
 void *sival_ptr;
} sigval_t;

#define SIGEV_SIGNAL 0
#define SIGEV_NONE 1
#define SIGEV_THREAD 2
#define SIGEV_MAX_SIZE 64

typedef struct sigevent {
 sigval_t sigev_value;
 int sigev_signo;
 int sigev_notify;
 union {

88 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

 int _pad[SIGEV_PAD_SIZE];
 struct {
 void (*_function) (sigval_t);
 void *_attribute;
 } _sigev_thread;
 } _sigev_un;
} sigevent_t;

#define SI_MAX_SIZE 128
#define si_pid _sifields._kill._pid
#define si_uid _sifields._kill._uid
#define si_value _sifields._rt._sigval
#define si_int _sifields._rt._sigval.sival_int
#define si_ptr _sifields._rt._sigval.sival_ptr
#define si_status _sifields._sigchld._status
#define si_stime _sifields._sigchld._stime
#define si_utime _sifields._sigchld._utime
#define si_addr _sifields._sigfault._addr
#define si_band _sifields._sigpoll._band
#define si_fd _sifields._sigpoll._fd
#define si_timer1 _sifields._timer._timer1
#define si_timer2 _sifields._timer._timer2

typedef struct siginfo {
 int si_signo;
 int si_errno;
 int si_code;
 union {
 int _pad[SI_PAD_SIZE];
 struct {
 pid_t _pid;
 uid_t _uid;
 } _kill;
 struct {
 unsigned int _timer1;
 unsigned int _timer2;
 } _timer;
 struct {
 pid_t _pid;
 uid_t _uid;
 sigval_t _sigval;
 } _rt;
 struct {
 pid_t _pid;
 uid_t _uid;
 int _status;
 clock_t _utime;
 clock_t _stime;
 } _sigchld;
 struct {
 void *_addr;
 } _sigfault;
 struct {
 int _band;
 int _fd;
 } _sigpoll;
 } _sifields;
} siginfo_t;

#define SI_QUEUE -1
#define SI_TIMER -2
#define SI_MESGQ -3
#define SI_ASYNCIO -4
#define SI_SIGIO -5
#define SI_TKILL -6
#define SI_ASYNCNL -60

 © 2007 Linux Foundation 89

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

#define SI_USER 0
#define SI_KERNEL 0x80

#define ILL_ILLOPC 1
#define ILL_ILLOPN 2
#define ILL_ILLADR 3
#define ILL_ILLTRP 4
#define ILL_PRVOPC 5
#define ILL_PRVREG 6
#define ILL_COPROC 7
#define ILL_BADSTK 8

#define FPE_INTDIV 1
#define FPE_INTOVF 2
#define FPE_FLTDIV 3
#define FPE_FLTOVF 4
#define FPE_FLTUND 5
#define FPE_FLTRES 6
#define FPE_FLTINV 7
#define FPE_FLTSUB 8

#define SEGV_MAPERR 1
#define SEGV_ACCERR 2

#define BUS_ADRALN 1
#define BUS_ADRERR 2
#define BUS_OBJERR 3

#define TRAP_BRKPT 1
#define TRAP_TRACE 2

#define CLD_EXITED 1
#define CLD_KILLED 2
#define CLD_DUMPED 3
#define CLD_TRAPPED 4
#define CLD_STOPPED 5
#define CLD_CONTINUED 6

#define POLL_IN 1
#define POLL_OUT 2
#define POLL_MSG 3
#define POLL_ERR 4
#define POLL_PRI 5
#define POLL_HUP 6

typedef struct {
 unsigned long int sig[_SIGSET_NWORDS];
} sigset_t;

#define SA_NOCLDSTOP 0x00000001
#define SA_NOCLDWAIT 0x00000002
#define SA_SIGINFO 0x00000004
#define SA_ONSTACK 0x08000000
#define SA_RESTART 0x10000000
#define SA_INTERRUPT 0x20000000
#define SA_NODEFER 0x40000000
#define SA_RESETHAND 0x80000000
#define SA_NOMASK SA_NODEFER
#define SA_ONESHOT SA_RESETHAND

typedef struct sigaltstack {
 void *ss_sp;
 int ss_flags;
 size_t ss_size;
} stack_t;

90 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

#define SS_ONSTACK 1
#define SS_DISABLE 2

extern int __libc_current_sigrtmax(void);
extern int __libc_current_sigrtmin(void);
extern sighandler_t __sysv_signal(int, sighandler_t);
extern char *const _sys_siglist[];
extern int killpg(pid_t, int);
extern void psignal(int, const char *);
extern int raise(int);
extern int sigaddset(sigset_t *, int);
extern int sigandset(sigset_t *, const sigset_t *, const sigset_t
*);
extern int sigdelset(sigset_t *, int);
extern int sigemptyset(sigset_t *);
extern int sigfillset(sigset_t *);
extern int sighold(int);
extern int sigignore(int);
extern int siginterrupt(int, int);
extern int sigisemptyset(const sigset_t *);
extern int sigismember(const sigset_t *, int);
extern int sigorset(sigset_t *, const sigset_t *, const sigset_t
*);
extern int sigpending(sigset_t *);
extern int sigrelse(int);
extern sighandler_t sigset(int, sighandler_t);
extern int pthread_kill(pthread_t, int);
extern int pthread_sigmask(int, const sigset_t *, sigset_t *);
extern int sigaction(int, const struct sigaction *, struct
sigaction *);
extern int sigwait(const sigset_t *, int *);
extern int kill(pid_t, int);
extern int sigaltstack(const struct sigaltstack *, struct
sigaltstack *);
extern sighandler_t signal(int, sighandler_t);
extern int sigprocmask(int, const sigset_t *, sigset_t *);
extern int sigreturn(struct sigcontext *);
extern int sigsuspend(const sigset_t *);
extern int sigqueue(pid_t, int, const union sigval);
extern int sigwaitinfo(const sigset_t *, siginfo_t *);
extern int sigtimedwait(const sigset_t *, siginfo_t *,
 const struct timespec *);
extern sighandler_t bsd_signal(int, sighandler_t);
extern int __xpg_sigpause(int);

13.4.44 spawn.h

#define POSIX_SPAWN_RESETIDS 0x01
#define POSIX_SPAWN_SETPGROUP 0x02
#define POSIX_SPAWN_SETSIGDEF 0x04
#define POSIX_SPAWN_SETSIGMASK 0x08
#define POSIX_SPAWN_SETSCHEDPARAM 0x10
#define POSIX_SPAWN_SETSCHEDULER 0x20

typedef struct {
 int __allocated;
 int __used;
 struct __spawn_action *__actions;
 int __pad[16];
} posix_spawn_file_actions_t;
typedef struct {
 short __flags;
 pid_t __pgrp;
 sigset_t __sd;
 sigset_t __ss;

 © 2007 Linux Foundation 91

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

 struct sched_param __sp;
 int __policy;
 int __pad[16];
} posix_spawnattr_t;
extern int posix_spawn(pid_t *, const char *,
 const posix_spawn_file_actions_t *,
 const posix_spawnattr_t *, char *const,
 char *const);
extern int
posix_spawn_file_actions_addclose(posix_spawn_file_actions_t *,
 int);
extern int
posix_spawn_file_actions_adddup2(posix_spawn_file_actions_t *,
 int, int);
extern int
posix_spawn_file_actions_addopen(posix_spawn_file_actions_t *,
 int, const char *,
int,
 mode_t);
extern int
posix_spawn_file_actions_destroy(posix_spawn_file_actions_t *);
extern int
posix_spawn_file_actions_init(posix_spawn_file_actions_t *);
extern int posix_spawnattr_destroy(posix_spawnattr_t *);
extern int posix_spawnattr_getflags(const posix_spawnattr_t *,
 short int *);
extern int posix_spawnattr_getpgroup(const posix_spawnattr_t *,
pid_t *);
extern int posix_spawnattr_getschedparam(const posix_spawnattr_t
*,
 struct sched_param *);
extern int posix_spawnattr_getschedpolicy(const posix_spawnattr_t
*,
 int *);
extern int posix_spawnattr_getsigdefault(const posix_spawnattr_t
*,
 sigset_t *);
extern int posix_spawnattr_getsigmask(const posix_spawnattr_t *,
 sigset_t *);
extern int posix_spawnattr_init(posix_spawnattr_t *);
extern int posix_spawnattr_setflags(posix_spawnattr_t *, short
int);
extern int posix_spawnattr_setpgroup(posix_spawnattr_t *, pid_t);
extern int posix_spawnattr_setschedparam(posix_spawnattr_t *,
 const struct sched_param
*);
extern int posix_spawnattr_setschedpolicy(posix_spawnattr_t *,
int);
extern int posix_spawnattr_setsigdefault(posix_spawnattr_t *,
 const sigset_t *);
extern int posix_spawnattr_setsigmask(posix_spawnattr_t *,
 const sigset_t *);
extern int posix_spawnp(pid_t *, const char *,
 const posix_spawn_file_actions_t *,
 const posix_spawnattr_t *, char *const,
 char *const);

13.4.45 stddef.h

#define offsetof(TYPE,MEMBER) ((size_t)&((TYPE*)0)->MEMBER)
#define NULL (0L)

13.4.46 stdint.h

92 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

#define INT16_C(c) c
#define INT32_C(c) c
#define INT8_C(c) c
#define UINT16_C(c) c
#define UINT8_C(c) c
#define UINT32_C(c) c ## U

#define INT8_MIN (-128)
#define INT_FAST8_MIN (-128)
#define INT_LEAST8_MIN (-128)
#define INT32_MIN (-2147483647-1)
#define INT_LEAST32_MIN (-2147483647-1)
#define SIG_ATOMIC_MIN (-2147483647-1)
#define INT16_MIN (-32767-1)
#define INT_LEAST16_MIN (-32767-1)
#define INT64_MIN (-__INT64_C(9223372036854775807)-1)
#define INTMAX_MIN (-__INT64_C(9223372036854775807)-1)
#define INT_FAST64_MIN (-__INT64_C(9223372036854775807)-1)
#define INT_LEAST64_MIN (-__INT64_C(9223372036854775807)-1)
#define WINT_MIN (0u)
#define INT8_MAX (127)
#define INT_FAST8_MAX (127)
#define INT_LEAST8_MAX (127)
#define INT32_MAX (2147483647)
#define INT_LEAST32_MAX (2147483647)
#define SIG_ATOMIC_MAX (2147483647)
#define UINT8_MAX (255)
#define UINT_FAST8_MAX (255)
#define UINT_LEAST8_MAX (255)
#define INT16_MAX (32767)
#define INT_LEAST16_MAX (32767)
#define UINT32_MAX (4294967295U)
#define UINT_LEAST32_MAX (4294967295U)
#define WINT_MAX (4294967295u)
#define UINT16_MAX (65535)
#define UINT_LEAST16_MAX (65535)
#define INT64_MAX (__INT64_C(9223372036854775807))
#define INTMAX_MAX (__INT64_C(9223372036854775807))
#define INT_FAST64_MAX (__INT64_C(9223372036854775807))
#define INT_LEAST64_MAX (__INT64_C(9223372036854775807))
#define UINT64_MAX (__UINT64_C(18446744073709551615))
#define UINTMAX_MAX (__UINT64_C(18446744073709551615))
#define UINT_FAST64_MAX (__UINT64_C(18446744073709551615))
#define UINT_LEAST64_MAX
(__UINT64_C(18446744073709551615))

typedef signed char int8_t;
typedef short int16_t;
typedef int int32_t;
typedef unsigned char uint8_t;
typedef unsigned short uint16_t;
typedef unsigned int uint32_t;
typedef signed char int_least8_t;
typedef short int int_least16_t;
typedef int int_least32_t;
typedef unsigned char uint_least8_t;
typedef unsigned short uint_least16_t;
typedef unsigned int uint_least32_t;
typedef signed char int_fast8_t;
typedef unsigned char uint_fast8_t;

13.4.47 stdio.h

#define EOF (-1)
#define P_tmpdir "/tmp"

 © 2007 Linux Foundation 93

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

#define FOPEN_MAX 16
#define L_tmpnam 20
#define FILENAME_MAX 4096
#define BUFSIZ 8192
#define L_ctermid 9
#define L_cuserid 9

typedef struct {
 off_t __pos;
 mbstate_t __state;
} fpos_t;
typedef struct {
 off64_t __pos;
 mbstate_t __state;
} fpos64_t;

typedef struct _IO_FILE FILE;

#define _IOFBF 0
#define _IOLBF 1
#define _IONBF 2

extern char *const _sys_errlist[];
extern void clearerr(FILE *);
extern int fclose(FILE *);
extern FILE *fdopen(int, const char *);
extern int fflush_unlocked(FILE *);
extern int fileno(FILE *);
extern FILE *fopen(const char *, const char *);
extern int fprintf(FILE *, const char *, ...);
extern int fputc(int, FILE *);
extern FILE *freopen(const char *, const char *, FILE *);
extern FILE *freopen64(const char *, const char *, FILE *);
extern int fscanf(FILE *, const char *, ...);
extern int fseek(FILE *, long int, int);
extern int fseeko(FILE *, off_t, int);
extern int fseeko64(FILE *, loff_t, int);
extern off_t ftello(FILE *);
extern loff_t ftello64(FILE *);
extern int getchar(void);
extern int getchar_unlocked(void);
extern int getw(FILE *);
extern int pclose(FILE *);
extern void perror(const char *);
extern FILE *popen(const char *, const char *);
extern int printf(const char *, ...);
extern int putc_unlocked(int, FILE *);
extern int putchar(int);
extern int putchar_unlocked(int);
extern int putw(int, FILE *);
extern int remove(const char *);
extern void rewind(FILE *);
extern int scanf(const char *, ...);
extern void setbuf(FILE *, char *);
extern int sprintf(char *, const char *, ...);
extern int sscanf(const char *, const char *, ...);
extern FILE *stderr;
extern FILE *stdin;
extern FILE *stdout;
extern char *tempnam(const char *, const char *);
extern FILE *tmpfile64(void);
extern FILE *tmpfile(void);
extern char *tmpnam(char *);
extern int vfprintf(FILE *, const char *, va_list);
extern int vprintf(const char *, va_list);
extern int feof(FILE *);

94 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

extern int ferror(FILE *);
extern int fflush(FILE *);
extern int fgetc(FILE *);
extern int fgetpos(FILE *, fpos_t *);
extern char *fgets(char *, int, FILE *);
extern int fputs(const char *, FILE *);
extern size_t fread(void *, size_t, size_t, FILE *);
extern int fsetpos(FILE *, const fpos_t *);
extern long int ftell(FILE *);
extern size_t fwrite(const void *, size_t, size_t, FILE *);
extern int getc(FILE *);
extern int putc(int, FILE *);
extern int puts(const char *);
extern int setvbuf(FILE *, char *, int, size_t);
extern int snprintf(char *, size_t, const char *, ...);
extern int ungetc(int, FILE *);
extern int vsnprintf(char *, size_t, const char *, va_list);
extern int vsprintf(char *, const char *, va_list);
extern void flockfile(FILE *);
extern int asprintf(char **, const char *, ...);
extern int fgetpos64(FILE *, fpos64_t *);
extern FILE *fopen64(const char *, const char *);
extern int fsetpos64(FILE *, const fpos64_t *);
extern int ftrylockfile(FILE *);
extern void funlockfile(FILE *);
extern int getc_unlocked(FILE *);
extern void setbuffer(FILE *, char *, size_t);
extern int vasprintf(char **, const char *, va_list);
extern int vdprintf(int, const char *, va_list);
extern int vfscanf(FILE *, const char *, va_list);
extern int vscanf(const char *, va_list);
extern int vsscanf(const char *, const char *, va_list);
extern size_t __fpending(FILE *);

13.4.48 stdlib.h

#define MB_CUR_MAX (__ctype_get_mb_cur_max())
#define EXIT_SUCCESS 0
#define EXIT_FAILURE 1
#define RAND_MAX 2147483647

typedef int (*__compar_fn_t) (const void *, const void *);
struct random_data {
 int32_t *fptr;
 int32_t *rptr;
 int32_t *state;
 int rand_type;
 int rand_deg;
 int rand_sep;
 int32_t *end_ptr;
};

typedef struct {
 int quot;
 int rem;
} div_t;

typedef struct {
 long int quot;
 long int rem;
} ldiv_t;

typedef struct {
 long long int quot;
 long long int rem;

 © 2007 Linux Foundation 95

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

} lldiv_t;
extern double __strtod_internal(const char *, char **, int);
extern float __strtof_internal(const char *, char **, int);
extern long int __strtol_internal(const char *, char **, int,
int);
extern long double __strtold_internal(const char *, char **,
int);
extern long long int __strtoll_internal(const char *, char **,
int, int);
extern unsigned long int __strtoul_internal(const char *, char
**, int,
 int);
extern unsigned long long int __strtoull_internal(const char *,
char **,
 int, int);
extern long int a64l(const char *);
extern void abort(void);
extern int abs(int);
extern double atof(const char *);
extern int atoi(const char *);
extern long int atol(const char *);
extern long long int atoll(const char *);
extern void *bsearch(const void *, const void *, size_t, size_t,
 __compar_fn_t);
extern div_t div(int, int);
extern double drand48(void);
extern char *ecvt(double, int, int *, int *);
extern double erand48(unsigned short);
extern void exit(int);
extern char *fcvt(double, int, int *, int *);
extern char *gcvt(double, int, char *);
extern char *getenv(const char *);
extern int getsubopt(char **, char *const *, char **);
extern int grantpt(int);
extern long int jrand48(unsigned short);
extern char *l64a(long int);
extern long int labs(long int);
extern void lcong48(unsigned short);
extern ldiv_t ldiv(long int, long int);
extern long long int llabs(long long int);
extern lldiv_t lldiv(long long int, long long int);
extern long int lrand48(void);
extern int mblen(const char *, size_t);
extern size_t mbstowcs(wchar_t *, const char *, size_t);
extern int mbtowc(wchar_t *, const char *, size_t);
extern char *mktemp(char *);
extern long int mrand48(void);
extern long int nrand48(unsigned short);
extern char *ptsname(int);
extern int putenv(char *);
extern void qsort(void *, size_t, size_t, const __compar_fn_t);
extern int rand(void);
extern int rand_r(unsigned int *);
extern unsigned short *seed48(unsigned short);
extern void srand48(long int);
extern int unlockpt(int);
extern size_t wcstombs(char *, const wchar_t *, size_t);
extern int wctomb(char *, wchar_t);
extern int system(const char *);
extern void *calloc(size_t, size_t);
extern void free(void *);
extern char *initstate(unsigned int, char *, size_t);
extern void *malloc(size_t);
extern long int random(void);
extern void *realloc(void *, size_t);
extern char *setstate(char *);

96 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

extern void srand(unsigned int);
extern void srandom(unsigned int);
extern double strtod(const char *, char **);
extern float strtof(const char *, char **);
extern long int strtol(const char *, char **, int);
extern long double strtold(const char *, char **);
extern long long int strtoll(const char *, char **, int);
extern long long int strtoq(const char *, char **, int);
extern unsigned long int strtoul(const char *, char **, int);
extern unsigned long long int strtoull(const char *, char **,
int);
extern unsigned long long int strtouq(const char *, char **,
int);
extern void _Exit(int);
extern size_t __ctype_get_mb_cur_max(void);
extern char **environ;
extern char *realpath(const char *, char *);
extern int setenv(const char *, const char *, int);
extern int unsetenv(const char *);
extern int getloadavg(double, int);
extern int mkstemp64(char *);
extern int posix_memalign(void **, size_t, size_t);
extern int posix_openpt(int);

13.4.49 string.h

#define strerror_r __xpg_strerror_r

extern void *__mempcpy(void *, const void *, size_t);
extern char *__stpcpy(char *, const char *);
extern char *__strdup(const char *);
extern char *__strtok_r(char *, const char *, char **);
extern void *memchr(const void *, int, size_t);
extern int memcmp(const void *, const void *, size_t);
extern void *memcpy(void *, const void *, size_t);
extern void *memmem(const void *, size_t, const void *, size_t);
extern void *memmove(void *, const void *, size_t);
extern void *memset(void *, int, size_t);
extern char *strcat(char *, const char *);
extern char *strchr(const char *, int);
extern int strcmp(const char *, const char *);
extern int strcoll(const char *, const char *);
extern char *strcpy(char *, const char *);
extern size_t strcspn(const char *, const char *);
extern char *strerror(int);
extern size_t strlen(const char *);
extern char *strncat(char *, const char *, size_t);
extern int strncmp(const char *, const char *, size_t);
extern char *strncpy(char *, const char *, size_t);
extern char *strpbrk(const char *, const char *);
extern char *strrchr(const char *, int);
extern char *strsignal(int);
extern size_t strspn(const char *, const char *);
extern char *strstr(const char *, const char *);
extern char *strtok(char *, const char *);
extern size_t strxfrm(char *, const char *, size_t);
extern void *memccpy(void *, const void *, int, size_t);
extern char *strdup(const char *);
extern char *strndup(const char *, size_t);
extern size_t strnlen(const char *, size_t);
extern char *strsep(char **, const char *);
extern char *strtok_r(char *, const char *, char **);
extern char *strcasestr(const char *, const char *);
extern char *stpcpy(char *, const char *);
extern char *stpncpy(char *, const char *, size_t);

 © 2007 Linux Foundation 97

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

extern void *memrchr(const void *, int, size_t);
extern char *__xpg_strerror_r(int, char *, size_t);

13.4.50 strings.h

extern void bcopy(const void *, void *, size_t);
extern int bcmp(const void *, const void *, size_t);
extern void bzero(void *, size_t);
extern int ffs(int);
extern char *index(const char *, int);
extern char *rindex(const char *, int);
extern int strcasecmp(const char *, const char *);
extern int strncasecmp(const char *, const char *, size_t);

13.4.51 sys/file.h

#define LOCK_SH 1
#define LOCK_EX 2
#define LOCK_NB 4
#define LOCK_UN 8

extern int flock(int, int);

13.4.52 sys/ioctl.h

struct winsize {
 unsigned short ws_row;
 unsigned short ws_col;
 unsigned short ws_xpixel;
 unsigned short ws_ypixel;
};
extern int ioctl(int, unsigned long int, ...);

13.4.53 sys/ipc.h

#define IPC_PRIVATE ((key_t)0)
#define IPC_RMID 0
#define IPC_CREAT 00001000
#define IPC_EXCL 00002000
#define IPC_NOWAIT 00004000
#define IPC_SET 1
#define IPC_STAT 2

extern key_t ftok(const char *, int);

13.4.54 sys/mman.h

#define MAP_FAILED ((void*)-1)
#define PROT_NONE 0x0
#define MAP_SHARED 0x01
#define MAP_PRIVATE 0x02
#define PROT_READ 0x1
#define MAP_FIXED 0x10
#define PROT_WRITE 0x2
#define MAP_ANONYMOUS 0x20
#define PROT_EXEC 0x4
#define MREMAP_MAYMOVE 1
#define MS_ASYNC 1
#define MREMAP_FIXED 2
#define MS_INVALIDATE 2

98 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

#define MS_SYNC 4
#define MAP_ANON MAP_ANONYMOUS

extern void *mremap(void *, size_t, size_t, int);
extern int posix_madvise(void *, size_t, int);
extern int msync(void *, size_t, int);
extern int mlock(const void *, size_t);
extern int mlockall(int);
extern void *mmap(void *, size_t, int, int, int, off_t);
extern int mprotect(void *, size_t, int);
extern int munlock(const void *, size_t);
extern int munlockall(void);
extern int munmap(void *, size_t);
extern void *mmap64(void *, size_t, int, int, int, off64_t);
extern int shm_open(const char *, int, mode_t);
extern int shm_unlink(const char *);

13.4.55 sys/msg.h

#define MSG_NOERROR 010000

extern int msgctl(int, int, struct msqid_ds *);
extern int msgget(key_t, int);
extern ssize_t msgrcv(int, void *, size_t, long int, int);
extern int msgsnd(int, const void *, size_t, int);

13.4.56 sys/param.h

#define NOFILE 256
#define MAXPATHLEN 4096

13.4.57 sys/poll.h

#define POLLIN 0x0001
#define POLLPRI 0x0002
#define POLLOUT 0x0004
#define POLLERR 0x0008
#define POLLHUP 0x0010
#define POLLNVAL 0x0020

struct pollfd {
 int fd;
 short events;
 short revents;
};
typedef unsigned long int nfds_t;

13.4.58 sys/resource.h

#define RUSAGE_CHILDREN (-1)
#define RLIM_INFINITY (~0UL)
#define RLIM_SAVED_CUR -1
#define RLIM_SAVED_MAX -1
#define RLIMIT_CPU 0
#define RUSAGE_SELF 0
#define RLIMIT_FSIZE 1
#define RLIMIT_DATA 2
#define RLIMIT_STACK 3
#define RLIMIT_CORE 4
#define RLIMIT_NOFILE 7
#define RLIMIT_AS 9

 © 2007 Linux Foundation 99

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

typedef unsigned long int rlim_t;
typedef unsigned long long int rlim64_t;
typedef int __rlimit_resource_t;

struct rlimit {
 rlim_t rlim_cur;
 rlim_t rlim_max;
};
struct rlimit64 {
 rlim64_t rlim_cur;
 rlim64_t rlim_max;
};

struct rusage {
 struct timeval ru_utime;
 struct timeval ru_stime;
 long int ru_maxrss;
 long int ru_ixrss;
 long int ru_idrss;
 long int ru_isrss;
 long int ru_minflt;
 long int ru_majflt;
 long int ru_nswap;
 long int ru_inblock;
 long int ru_oublock;
 long int ru_msgsnd;
 long int ru_msgrcv;
 long int ru_nsignals;
 long int ru_nvcsw;
 long int ru_nivcsw;
};

enum __priority_which {
 PRIO_PROCESS = 0,
 PRIO_PGRP = 1,
 PRIO_USER = 2
};

#define PRIO_PGRP PRIO_PGRP
#define PRIO_PROCESS PRIO_PROCESS
#define PRIO_USER PRIO_USER

typedef enum __priority_which __priority_which_t;
extern int getpriority(__priority_which_t, id_t);
extern int getrlimit64(id_t, struct rlimit64 *);
extern int setpriority(__priority_which_t, id_t, int);
extern int setrlimit(__rlimit_resource_t, const struct rlimit *);
extern int setrlimit64(__rlimit_resource_t, const struct rlimit64
*);
extern int getrlimit(__rlimit_resource_t, struct rlimit *);
extern int getrusage(int, struct rusage *);

13.4.59 sys/select.h

extern int pselect(int, fd_set *, fd_set *, fd_set *,
 const struct timespec *, const sigset_t *);

13.4.60 sys/sem.h

#define SEM_UNDO 0x1000
#define GETPID 11
#define GETVAL 12
#define GETALL 13

100 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

#define GETNCNT 14
#define GETZCNT 15
#define SETVAL 16
#define SETALL 17

struct sembuf {
 short sem_num;
 short sem_op;
 short sem_flg;
};
extern int semctl(int, int, int, ...);
extern int semget(key_t, int, int);
extern int semop(int, struct sembuf *, size_t);

13.4.61 sys/shm.h

#define SHM_RDONLY 010000
#define SHM_W 0200
#define SHM_RND 020000
#define SHM_R 0400
#define SHM_REMAP 040000
#define SHM_LOCK 11
#define SHM_UNLOCK 12

extern int __getpagesize(void);
extern void *shmat(int, const void *, int);
extern int shmctl(int, int, struct shmid_ds *);
extern int shmdt(const void *);
extern int shmget(key_t, size_t, int);

13.4.62 sys/socket.h

#define CMSG_LEN(len) (CMSG_ALIGN(sizeof(struct
cmsghdr))+(len))
#define SCM_RIGHTS 0x01
#define SOL_SOCKET 1
#define SOMAXCONN 128
#define SOL_RAW 255
#define CMSG_ALIGN(len) \
 (((len)+sizeof(size_t)-1)&(size_t)~(sizeof(size_t)-1))
#define CMSG_DATA(cmsg) \
 ((unsigned char *) (cmsg) + CMSG_ALIGN(sizeof(struct
cmsghdr)))
#define CMSG_SPACE(len) \
 (CMSG_ALIGN(sizeof(struct cmsghdr))+CMSG_ALIGN(len))
#define CMSG_FIRSTHDR(msg) \
 ((msg)->msg_controllen >= sizeof(struct cmsghdr) ? \
 (struct cmsghdr *)(msg)->msg_control : \
 (struct cmsghdr *)NULL)
#define CMSG_NXTHDR(mhdr,cmsg) \
 (((cmsg) == NULL) ? CMSG_FIRSTHDR(mhdr) : \
 (((u_char *)(cmsg) + CMSG_ALIGN((cmsg)->cmsg_len) \
 + CMSG_ALIGN(sizeof(struct cmsghdr))
> \
 (u_char *)((mhdr)->msg_control) + (mhdr)-
>msg_controllen) ? \
 (struct cmsghdr *)NULL : \
 (struct cmsghdr *)((u_char *)(cmsg) +
CMSG_ALIGN((cmsg)->cmsg_len))))

struct linger {
 int l_onoff;
 int l_linger;
};

 © 2007 Linux Foundation 101

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

struct cmsghdr {
 size_t cmsg_len;
 int cmsg_level;
 int cmsg_type;
};
struct iovec {
 void *iov_base;
 size_t iov_len;
};

typedef unsigned short sa_family_t;
typedef unsigned int socklen_t;

struct sockaddr {
 sa_family_t sa_family;
 char sa_data[14];
};
struct sockaddr_storage {
 sa_family_t ss_family;
 __ss_aligntype __ss_align;
 char __ss_padding[(128 - (2 * sizeof(__ss_aligntype)))];
};

struct msghdr {
 void *msg_name;
 int msg_namelen;
 struct iovec *msg_iov;
 size_t msg_iovlen;
 void *msg_control;
 size_t msg_controllen;
 unsigned int msg_flags;
};

#define AF_UNSPEC 0
#define AF_UNIX 1
#define AF_INET6 10
#define AF_INET 2

#define PF_INET AF_INET
#define PF_INET6 AF_INET6
#define PF_UNIX AF_UNIX
#define PF_UNSPEC AF_UNSPEC

#define SOCK_STREAM 1
#define SOCK_PACKET 10
#define SOCK_DGRAM 2
#define SOCK_RAW 3
#define SOCK_RDM 4
#define SOCK_SEQPACKET 5

#define SO_DEBUG 1
#define SO_OOBINLINE 10
#define SO_NO_CHECK 11
#define SO_PRIORITY 12
#define SO_LINGER 13
#define SO_REUSEADDR 2
#define SO_TYPE 3
#define SO_ACCEPTCONN 30
#define SO_ERROR 4
#define SO_DONTROUTE 5
#define SO_BROADCAST 6
#define SO_SNDBUF 7
#define SO_RCVBUF 8
#define SO_KEEPALIVE 9

#define SIOCGIFNAME 0x8910

102 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

#define SIOCGIFCONF 0x8912
#define SIOCGIFFLAGS 0x8913
#define SIOCGIFADDR 0x8915
#define SIOCGIFDSTADDR 0x8917
#define SIOCGIFBRDADDR 0x8919
#define SIOCGIFNETMASK 0x891b
#define SIOCGIFMTU 0x8921
#define SIOCGIFHWADDR 0x8927

#define SHUT_RD 0
#define SHUT_WR 1
#define SHUT_RDWR 2

#define MSG_WAITALL 0x100
#define MSG_TRUNC 0x20
#define MSG_EOR 0x80
#define MSG_OOB 1
#define MSG_PEEK 2
#define MSG_DONTROUTE 4
#define MSG_CTRUNC 8

extern int bind(int, const struct sockaddr *, socklen_t);
extern int getnameinfo(const struct sockaddr *, socklen_t, char
*,
 socklen_t, char *, socklen_t, unsigned
int);
extern int getsockname(int, struct sockaddr *, socklen_t *);
extern int listen(int, int);
extern int setsockopt(int, int, int, const void *, socklen_t);
extern int accept(int, struct sockaddr *, socklen_t *);
extern int connect(int, const struct sockaddr *, socklen_t);
extern ssize_t recv(int, void *, size_t, int);
extern ssize_t recvfrom(int, void *, size_t, int, struct sockaddr
*,
 socklen_t *);
extern ssize_t recvmsg(int, struct msghdr *, int);
extern ssize_t send(int, const void *, size_t, int);
extern ssize_t sendmsg(int, const struct msghdr *, int);
extern ssize_t sendto(int, const void *, size_t, int,
 const struct sockaddr *, socklen_t);
extern int getpeername(int, struct sockaddr *, socklen_t *);
extern int getsockopt(int, int, int, void *, socklen_t *);
extern int shutdown(int, int);
extern int socket(int, int, int);
extern int socketpair(int, int, int, int);
extern int sockatmark(int);

13.4.63 sys/stat.h

#define S_ISBLK(m) (((m)&S_IFMT)==S_IFBLK)
#define S_ISCHR(m) (((m)&S_IFMT)==S_IFCHR)
#define S_ISDIR(m) (((m)&S_IFMT)==S_IFDIR)
#define S_ISFIFO(m) (((m)&S_IFMT)==S_IFIFO)
#define S_ISLNK(m) (((m)&S_IFMT)==S_IFLNK)
#define S_ISREG(m) (((m)&S_IFMT)==S_IFREG)
#define S_ISSOCK(m) (((m)&S_IFMT)==S_IFSOCK)
#define S_TYPEISMQ(buf) ((buf)->st_mode - (buf)->st_mode)
#define S_TYPEISSEM(buf) ((buf)->st_mode - (buf)->st_mode)
#define S_TYPEISSHM(buf) ((buf)->st_mode - (buf)->st_mode)
#define S_IRWXU (S_IREAD|S_IWRITE|S_IEXEC)
#define S_IROTH (S_IRGRP>>3)
#define S_IRGRP (S_IRUSR>>3)
#define S_IRWXO (S_IRWXG>>3)
#define S_IRWXG (S_IRWXU>>3)
#define S_IWOTH (S_IWGRP>>3)

 © 2007 Linux Foundation 103

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

#define S_IWGRP (S_IWUSR>>3)
#define S_IXOTH (S_IXGRP>>3)
#define S_IXGRP (S_IXUSR>>3)
#define S_ISVTX 01000
#define S_IXUSR 0x0040
#define S_IWUSR 0x0080
#define S_IRUSR 0x0100
#define S_ISGID 0x0400
#define S_ISUID 0x0800
#define S_IFIFO 0x1000
#define S_IFCHR 0x2000
#define S_IFDIR 0x4000
#define S_IFBLK 0x6000
#define S_IFREG 0x8000
#define S_IFLNK 0xa000
#define S_IFSOCK 0xc000
#define S_IFMT 0xf000
#define st_atime st_atim.tv_sec
#define st_ctime st_ctim.tv_sec
#define st_mtime st_mtim.tv_sec
#define S_IREAD S_IRUSR
#define S_IWRITE S_IWUSR
#define S_IEXEC S_IXUSR

extern int __fxstat(int, int, struct stat *);
extern int __fxstat64(int, int, struct stat64 *);
extern int __lxstat(int, const char *, struct stat *);
extern int __lxstat64(int, const char *, struct stat64 *);
extern int __xmknod(int, const char *, mode_t, dev_t *);
extern int __xstat(int, const char *, struct stat *);
extern int __xstat64(int, const char *, struct stat64 *);
extern int mkfifo(const char *, mode_t);
extern int chmod(const char *, mode_t);
extern int fchmod(int, mode_t);
extern mode_t umask(mode_t);

13.4.64 sys/statfs.h

#define NFS_SUPER_MAGIC 0x6969

extern int fstatfs64(int, struct statfs64 *);
extern int statfs64(const char *, struct statfs64 *);
extern int fstatfs(int, struct statfs *);
extern int statfs(const char *, struct statfs *);

13.4.65 sys/statvfs.h

extern int fstatvfs(int, struct statvfs *);
extern int fstatvfs64(int, struct statvfs64 *);
extern int statvfs(const char *, struct statvfs *);
extern int statvfs64(const char *, struct statvfs64 *);

13.4.66 sys/time.h

#define ITIMER_REAL 0
#define ITIMER_VIRTUAL 1
#define ITIMER_PROF 2

struct timezone {
 int tz_minuteswest;
 int tz_dsttime;
};

104 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

typedef int __itimer_which_t;

struct timespec {
 time_t tv_sec;
 long int tv_nsec;
};

struct timeval {
 time_t tv_sec;
 suseconds_t tv_usec;
};

struct itimerval {
 struct timeval it_interval;
 struct timeval it_value;
};
extern int getitimer(__itimer_which_t, struct itimerval *);
extern int setitimer(__itimer_which_t, const struct itimerval *,
 struct itimerval *);
extern int adjtime(const struct timeval *, struct timeval *);
extern int gettimeofday(struct timeval *, struct timezone *);
extern int utimes(const char *, const struct timeval *);

13.4.67 sys/timeb.h

struct timeb {
 time_t time;
 unsigned short millitm;
 short timezone;
 short dstflag;
};
extern int ftime(struct timeb *);

13.4.68 sys/times.h

struct tms {
 clock_t tms_utime;
 clock_t tms_stime;
 clock_t tms_cutime;
 clock_t tms_cstime;
};
extern clock_t times(struct tms *);

13.4.69 sys/types.h

#ifndef FALSE
#define FALSE 0
#endif
#ifndef TRUE
#define TRUE 1
#endif
#define FD_SETSIZE 1024
#define FD_ZERO(fdsetp) bzero(fdsetp, sizeof(*(fdsetp)))
#define FD_ISSET(d,set) \
 ((set)-
>fds_bits[((d)/(8*sizeof(long)))]&(1<<((d)%(8*sizeof(long)))))
#define FD_CLR(d,set) \
 ((set)-
>fds_bits[((d)/(8*sizeof(long)))]&=~(1<<((d)%(8*sizeof(long)))))
#define FD_SET(d,set) \

 © 2007 Linux Foundation 105

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

 ((set)-
>fds_bits[((d)/(8*sizeof(long)))]|=(1<<((d)%(8*sizeof(long)))))

typedef unsigned char u_int8_t;
typedef unsigned short u_int16_t;
typedef unsigned int u_int32_t;
typedef unsigned long long int u_int64_t;
typedef unsigned int uid_t;
typedef int pid_t;
typedef long int off_t;
typedef int key_t;
typedef long int suseconds_t;
typedef unsigned int u_int;
typedef struct {
 int __val[2];
} fsid_t;
typedef unsigned int useconds_t;
typedef long int blksize_t;
typedef long int fd_mask;
typedef void *timer_t;
typedef int clockid_t;

typedef unsigned int id_t;

typedef unsigned long long int ino64_t;
typedef long long int loff_t;
typedef long int blkcnt_t;
typedef unsigned long int fsblkcnt_t;
typedef unsigned long int fsfilcnt_t;
typedef long long int blkcnt64_t;
typedef unsigned long long int fsblkcnt64_t;
typedef unsigned long long int fsfilcnt64_t;
typedef unsigned char u_char;
typedef unsigned short u_short;
typedef unsigned long int u_long;

typedef unsigned long int ino_t;
typedef unsigned int gid_t;
typedef unsigned long long int dev_t;
typedef unsigned int mode_t;
typedef unsigned long int nlink_t;
typedef char *caddr_t;

typedef struct {
 unsigned long int fds_bits[__FDSET_LONGS];
} fd_set;

typedef long int clock_t;
typedef long int time_t;

13.4.70 sys/uio.h

extern ssize_t readv(int, const struct iovec *, int);
extern ssize_t writev(int, const struct iovec *, int);

13.4.71 sys/un.h

#define UNIX_PATH_MAX 108

struct sockaddr_un {
 sa_family_t sun_family;
 char sun_path[UNIX_PATH_MAX];
};

106 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

13.4.72 sys/utsname.h

#define SYS_NMLN 65

struct utsname {
 char sysname[65];
 char nodename[65];
 char release[65];
 char version[65];
 char machine[65];
 char domainname[65];
};
extern int uname(struct utsname *);

13.4.73 sys/wait.h

#define WIFSIGNALED(status) (!WIFSTOPPED(status) &&
!WIFEXITED(status))
#define WIFSTOPPED(status) (((status) & 0xff) == 0x7f)
#define WEXITSTATUS(status) (((status) & 0xff00) >> 8)
#define WTERMSIG(status) ((status) & 0x7f)
#define WCOREDUMP(status) ((status) & 0x80)
#define WIFEXITED(status) (WTERMSIG(status) == 0)
#define WNOHANG 0x00000001
#define WUNTRACED 0x00000002
#define WCOREFLAG 0x80
#define WSTOPSIG(status) WEXITSTATUS(status)

typedef enum {
 P_ALL,
 P_PID,
 P_PGID
} idtype_t;
extern int waitid(idtype_t, id_t, siginfo_t *, int);
extern pid_t wait(int *);
extern pid_t waitpid(pid_t, int *, int);
extern pid_t wait4(pid_t, int *, int, struct rusage *);

13.4.74 syslog.h

#define LOG_EMERG 0
#define LOG_PRIMASK 0x07
#define LOG_ALERT 1
#define LOG_CRIT 2
#define LOG_ERR 3
#define LOG_WARNING 4
#define LOG_NOTICE 5
#define LOG_INFO 6
#define LOG_DEBUG 7

#define LOG_KERN (0<<3)
#define LOG_AUTHPRIV (10<<3)
#define LOG_FTP (11<<3)
#define LOG_USER (1<<3)
#define LOG_MAIL (2<<3)
#define LOG_DAEMON (3<<3)
#define LOG_AUTH (4<<3)
#define LOG_SYSLOG (5<<3)
#define LOG_LPR (6<<3)
#define LOG_NEWS (7<<3)
#define LOG_UUCP (8<<3)
#define LOG_CRON (9<<3)

 © 2007 Linux Foundation 107

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

#define LOG_FACMASK 0x03f8

#define LOG_LOCAL0 (16<<3)
#define LOG_LOCAL1 (17<<3)
#define LOG_LOCAL2 (18<<3)
#define LOG_LOCAL3 (19<<3)
#define LOG_LOCAL4 (20<<3)
#define LOG_LOCAL5 (21<<3)
#define LOG_LOCAL6 (22<<3)
#define LOG_LOCAL7 (23<<3)

#define LOG_UPTO(pri) ((1 << ((pri)+1)) - 1)
#define LOG_MASK(pri) (1 << (pri))

#define LOG_PID 0x01
#define LOG_CONS 0x02
#define LOG_ODELAY 0x04
#define LOG_NDELAY 0x08
#define LOG_NOWAIT 0x10
#define LOG_PERROR 0x20

extern void closelog(void);
extern void openlog(const char *, int, int);
extern int setlogmask(int);
extern void syslog(int, const char *, ...);
extern void vsyslog(int, const char *, va_list);

13.4.75 termios.h

#define TCIFLUSH 0
#define TCOOFF 0
#define TCSANOW 0
#define BS0 0000000
#define CR0 0000000
#define FF0 0000000
#define NL0 0000000
#define TAB0 0000000
#define VT0 0000000
#define OPOST 0000001
#define OCRNL 0000010
#define ONOCR 0000020
#define ONLRET 0000040
#define OFILL 0000100
#define OFDEL 0000200
#define NL1 0000400
#define TCOFLUSH 1
#define TCOON 1
#define TCSADRAIN 1
#define TCIOFF 2
#define TCIOFLUSH 2
#define TCSAFLUSH 2
#define TCION 3

typedef unsigned int speed_t;
typedef unsigned char cc_t;
typedef unsigned int tcflag_t;

#define NCCS 32

struct termios {
 tcflag_t c_iflag;
 tcflag_t c_oflag;
 tcflag_t c_cflag;
 tcflag_t c_lflag;
 cc_t c_line;

108 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

 cc_t c_cc[NCCS];
 speed_t c_ispeed;
 speed_t c_ospeed;
};

#define VINTR 0
#define VQUIT 1
#define VLNEXT 15
#define VERASE 2
#define VKILL 3
#define VEOF 4

#define IGNBRK 0000001
#define BRKINT 0000002
#define IGNPAR 0000004
#define PARMRK 0000010
#define INPCK 0000020
#define ISTRIP 0000040
#define INLCR 0000100
#define IGNCR 0000200
#define ICRNL 0000400
#define IXANY 0004000
#define IMAXBEL 0020000

#define CS5 0000000

#define ECHO 0000010

#define B0 0000000
#define B50 0000001
#define B75 0000002
#define B110 0000003
#define B134 0000004
#define B150 0000005
#define B200 0000006
#define B300 0000007
#define B600 0000010
#define B1200 0000011
#define B1800 0000012
#define B2400 0000013
#define B4800 0000014
#define B9600 0000015
#define B19200 0000016
#define B38400 0000017

extern speed_t cfgetispeed(const struct termios *);
extern speed_t cfgetospeed(const struct termios *);
extern void cfmakeraw(struct termios *);
extern int cfsetispeed(struct termios *, speed_t);
extern int cfsetospeed(struct termios *, speed_t);
extern int cfsetspeed(struct termios *, speed_t);
extern int tcflow(int, int);
extern int tcflush(int, int);
extern pid_t tcgetsid(int);
extern int tcsendbreak(int, int);
extern int tcsetattr(int, int, const struct termios *);
extern int tcdrain(int);
extern int tcgetattr(int, struct termios *);

13.4.76 time.h

#define CLK_TCK ((clock_t)__sysconf(2))
#define CLOCK_REALTIME 0
#define TIMER_ABSTIME 1
#define CLOCKS_PER_SEC 1000000l

 © 2007 Linux Foundation 109

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

struct tm {
 int tm_sec;
 int tm_min;
 int tm_hour;
 int tm_mday;
 int tm_mon;
 int tm_year;
 int tm_wday;
 int tm_yday;
 int tm_isdst;
 long int tm_gmtoff;
 char *tm_zone;
};
struct itimerspec {
 struct timespec it_interval;
 struct timespec it_value;
};

extern int __daylight;
extern long int __timezone;
extern char *__tzname[];
extern char *asctime(const struct tm *);
extern clock_t clock(void);
extern char *ctime(const time_t *);
extern char *ctime_r(const time_t *, char *);
extern double difftime(time_t, time_t);
extern struct tm *getdate(const char *);
extern int getdate_err;
extern struct tm *gmtime(const time_t *);
extern struct tm *localtime(const time_t *);
extern time_t mktime(struct tm *);
extern int stime(const time_t *);
extern size_t strftime(char *, size_t, const char *, const struct
tm *);
extern char *strptime(const char *, const char *, struct tm *);
extern time_t time(time_t *);
extern int nanosleep(const struct timespec *, struct timespec *);
extern int daylight;
extern long int timezone;
extern char *tzname[];
extern void tzset(void);
extern char *asctime_r(const struct tm *, char *);
extern struct tm *gmtime_r(const time_t *, struct tm *);
extern struct tm *localtime_r(const time_t *, struct tm *);
extern int clock_getcpuclockid(pid_t, clockid_t *);
extern int clock_getres(clockid_t, struct timespec *);
extern int clock_gettime(clockid_t, struct timespec *);
extern int clock_nanosleep(clockid_t, int, const struct timespec
*,
 struct timespec *);
extern int clock_settime(clockid_t, const struct timespec *);
extern int timer_create(clockid_t, struct sigevent *, timer_t *);
extern int timer_delete(timer_t);
extern int timer_getoverrun(timer_t);
extern int timer_gettime(timer_t, struct itimerspec *);
extern int timer_settime(timer_t, int, const struct itimerspec *,
 struct itimerspec *);

13.4.77 ucontext.h

extern int getcontext(ucontext_t *);
extern void makecontext(ucontext_t *, void (*)(void)
 , int, ...);
extern int setcontext(const struct ucontext *);

110 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

extern int swapcontext(ucontext_t *, const struct ucontext *);

13.4.78 ulimit.h

#define UL_GETFSIZE 1
#define UL_SETFSIZE 2

extern long int ulimit(int, ...);

13.4.79 unistd.h

#define SEEK_SET 0
#define STDIN_FILENO 0
#define SEEK_CUR 1
#define STDOUT_FILENO 1
#define SEEK_END 2
#define STDERR_FILENO 2

typedef long long int off64_t;

#define F_OK 0
#define X_OK 1
#define W_OK 2
#define R_OK 4

#define _POSIX_VDISABLE '\0'
#define _POSIX_CHOWN_RESTRICTED 1
#define _POSIX_JOB_CONTROL 1
#define _POSIX_NO_TRUNC 1
#define _POSIX_SHELL 1
#define _POSIX_FSYNC 200112
#define _POSIX_MAPPED_FILES 200112
#define _POSIX_MEMLOCK 200112
#define _POSIX_MEMLOCK_RANGE 200112
#define _POSIX_MEMORY_PROTECTION 200112
#define _POSIX_SEMAPHORES 200112
#define _POSIX_SHARED_MEMORY_OBJECTS 200112
#define _POSIX_TIMERS 200112
#define _POSIX2_C_BIND 200112L
#define _POSIX_THREADS 200112L

#define _PC_LINK_MAX 0
#define _PC_MAX_CANON 1
#define _PC_ASYNC_IO 10
#define _PC_PRIO_IO 11
#define _PC_FILESIZEBITS 13
#define _PC_REC_INCR_XFER_SIZE 14
#define _PC_REC_MIN_XFER_SIZE 16
#define _PC_REC_XFER_ALIGN 17
#define _PC_ALLOC_SIZE_MIN 18
#define _PC_MAX_INPUT 2
#define _PC_2_SYMLINKS 20
#define _PC_NAME_MAX 3
#define _PC_PATH_MAX 4
#define _PC_PIPE_BUF 5
#define _PC_CHOWN_RESTRICTED 6
#define _PC_NO_TRUNC 7
#define _PC_VDISABLE 8
#define _PC_SYNC_IO 9

#define _SC_ARG_MAX 0
#define _SC_CHILD_MAX 1
#define _SC_PRIORITY_SCHEDULING 10
#define _SC_XOPEN_XPG4 100

 © 2007 Linux Foundation 111

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

#define _SC_CHAR_BIT 101
#define _SC_CHAR_MAX 102
#define _SC_CHAR_MIN 103
#define _SC_INT_MAX 104
#define _SC_INT_MIN 105
#define _SC_LONG_BIT 106
#define _SC_WORD_BIT 107
#define _SC_MB_LEN_MAX 108
#define _SC_NZERO 109
#define _SC_TIMERS 11
#define _SC_SSIZE_MAX 110
#define _SC_SCHAR_MAX 111
#define _SC_SCHAR_MIN 112
#define _SC_SHRT_MAX 113
#define _SC_SHRT_MIN 114
#define _SC_UCHAR_MAX 115
#define _SC_UINT_MAX 116
#define _SC_ULONG_MAX 117
#define _SC_USHRT_MAX 118
#define _SC_NL_ARGMAX 119
#define _SC_ASYNCHRONOUS_IO 12
#define _SC_NL_LANGMAX 120
#define _SC_NL_MSGMAX 121
#define _SC_NL_NMAX 122
#define _SC_NL_SETMAX 123
#define _SC_NL_TEXTMAX 124
#define _SC_XBS5_ILP32_OFF32 125
#define _SC_XBS5_ILP32_OFFBIG 126
#define _SC_XBS5_LP64_OFF64 127
#define _SC_XBS5_LPBIG_OFFBIG 128
#define _SC_XOPEN_LEGACY 129
#define _SC_PRIORITIZED_IO 13
#define _SC_XOPEN_REALTIME 130
#define _SC_XOPEN_REALTIME_THREADS 131
#define _SC_ADVISORY_INFO 132
#define _SC_BARRIERS 133
#define _SC_BASE 134
#define _SC_C_LANG_SUPPORT 135
#define _SC_C_LANG_SUPPORT_R 136
#define _SC_CLOCK_SELECTION 137
#define _SC_CPUTIME 138
#define _SC_THREAD_CPUTIME 139
#define _SC_SYNCHRONIZED_IO 14
#define _SC_DEVICE_IO 140
#define _SC_DEVICE_SPECIFIC 141
#define _SC_DEVICE_SPECIFIC_R 142
#define _SC_FD_MGMT 143
#define _SC_FIFO 144
#define _SC_PIPE 145
#define _SC_FILE_ATTRIBUTES 146
#define _SC_FILE_LOCKING 147
#define _SC_FILE_SYSTEM 148
#define _SC_MONOTONIC_CLOCK 149
#define _SC_FSYNC 15
#define _SC_MULTI_PROCESS 150
#define _SC_SINGLE_PROCESS 151
#define _SC_NETWORKING 152
#define _SC_READER_WRITER_LOCKS 153
#define _SC_SPIN_LOCKS 154
#define _SC_REGEXP 155
#define _SC_REGEX_VERSION 156
#define _SC_SHELL 157
#define _SC_SIGNALS 158
#define _SC_SPAWN 159
#define _SC_MAPPED_FILES 16
#define _SC_SPORADIC_SERVER 160

112 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

#define _SC_THREAD_SPORADIC_SERVER 161
#define _SC_SYSTEM_DATABASE 162
#define _SC_SYSTEM_DATABASE_R 163
#define _SC_TIMEOUTS 164
#define _SC_TYPED_MEMORY_OBJECTS 165
#define _SC_USER_GROUPS 166
#define _SC_USER_GROUPS_R 167
#define _SC_2_PBS 168
#define _SC_2_PBS_ACCOUNTING 169
#define _SC_MEMLOCK 17
#define _SC_2_PBS_LOCATE 170
#define _SC_2_PBS_MESSAGE 171
#define _SC_2_PBS_TRACK 172
#define _SC_SYMLOOP_MAX 173
#define _SC_STREAMS 174
#define _SC_2_PBS_CHECKPOINT 175
#define _SC_V6_ILP32_OFF32 176
#define _SC_V6_ILP32_OFFBIG 177
#define _SC_V6_LP64_OFF64 178
#define _SC_V6_LPBIG_OFFBIG 179
#define _SC_MEMLOCK_RANGE 18
#define _SC_HOST_NAME_MAX 180
#define _SC_TRACE 181
#define _SC_TRACE_EVENT_FILTER 182
#define _SC_TRACE_INHERIT 183
#define _SC_TRACE_LOG 184
#define _SC_LEVEL1_ICACHE_SIZE 185
#define _SC_LEVEL1_ICACHE_ASSOC 186
#define _SC_LEVEL1_ICACHE_LINESIZE 187
#define _SC_LEVEL1_DCACHE_SIZE 188
#define _SC_LEVEL1_DCACHE_ASSOC 189
#define _SC_MEMORY_PROTECTION 19
#define _SC_LEVEL1_DCACHE_LINESIZE 190
#define _SC_LEVEL2_CACHE_SIZE 191
#define _SC_LEVEL2_CACHE_ASSOC 192
#define _SC_LEVEL2_CACHE_LINESIZE 193
#define _SC_LEVEL3_CACHE_SIZE 194
#define _SC_LEVEL3_CACHE_ASSOC 195
#define _SC_LEVEL3_CACHE_LINESIZE 196
#define _SC_LEVEL4_CACHE_SIZE 197
#define _SC_LEVEL4_CACHE_ASSOC 198
#define _SC_LEVEL4_CACHE_LINESIZE 199
#define _SC_CLK_TCK 2
#define _SC_MESSAGE_PASSING 20
#define _SC_SEMAPHORES 21
#define _SC_SHARED_MEMORY_OBJECTS 22
#define _SC_AIO_LISTIO_MAX 23
#define _SC_IPV6 235
#define _SC_RAW_SOCKETS 236
#define _SC_AIO_MAX 24
#define _SC_AIO_PRIO_DELTA_MAX 25
#define _SC_DELAYTIMER_MAX 26
#define _SC_MQ_OPEN_MAX 27
#define _SC_MQ_PRIO_MAX 28
#define _SC_VERSION 29
#define _SC_NGROUPS_MAX 3
#define _SC_PAGESIZE 30
#define _SC_PAGE_SIZE 30
#define _SC_RTSIG_MAX 31
#define _SC_SEM_NSEMS_MAX 32
#define _SC_SEM_VALUE_MAX 33
#define _SC_SIGQUEUE_MAX 34
#define _SC_TIMER_MAX 35
#define _SC_BC_BASE_MAX 36
#define _SC_BC_DIM_MAX 37
#define _SC_BC_SCALE_MAX 38

 © 2007 Linux Foundation 113

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

#define _SC_BC_STRING_MAX 39
#define _SC_OPEN_MAX 4
#define _SC_COLL_WEIGHTS_MAX 40
#define _SC_EQUIV_CLASS_MAX 41
#define _SC_EXPR_NEST_MAX 42
#define _SC_LINE_MAX 43
#define _SC_RE_DUP_MAX 44
#define _SC_CHARCLASS_NAME_MAX 45
#define _SC_2_VERSION 46
#define _SC_2_C_BIND 47
#define _SC_2_C_DEV 48
#define _SC_2_FORT_DEV 49
#define _SC_STREAM_MAX 5
#define _SC_2_FORT_RUN 50
#define _SC_2_SW_DEV 51
#define _SC_2_LOCALEDEF 52
#define _SC_PII 53
#define _SC_PII_XTI 54
#define _SC_PII_SOCKET 55
#define _SC_PII_INTERNET 56
#define _SC_PII_OSI 57
#define _SC_POLL 58
#define _SC_SELECT 59
#define _SC_TZNAME_MAX 6
#define _SC_IOV_MAX 60
#define _SC_UIO_MAXIOV 60
#define _SC_PII_INTERNET_STREAM 61
#define _SC_PII_INTERNET_DGRAM 62
#define _SC_PII_OSI_COTS 63
#define _SC_PII_OSI_CLTS 64
#define _SC_PII_OSI_M 65
#define _SC_T_IOV_MAX 66
#define _SC_THREADS 67
#define _SC_THREAD_SAFE_FUNCTIONS 68
#define _SC_GETGR_R_SIZE_MAX 69
#define _SC_JOB_CONTROL 7
#define _SC_GETPW_R_SIZE_MAX 70
#define _SC_LOGIN_NAME_MAX 71
#define _SC_TTY_NAME_MAX 72
#define _SC_THREAD_DESTRUCTOR_ITERATIONS 73
#define _SC_THREAD_KEYS_MAX 74
#define _SC_THREAD_STACK_MIN 75
#define _SC_THREAD_THREADS_MAX 76
#define _SC_THREAD_ATTR_STACKADDR 77
#define _SC_THREAD_ATTR_STACKSIZE 78
#define _SC_THREAD_PRIORITY_SCHEDULING 79
#define _SC_SAVED_IDS 8
#define _SC_THREAD_PRIO_INHERIT 80
#define _SC_THREAD_PRIO_PROTECT 81
#define _SC_THREAD_PROCESS_SHARED 82
#define _SC_NPROCESSORS_CONF 83
#define _SC_NPROCESSORS_ONLN 84
#define _SC_PHYS_PAGES 85
#define _SC_AVPHYS_PAGES 86
#define _SC_ATEXIT_MAX 87
#define _SC_PASS_MAX 88
#define _SC_XOPEN_VERSION 89
#define _SC_REALTIME_SIGNALS 9
#define _SC_XOPEN_XCU_VERSION 90
#define _SC_XOPEN_UNIX 91
#define _SC_XOPEN_CRYPT 92
#define _SC_XOPEN_ENH_I18N 93
#define _SC_XOPEN_SHM 94
#define _SC_2_CHAR_TERM 95
#define _SC_2_C_VERSION 96
#define _SC_2_UPE 97

114 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

#define _SC_XOPEN_XPG2 98
#define _SC_XOPEN_XPG3 99

#define _CS_PATH 0
#define _POSIX_REGEXP 1
#define _CS_XBS5_ILP32_OFF32_CFLAGS 1100
#define _CS_XBS5_ILP32_OFF32_LDFLAGS 1101
#define _CS_XBS5_ILP32_OFF32_LIBS 1102
#define _CS_XBS5_ILP32_OFF32_LINTFLAGS 1103
#define _CS_XBS5_ILP32_OFFBIG_CFLAGS 1104
#define _CS_XBS5_ILP32_OFFBIG_LDFLAGS 1105
#define _CS_XBS5_ILP32_OFFBIG_LIBS 1106
#define _CS_XBS5_ILP32_OFFBIG_LINTFLAGS 1107
#define _CS_XBS5_LP64_OFF64_CFLAGS 1108
#define _CS_XBS5_LP64_OFF64_LDFLAGS 1109
#define _CS_XBS5_LP64_OFF64_LIBS 1110
#define _CS_XBS5_LP64_OFF64_LINTFLAGS 1111
#define _CS_XBS5_LPBIG_OFFBIG_CFLAGS 1112
#define _CS_XBS5_LPBIG_OFFBIG_LDFLAGS 1113
#define _CS_XBS5_LPBIG_OFFBIG_LIBS 1114
#define _CS_XBS5_LPBIG_OFFBIG_LINTFLAGS 1115

#define _XOPEN_XPG4 1

#define F_ULOCK 0
#define F_LOCK 1
#define F_TLOCK 2
#define F_TEST 3

extern int getdtablesize(void);
extern char **__environ;
extern pid_t __getpgid(pid_t);
extern void _exit(int);
extern int acct(const char *);
extern unsigned int alarm(unsigned int);
extern int chown(const char *, uid_t, gid_t);
extern int chroot(const char *);
extern size_t confstr(int, char *, size_t);
extern char *ctermid(char *);
extern char *cuserid(char *);
extern int daemon(int, int);
extern int execl(const char *, const char *, ...);
extern int execle(const char *, const char *, ...);
extern int execlp(const char *, const char *, ...);
extern int execv(const char *, char *const);
extern int execvp(const char *, char *const);
extern int fdatasync(int);
extern int ftruncate64(int, off64_t);
extern int getdomainname(char *, size_t);
extern long int gethostid(void);
extern char *getlogin(void);
extern int getlogin_r(char *, size_t);
extern int getopt(int, char *const, const char *);
extern pid_t getpgrp(void);
extern pid_t getsid(pid_t);
extern char *getwd(char *);
extern int lockf(int, int, off_t);
extern int lockf64(int, int, off64_t);
extern int mkstemp(char *);
extern int nice(int);
extern char *optarg;
extern int opterr;
extern int optind;
extern int optopt;
extern int rename(const char *, const char *);
extern int setegid(gid_t);

 © 2007 Linux Foundation 115

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

extern int seteuid(uid_t);
extern int sethostname(const char *, size_t);
extern int setpgrp(void);
extern void swab(const void *, void *, ssize_t);
extern void sync(void);
extern pid_t tcgetpgrp(int);
extern int tcsetpgrp(int, pid_t);
extern int truncate(const char *, off_t);
extern int truncate64(const char *, off64_t);
extern char *ttyname(int);
extern unsigned int ualarm(useconds_t, useconds_t);
extern int usleep(useconds_t);
extern int close(int);
extern int fsync(int);
extern off_t lseek(int, off_t, int);
extern int pause(void);
extern ssize_t read(int, void *, size_t);
extern ssize_t write(int, const void *, size_t);
extern char *crypt(const char *, const char *);
extern void encrypt(char *, int);
extern void setkey(const char *);
extern int access(const char *, int);
extern int brk(void *);
extern int chdir(const char *);
extern int dup(int);
extern int dup2(int, int);
extern int execve(const char *, char *const, char *const);
extern int fchdir(int);
extern int fchown(int, uid_t, gid_t);
extern pid_t fork(void);
extern gid_t getegid(void);
extern uid_t geteuid(void);
extern gid_t getgid(void);
extern int getgroups(int, gid_t);
extern int gethostname(char *, size_t);
extern pid_t getpgid(pid_t);
extern pid_t getpid(void);
extern uid_t getuid(void);
extern int lchown(const char *, uid_t, gid_t);
extern int link(const char *, const char *);
extern int mkdir(const char *, mode_t);
extern long int pathconf(const char *, int);
extern int pipe(int);
extern ssize_t readlink(const char *, char *, size_t);
extern int rmdir(const char *);
extern void *sbrk(intptr_t);
extern int select(int, fd_set *, fd_set *, fd_set *, struct
timeval *);
extern int setgid(gid_t);
extern int setpgid(pid_t, pid_t);
extern int setregid(gid_t, gid_t);
extern int setreuid(uid_t, uid_t);
extern pid_t setsid(void);
extern int setuid(uid_t);
extern unsigned int sleep(unsigned int);
extern int symlink(const char *, const char *);
extern long int sysconf(int);
extern int unlink(const char *);
extern pid_t vfork(void);
extern ssize_t pread(int, void *, size_t, off_t);
extern ssize_t pwrite(int, const void *, size_t, off_t);
extern char **_environ;
extern long int fpathconf(int, int);
extern int ftruncate(int, off_t);
extern char *getcwd(char *, size_t);
extern int getpagesize(void);

116 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

extern pid_t getppid(void);
extern int isatty(int);
extern loff_t lseek64(int, loff_t, int);
extern ssize_t pread64(int, void *, size_t, off64_t);
extern ssize_t pwrite64(int, const void *, size_t, off64_t);
extern int ttyname_r(int, char *, size_t);

13.4.80 utime.h

struct utimbuf {
 time_t actime;
 time_t modtime;
};
extern int utime(const char *, const struct utimbuf *);

13.4.81 utmp.h

#define UT_HOSTSIZE 256
#define UT_LINESIZE 32
#define UT_NAMESIZE 32

struct exit_status {
 short e_termination;
 short e_exit;
};

#define EMPTY 0
#define RUN_LVL 1
#define BOOT_TIME 2
#define NEW_TIME 3
#define OLD_TIME 4
#define INIT_PROCESS 5
#define LOGIN_PROCESS 6
#define USER_PROCESS 7
#define DEAD_PROCESS 8
#define ACCOUNTING 9

extern void endutent(void);
extern struct utmp *getutent(void);
extern void setutent(void);
extern int getutent_r(struct utmp *, struct utmp **);
extern int utmpname(const char *);
extern int login_tty(int);
extern void login(const struct utmp *);
extern int logout(const char *);
extern void logwtmp(const char *, const char *, const char *);

13.4.82 utmpx.h

extern void endutxent(void);
extern struct utmpx *getutxent(void);
extern struct utmpx *getutxid(const struct utmpx *);
extern struct utmpx *getutxline(const struct utmpx *);
extern struct utmpx *pututxline(const struct utmpx *);
extern void setutxent(void);

13.4.83 wchar.h

#define WEOF (0xffffffffu)
#define WCHAR_MAX 0x7FFFFFFF
#define WCHAR_MIN 0x80000000

 © 2007 Linux Foundation 117

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

extern double __wcstod_internal(const wchar_t *, wchar_t * *,
int);
extern float __wcstof_internal(const wchar_t *, wchar_t * *,
int);
extern long int __wcstol_internal(const wchar_t *, wchar_t * *,
int, int);
extern long double __wcstold_internal(const wchar_t *, wchar_t *
*, int);
extern unsigned long int __wcstoul_internal(const wchar_t *,
wchar_t * *,
 int, int);
extern wchar_t *wcscat(wchar_t *, const wchar_t *);
extern wchar_t *wcschr(const wchar_t *, wchar_t);
extern int wcscmp(const wchar_t *, const wchar_t *);
extern int wcscoll(const wchar_t *, const wchar_t *);
extern wchar_t *wcscpy(wchar_t *, const wchar_t *);
extern size_t wcscspn(const wchar_t *, const wchar_t *);
extern wchar_t *wcsdup(const wchar_t *);
extern wchar_t *wcsncat(wchar_t *, const wchar_t *, size_t);
extern int wcsncmp(const wchar_t *, const wchar_t *, size_t);
extern wchar_t *wcsncpy(wchar_t *, const wchar_t *, size_t);
extern wchar_t *wcspbrk(const wchar_t *, const wchar_t *);
extern wchar_t *wcsrchr(const wchar_t *, wchar_t);
extern size_t wcsspn(const wchar_t *, const wchar_t *);
extern wchar_t *wcsstr(const wchar_t *, const wchar_t *);
extern wchar_t *wcstok(wchar_t *, const wchar_t *, wchar_t * *);
extern int wcswidth(const wchar_t *, size_t);
extern size_t wcsxfrm(wchar_t *, const wchar_t *, size_t);
extern int wctob(wint_t);
extern int wcwidth(wchar_t);
extern wchar_t *wmemchr(const wchar_t *, wchar_t, size_t);
extern int wmemcmp(const wchar_t *, const wchar_t *, size_t);
extern wchar_t *wmemcpy(wchar_t *, const wchar_t *, size_t);
extern wchar_t *wmemmove(wchar_t *, const wchar_t *, size_t);
extern wchar_t *wmemset(wchar_t *, wchar_t, size_t);
extern size_t mbrlen(const char *, size_t, mbstate_t *);
extern size_t mbrtowc(wchar_t *, const char *, size_t, mbstate_t
*);
extern int mbsinit(const mbstate_t *);
extern size_t mbsnrtowcs(wchar_t *, const char **, size_t,
size_t,
 mbstate_t *);
extern size_t mbsrtowcs(wchar_t *, const char **, size_t,
mbstate_t *);
extern wchar_t *wcpcpy(wchar_t *, const wchar_t *);
extern wchar_t *wcpncpy(wchar_t *, const wchar_t *, size_t);
extern size_t wcrtomb(char *, wchar_t, mbstate_t *);
extern size_t wcslen(const wchar_t *);
extern size_t wcsnrtombs(char *, const wchar_t * *, size_t,
size_t,
 mbstate_t *);
extern size_t wcsrtombs(char *, const wchar_t * *, size_t,
mbstate_t *);
extern double wcstod(const wchar_t *, wchar_t * *);
extern float wcstof(const wchar_t *, wchar_t * *);
extern long int wcstol(const wchar_t *, wchar_t * *, int);
extern long double wcstold(const wchar_t *, wchar_t * *);
extern long long int wcstoq(const wchar_t *, wchar_t * *, int);
extern unsigned long int wcstoul(const wchar_t *, wchar_t * *,
int);
extern unsigned long long int wcstouq(const wchar_t *, wchar_t *
*, int);
extern wchar_t *wcswcs(const wchar_t *, const wchar_t *);
extern int wcscasecmp(const wchar_t *, const wchar_t *);
extern int wcsncasecmp(const wchar_t *, const wchar_t *, size_t);

118 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

extern size_t wcsnlen(const wchar_t *, size_t);
extern long long int wcstoll(const wchar_t *, wchar_t * *, int);
extern unsigned long long int wcstoull(const wchar_t *, wchar_t *
*, int);
extern wint_t btowc(int);
extern wint_t fgetwc(FILE *);
extern wint_t fgetwc_unlocked(FILE *);
extern wchar_t *fgetws(wchar_t *, int, FILE *);
extern wint_t fputwc(wchar_t, FILE *);
extern int fputws(const wchar_t *, FILE *);
extern int fwide(FILE *, int);
extern int fwprintf(FILE *, const wchar_t *, ...);
extern int fwscanf(FILE *, const wchar_t *, ...);
extern wint_t getwc(FILE *);
extern wint_t getwchar(void);
extern wint_t putwc(wchar_t, FILE *);
extern wint_t putwchar(wchar_t);
extern int swprintf(wchar_t *, size_t, const wchar_t *, ...);
extern int swscanf(const wchar_t *, const wchar_t *, ...);
extern wint_t ungetwc(wint_t, FILE *);
extern int vfwprintf(FILE *, const wchar_t *, va_list);
extern int vfwscanf(FILE *, const wchar_t *, va_list);
extern int vswprintf(wchar_t *, size_t, const wchar_t *,
va_list);
extern int vswscanf(const wchar_t *, const wchar_t *, va_list);
extern int vwprintf(const wchar_t *, va_list);
extern int vwscanf(const wchar_t *, va_list);
extern size_t wcsftime(wchar_t *, size_t, const wchar_t *,
 const struct tm *);
extern int wprintf(const wchar_t *, ...);
extern int wscanf(const wchar_t *, ...);

13.4.84 wctype.h

typedef unsigned long int wctype_t;
typedef unsigned int wint_t;
typedef const int32_t *wctrans_t;
typedef struct {
 int count;
 wint_t value;
} __mbstate_t;

typedef __mbstate_t mbstate_t;
extern int iswblank(wint_t);
extern wint_t towlower(wint_t);
extern wint_t towupper(wint_t);
extern wctrans_t wctrans(const char *);
extern int iswalnum(wint_t);
extern int iswalpha(wint_t);
extern int iswcntrl(wint_t);
extern int iswctype(wint_t, wctype_t);
extern int iswdigit(wint_t);
extern int iswgraph(wint_t);
extern int iswlower(wint_t);
extern int iswprint(wint_t);
extern int iswpunct(wint_t);
extern int iswspace(wint_t);
extern int iswupper(wint_t);
extern int iswxdigit(wint_t);
extern wctype_t wctype(const char *);
extern wint_t towctrans(wint_t, wctrans_t);

13.4.85 wordexp.h

 © 2007 Linux Foundation 119

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

enum {
 WRDE_DOOFFS = 1,
 WRDE_APPEND = 2,
 WRDE_NOCMD = 4,
 WRDE_REUSE = 8,
 WRDE_SHOWERR = 16,
 WRDE_UNDEF = 32
};

typedef struct {
 size_t we_wordc;
 char **we_wordv;
 size_t we_offs;
} wordexp_t;

enum {
 WRDE_NOSYS = -1,
 WRDE_NOSPACE = 1,
 WRDE_BADCHAR = 2,
 WRDE_BADVAL = 3,
 WRDE_CMDSUB = 4,
 WRDE_SYNTAX = 5
};
extern int wordexp(const char *, wordexp_t *, int);
extern void wordfree(wordexp_t *);

13.5 Interface Definitions for libc
The interfaces defined on the following pages are included in libc and are
defined by this specification. Unless otherwise noted, these interfaces shall be
included in the source standard.

Other interfaces listed in Section 13.3 shall behave as described in the referenced
base document.

_IO_feof

Name
_IO_feof — alias for feof

Synopsis
int _IO_feof(_IO_FILE * __fp);

Description
_IO_feof() tests the end-of-file indicator for the stream pointed to by __fp,
returning a non-zero value if it is set.

_IO_feof() is not in the source standard; it is only in the binary standard.

120 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

_IO_getc

Name
_IO_getc — alias for getc

Synopsis
int _IO_getc(_IO_FILE * __fp);

Description
_IO_getc() reads the next character from __fp and returns it as an unsigned
char cast to an int, or EOF on end-of-file or error.

_IO_getc() is not in the source standard; it is only in the binary standard.

_IO_putc

Name
_IO_putc — alias for putc

Synopsis
int _IO_putc(int __c, _IO_FILE * __fp);

Description
_IO_putc() writes the character __c, cast to an unsigned char, to __fp.

_IO_putc() is not in the source standard; it is only in the binary standard.

_IO_puts

Name
_IO_puts — alias for puts

Synopsis
int _IO_puts(const char * __c);

Description
_IO_puts() writes the string __s and a trailing newline to stdout.

_IO_puts() is not in the source standard; it is only in the binary standard.

 © 2007 Linux Foundation 121

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

__assert_fail

Name
__assert_fail — abort the program after false assertion

Synopsis
void __assert_fail(const char * assertion, const char * file, unsigned
int line, const char * function);

Description
The __assert_fail() function is used to implement the assert() interface of
ISO POSIX (2003). The __assert_fail() function shall print the given file
filename, line line number, function function name and a message on the
standard error stream in an unspecified format, and abort program execution
via the abort() function. For example:

a.c:10: foobar: Assertion a == b failed.

If function is NULL, __assert_fail() shall omit information about the
function.

assertion, file, and line shall be non-NULL.

The __assert_fail() function is not in the source standard; it is only in the
binary standard. The assert() interface is not in the binary standard; it is only
in the source standard. The assert() may be implemented as a macro.

__ctype_b_loc

Name
__ctype_b_loc — accessor function for __ctype_b array for ctype functions

Synopsis
#include <ctype.h>
const unsigned short * * __ctype_b_loc (void);

Description
The __ctype_b_loc() function shall return a pointer into an array of characters
in the current locale that contains characteristics for each character in the
current character set. The array shall contain a total of 384 characters, and can
be indexed with any signed or unsigned char (i.e. with an index value between
-128 and 255). If the application is multithreaded, the array shall be local to the
current thread.

This interface is not in the source standard; it is only in the binary standard.

Return Value
The __ctype_b_loc() function shall return a pointer to the array of characters
to be used for the ctype() family of functions (see <ctype.h>).

122 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

__ctype_get_mb_cur_max

Name
__ctype_get_mb_cur_max — maximum length of a multibyte character in
the current locale

Synopsis
size_t __ctype_get_mb_cur_max(void);

Description
__ctype_get_mb_cur_max() returns the maximum length of a multibyte
character in the current locale.

__ctype_get_mb_cur_max() is not in the source standard; it is only in the
binary standard.

__ctype_tolower_loc

Name
__ctype_tolower_loc — accessor function for __ctype_b_tolower array for
ctype tolower() function

Synopsis
#include <ctype.h>
int32_t * * __ctype_tolower_loc(void);

Description
The __ctype_tolower_loc() function shall return a pointer into an array of
characters in the current locale that contains lower case equivalents for each
character in the current character set. The array shall contain a total of 384
characters, and can be indexed with any signed or unsigned char (i.e. with an
index value between -128 and 255). If the application is multithreaded, the
array shall be local to the current thread.

This interface is not in the source standard; it is only in the binary standard.

Return Value
The __ctype_tolower_loc() function shall return a pointer to the array of
characters to be used for the ctype() family of functions (see <ctype.h>).

 © 2007 Linux Foundation 123

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

__ctype_toupper_loc

Name
__ctype_toupper_loc — accessor function for __ctype_b_toupper() array
for ctype toupper() function

Synopsis
#include <ctype.h>
int32_t * * __ctype_toupper_loc(void);

Description
The __ctype_toupper_loc() function shall return a pointer into an array of
characters in the current locale that contains upper case equivalents for each
character in the current character set. The array shall contain a total of 384
characters, and can be indexed with any signed or unsigned char (i.e. with an
index value between -128 and 255). If the application is multithreaded, the
array shall be local to the current thread.

This interface is not in the source standard; it is only in the binary standard.

Return Value
The __ctype_toupper_loc() function shall return a pointer to the array of
characters to be used for the ctype() family of functions (see <ctype.h>).

__cxa_atexit

Name
__cxa_atexit — register a function to be called by exit or when a shared
library is unloaded

Synopsis
int __cxa_atexit(void (*func) (void *), void * arg, void *
dso_handle);

Description
As described in the Itanium™ C++ ABI, __cxa_atexit() registers a destructor
function to be called by exit() or when a shared library is unloaded. When a
shared library is unloaded, any destructor function associated with that shared
library, identified by dso_handle, shall be called with the single argument arg,
and then that function shall be removed, or marked as complete, from the list of
functions to run at exit(). On a call to exit(), any remaining functions
registered shall be called with the single argument arg. Destructor functions
shall always be called in the reverse order to their registration (i.e. the most
recently registered function shall be called first),

The __cxa_atexit() function is used to implement atexit(), as described in
ISO POSIX (2003). Calling atexit(func) from the statically linked part of an
application shall be equivalent to __cxa_atexit(func, NULL, NULL).

__cxa_atexit() is not in the source standard; it is only in the binary standard.

Note: atexit() is not in the binary standard; it is only in the source standard.

124 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

__cxa_finalize

Name
__cxa_finalize — call destructors of global (or local static) C++ objects and
exit functions registered with atexit

Synopsis
void __cxa_finalize(void * d);

Description
As described in the Itanium® C++ ABI, the C runtime library shall maintain a
list of termination function entries containing the following information:

• A pointer to a termination function.

• An operand to be passed to the function.

• A handle identifying the home shared library of the entry.

The list is populated by entries of two kinds:

• Destructors of global (or local static) C++ objects that require destruction on
exit.

• Functions registered by the user with atexit().

In the former case an entry consists of a pointer to the destructor, a pointer to
the corresponding object and a handle for the home shared library of the object.
In the latter case the pointer to the function is the pointer passed to atexit(),
while the other pointers are NULL.

When __cxa_finalize(d) is called, it shall walk the termination function list,
calling each in turn if d matches the handle of the termination function entry. If
d is NULL, it shall call all the termination funtions. Multiple calls to
__cxa_finalize shall not result in calling termination function entries multiple
times; the implementation may either remove entries or mark them finished.
The termination functions shall always be called in the reverse order of their
registration (i.e. the most recently registered function shall be called first).

An application shall not call __cxa_finalize() directly. The implementation shall
arrange for__cxa_finalize() to be called during early shared library unload (e.g.
dlclose()) with a handle to the shared library. When the main program calls exit,
the implementation shall cause any remaining __cxa_atexit-registered functions
to be called, either by calling __cxa_finalize(NULL), or by walking the
registration list itself.

__cxa_finalize() is not in the source standard; it is only in the binary standard.

 © 2007 Linux Foundation 125

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

__daylight

Name
__daylight — daylight savings time flag

Synopsis
int __daylight;

Description
The integer variable __daylight shall implement the daylight savings time flag
daylight as specified in the ISO POSIX (2003) header file <time.h>.

__daylight is not in the source standard; it is only in the binary standard.
daylight is not in the binary standard; it is only in the source standard.

__environ

Name
__environ — alias for environ - user environment

Synopsis
extern char * *__environ;

Description
__environ is an alias for environ - user environment.

__environ has the same specification as environ.

__environ is not in the source standard; it is only in the binary standard.

__errno_location

Name
__errno_location — address of errno variable

Synopsis
int * __errno_location(void);

Description
The __errno_location() function shall return the address of the errno
variable for the current thread.

__errno_location() is not in the source standard; it is only in the binary
standard.

126 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

__fpending

Name
__fpending — returns in bytes the amount of output pending on a stream

Synopsis
size_t __fpending(FILE * stream);

Description
__fpending() returns the amount of output in bytes pending on a stream.

__fpending() is not in the source standard; it is only in the binary standard.

__getpagesize

Name
__getpagesize — alias for getpagesize - get current page size

Synopsis
int __getpagesize(void);

Description
__getpagesize() is an alias for getpagesize() - get current page size.

__getpagesize() has the same specification as getpagesize().

__getpagesize() is not in the source standard; it is only in the binary standard.

__getpgid

Name
__getpgid — get the process group id

Synopsis
pid_t __getpgid(pid_t pid);

Description
__getpgid() has the same specification as getpgid().

__getpgid() is not in the source standard; it is only in the binary standard.

 © 2007 Linux Foundation 127

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

__h_errno_location

Name
__h_errno_location — address of h_errno variable

Synopsis
int * __h_errno_location(void);

Description
__h_errno_location() returns the address of the h_errno variable, where
h_errno is as specified in ISO POSIX (2003).

Description
__isinf() has the same specification as isinf() in ISO POSIX (2003), except
that the argument type for __isinf() is known to be double.

Description
__isinff() has the same specification as isinf() in ISO POSIX (2003) except
that the argument type for __isinff() is known to be float.

__h_errno_location() is not in the source standard; it is only in the binary
standard. Note that h_errno itself is only in the source standard; it is not in the
binary standard.

__isinf

Name
__isinf — test for infinity

Synopsis
int __isinf(double arg);

__isinf() is not in the source standard; it is only in the binary standard.

__isinff

Name
__isinff — test for infinity

Synopsis
int __isinff(float arg);

__isinff() is not in the source standard; it is only in the binary standard.

128 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

__isinfl

Name
__isinfl — test for infinity

Synopsis
int __isinfl(long double arg);

Description
__isinfl() has the same specification as isinf() in the ISO POSIX (2003),
except that the argument type for __isinfl() is known to be long double.

Description
__isnan() has the same specification as isnan() in ISO POSIX (2003), except
that the argument type for __isnan() is known to be double.

Description
__isnanf() has the same specification as isnan() in ISO POSIX (2003), except
that the argument type for __isnanf() is known to be float.

__isinfl() is not in the source standard; it is only in the binary standard.

__isnan

Name
__isnan — test for infinity

Synopsis
int __isnan(double arg);

__isnan() is not in the source standard; it is only in the binary standard.

__isnanf

Name
__isnanf — test for infinity

Synopsis
int __isnanf(float arg);

__isnanf() is not in the source standard; it is only in the binary standard.

 © 2007 Linux Foundation 129

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

__isnanl

Name
__isnanl — test for infinity

Synopsis
int __isnanl(long double arg);

Description
__isnanl() has the same specification as isnan() in ISO POSIX (2003), except
that the argument type for __isnanl() is known to be long double.

__isnanl() is not in the source standard; it is only in the binary standard.

__libc_current_sigrtmax

Name
__libc_current_sigrtmax — return number of available real-time signal
with lowest priority

Synopsis
int __libc_current_sigrtmax(void);

Description
__libc_current_sigrtmax() returns the number of an available real-time
signal with the lowest priority.

__libc_current_sigrtmax() is not in the source standard; it is only in the
binary standard.

__libc_current_sigrtmin

Name
__libc_current_sigrtmin — return number of available real-time signal
with highest priority

Synopsis
int __libc_current_sigrtmin(void);

Description
__libc_current_sigrtmin() returns the number of an available real-time
signal with the highest priority.

__libc_current_sigrtmin() is not in the source standard; it is only in the
binary standard.

130 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

__libc_start_main

Name
__libc_start_main — initialization routine

Synopsis
int __libc_start_main(int (*main) (int, char * *, char * *), int
argc, char * * ubp_av, void (*init) (void), void (*fini) (void),
void (*rtld_fini) (void), void (* stack_end));

Description
The __libc_start_main() function shall perform any necessary initialization
of the execution environment, call the main function with appropriate
arguments, and handle the return from main(). If the main() function returns,
the return value shall be passed to the exit() function.

Note: While this specification is intended to be implementation independent,
process and library initialization may include:

• performing any necessary security checks if the effective user ID is not the same
as the real user ID.

• initialize the threading subsystem.

• registering the rtld_fini to release resources when this dynamic shared object
exits (or is unloaded).

• registering the fini handler to run at program exit.

• calling the initializer function (*init)().

• calling main() with appropriate arguments.

• calling exit() with the return value from main().

This list is an example only.

__libc_start_main() is not in the source standard; it is only in the binary
standard.

See Also
The section on Process Initialization in each of the architecture specific parts of
ISO/IEC 23360.

__lxstat

Name
__lxstat — inline wrapper around call to lxstat

Synopsis
#include <ctype.h>
int __lxstat(int version, char * __path, struct stat __statbuf);

Description
__lxstat() is an inline wrapper around call to lxstat().

__lxstat() is not in the source standard; it is only in the binary standard.

 © 2007 Linux Foundation 131

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

__mempcpy

Name
__mempcpy — copy given number of bytes of source to destination

Synopsis
#include <string.h>
void * __mempcpy(void * restrict dest, const void * restrict src,
size_t n);

Description
__mempcpy() copies n bytes of src to dest, returning a pointer to the byte after
the last written byte.

__mempcpy() is not in the source standard; it is only in the binary standard.

__rawmemchr

Name
__rawmemchr — scan memory

Synopsis
#include <string.h>
void * __rawmemchr(const void * s, int c);

Description
__rawmemchr() searches in s for c.

__rawmemchr() is a weak alias to rawmemchr(). It is similar to memchr(), but it
has no length limit.

__rawmemchr() is not in the source standard; it is only in the binary standard.

__register_atfork

Name
__register_atfork — alias for register_atfork

Synopsis
int __register_atfork(void (*prepare) (void), void (*parent) (void),
void (*child) (void), void * __dso_handle);

Description
__register_atfork() implements pthread_atfork() as specified in ISO
POSIX (2003). The additional parameter __dso_handle allows a shared object to
pass in it's handle so that functions registered by __register_atfork() can be
unregistered by the runtime when the shared object is unloaded.

132 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

__sigsetjmp

Name
__sigsetjmp — save stack context for non-local goto

Synopsis
int __sigsetjmp(jmp_buf env, int savemask);

Description
__sigsetjmp() has the same behavior as sigsetjmp() as specified by ISO
POSIX (2003).

__sigsetjmp() is not in the source standard; it is only in the binary standard.

__stpcpy

Name
__stpcpy — alias for stpcpy

Synopsis
#include <string.h>
char * __stpcpy(char * dest, const char * src);

Description
The __stpcpy() function has the same specification as the stpcpy().

__stpcpy() is not in the source standard; it is only in the binary standard.

__strdup

Name
__strdup — alias for strdup

Synopsis
char * __strdup(const char * string);

Description
__strdup() has the same specification as strdup().

__strdup() is not in the source standard; it is only in the binary standard.

 © 2007 Linux Foundation 133

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

__strtod_internal

Name
__strtod_internal — underlying function for strtod

Synopsis
double __strtod_internal(const char * __nptr, char * * __endptr, int
__group);

Description
__group shall be 0 or the behavior of __strtod_internal() is undefined.

__strtod_internal(__nptr, __endptr, 0)() has the same specification as
strtod(__nptr, __endptr)().

__strtod_internal() is not in the source standard; it is only in the binary
standard.

__strtof_internal

Name
__strtof_internal — underlying function for strtof

Synopsis
float __strtof_internal(const char * __nptr, char * * __endptr, int
__group);

Description
__group shall be 0 or the behavior of __strtof_internal() is undefined.

__strtof_internal(__nptr, __endptr, 0)() has the same specification as
strtof(__nptr, __endptr)().

__strtof_internal() is not in the source standard; it is only in the binary
standard.

__strtok_r

Name
__strtok_r — alias for strtok_r

Synopsis
char * __strtok_r(char * restrict s, const char * restrict delim,
char * * restrict save_ptr);

Description
__strtok_r() has the same specification as strtok_r().

__strtok_r() is not in the source standard; it is only in the binary standard.

134 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

__strtol_internal

Name
__strtol_internal — alias for strtol

Synopsis
long int __strtol_internal(const char * __nptr, char * * __endptr, int
__base, int __group);

Description
__group shall be 0 or the behavior of __strtol_internal() is undefined.

__strtol_internal(__nptr, __endptr, __base, 0) has the same specification
as strtol(__nptr, __endptr, __base).

__strtol_internal() is not in the source standard; it is only in the binary
standard.

__strtold_internal

Name
__strtold_internal — underlying function for strtold

Synopsis
long double __strtold_internal(const char * __nptr, char * * __endptr,
int __group);

Description
__group shall be 0 or the behavior of __strtold_internal() is undefined.

__strtold_internal(__nptr, __endptr, 0) has the same specification as
strtold(__nptr, __endptr).

__strtold_internal() is not in the source standard; it is only in the binary
standard.

__strtoll_internal

Name
__strtoll_internal — underlying function for strtoll

Synopsis
long long __strtoll_internal(const char * __nptr, char * * __endptr,
int __base, int __group);

Description
__group shall be 0 or the behavior of __strtoll_internal() is undefined.

__strtoll_internal(__nptr, __endptr, __base, 0) has the same
specification as strtoll(__nptr, __endptr, __base).

__strtoll_internal() is not in the source standard; it is only in the binary
standard.

 © 2007 Linux Foundation 135

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

__strtoul_internal

Name
__strtoul_internal — underlying function for strtoul

Synopsis
unsigned long int __strtoul_internal(const char * __nptr, char * *
__endptr, int __base, int __group);

Description
__group shall be 0 or the behavior of __strtoul_internal() is undefined.

__strtoul_internal(__nptr, __endptr, __base, 0) has the same
specification as strtoul(__nptr, __endptr, __base).

__strtoul_internal() is not in the source standard; it is only in the binary
standard.

__strtoull_internal

Name
__strtoull_internal — underlying function for strtoull

Synopsis
unsigned long long __strtoull_internal(const char * __nptr, char * *
__endptr, int __base, int __group);

Description
__group shall be 0 or the behavior of __strtoull_internal() is undefined.

__strtoull_internal(__nptr, __endptr, __base, 0) has the same
specification as strtoull(__nptr, __endptr, __base).

__strtoull_internal() is not in the source standard; it is only in the binary
standard.

__sysconf

Name
__sysconf — get configuration information at runtime

Synopsis
#include <unistd.h>
long __sysconf(int name);

Description
__sysconf() gets configuration information at runtime.

__sysconf() is weak alias to sysconf().

__sysconf() has the same specification as sysconf().

__sysconf() is not in the source standard; it is only in the binary standard.

136 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

__sysv_signal

Name
__sysv_signal — signal handling

Synopsis
__sighandler_t __sysv_signal(int sig, __sighandler_t handler);

Description
__sysv_signal() has the same behavior as signal() as specified by ISO
POSIX (2003).

Description
__timezone() has the same specification as timezone() in the ISO POSIX
(2003)

Description
__tzname has the same specification as tzname in the ISO POSIX (2003).

Note that the array size of 2 is explicit in the ISO POSIX (2003), but not in the
SUSv2.

__sysv_signal() is not in the source standard; it is only in the binary standard.

__timezone

Name
 — global variable containing timezone

Synopsis
long int __timezone;

__tzname

Name
 — global variable containing the timezone

Synopsis
char * __tzname[2];

 © 2007 Linux Foundation 137

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

__wcstod_internal

Name
__wcstod_internal — underlying function for wcstod

Synopsis
double __wcstod_internal(const wchar_t * nptr, wchar_t * * endptr,
int group);

Description
group shall be 0 or the behavior of __wcstod_internal() is undefined.

__wcstod_internal(nptr, endptr, 0) shall behave as wcstod(nptr, endptr)
as specified by ISO POSIX (2003).

group shall be 0 or the behavior of __wcstof_internal() is undefined.

__wcstof_internal(nptr, endptr, 0) shall behave as wcstof(nptr, endptr)
as specified in ISO POSIX (2003).

group shall be 0 or the behavior of __wcstol_internal() is undefined.

__wcstol_internal(nptr, endptr, base, 0) shall behave as wcstol(nptr,
endptr, base) as specified by ISO POSIX (2003).

__wcstod_internal() is not in the source standard; it is only in the binary
standard.

__wcstof_internal

Name
__wcstof_internal — underlying function for wcstof

Synopsis
float __wcstof_internal(const wchar_t * nptr, wchar_t * * endptr, int
group);

Description

__wcstof_internal() is not in the source standard; it is only in the binary
standard.

__wcstol_internal

Name
__wcstol_internal — underlying function for wcstol

Synopsis
long __wcstol_internal(const wchar_t * nptr, wchar_t * * endptr, int
base, int group);

Description

__wcstol_internal() is not in the source standard; it is only in the binary
standard.

138 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

__wcstold_internal

Name
__wcstold_internal — underlying function for wcstold

Synopsis
long double __wcstold_internal(const wchar_t * nptr, wchar_t * *
endptr, int group);

Description
group shall be 0 or the behavior of __wcstold_internal() is undefined.

__wcstold_internal(nptr, endptr, 0) shall behave as wcstold(nptr,
endptr) as specified by ISO POSIX (2003).

group shall be 0 or the behavior of __wcstoul_internal() is undefined.

__wcstoul_internal(nptr, endptr, base, 0)() shall behave as
wcstoul(nptr, endptr, base)() as specified by ISO POSIX (2003).

__wcstold_internal() is not in the source standard; it is only in the binary
standard.

__wcstoul_internal

Name
__wcstoul_internal — underlying function for wcstoul

Synopsis
unsigned long __wcstoul_internal(const wchar_t * restrict nptr,
wchar_t * * restrict endptr, int base, int group);

Description

__wcstoul_internal() is not in the source standard; it is only in the binary
standard.

 © 2007 Linux Foundation 139

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

__xmknod

Name
__xmknod — make block or character special file

Synopsis
int __xmknod(int ver, const char * path, mode_t mode, dev_t * dev);

Description
The __xmknod() function shall implement the mknod() interface from ISO
POSIX (2003).

The value of ver shall be 1 or the behavior of __xmknod() is undefined.

__xmknod(1, path, mode, dev) shall behave as mknod(path, mode, dev) as
specified by ISO POSIX (2003).

Description
The __xpg_basename() function shall return a pointer to the final component of
the pathname named by path, as described in ISO POSIX (2003) basename().

Return Value
See ISO POSIX (2003).

The __xmknod() function is not in the source standard; it is only in the binary
standard.

Note: The mknod() function is not in the binary standard; it is only in the source
standard.

__xpg_basename

Name
__xpg_basename — return the last component of a file name

Synopsis
#include <libgen.h>
char * __xpg_basename(const char * path);

This function is not in the source standard, it is only in the binary standard.

140 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

__xpg_sigpause

Name
__xpg_sigpause — remove a signal from the signal mask and suspend the
thread

Synopsis
#include <signal.h>
int __xpg_sigpause(int sig);

Description
The __xpg_sigpause() function shall implement the sigpause() described in
ISO POSIX (2003).

Return Value
See ISO POSIX (2003).

Description
The __xpg_strerror_r() function shall map the error number in errnum to a
locale-dependent error message string and shall return the string in the buffer
pointed to by strerrbuf, with length buflen, as described in ISO POSIX (2003)
strerror_r().

Return Value
See ISO POSIX (2003).

This function is not in the source standard, it is only in the binary standard.

__xpg_strerror_r

Name
__xpg_strerror_r — return string describing error number

Synopsis
#include <string.h>
char * __xpg_strerror_r(int errnum, char * buf, size_t buflen);

This function is not in the source standard, it is only in the binary standard.

__xstat

Name
__xstat — get File Status

Synopsis
#include <sys/stat.h>

 © 2007 Linux Foundation 141

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

#include <unistd.h>
int __xstat(int ver, const char * path, struct stat * stat_buf);
int __lxstat(int ver, const char * path, struct stat * stat_buf);
int __fxstat(int ver, int fildes, struct stat * stat_buf);

Description
The functions __xstat(), __lxstat(), and __fxstat() shall implement the
ISO POSIX (2003) functions stat(), lstat(), and fstat() respectively.

ver shall be 3 or the behavior of these functions is undefined.

__xstat(3, path, stat_buf) shall implement stat(path, stat_buf) as
specified by ISO POSIX (2003).

__lxstat(3, path, stat_buf) shall implement lstat(path, stat_buf) as
specified by ISO POSIX (2003).

__fxstat(3, fildes, stat_buf) shall implement fstat(fildes, stat_buf) as
specified by ISO POSIX (2003).

Description
The functions __xstat64(), __lxstat64(), and __fxstat64() shall
implement the Large File Support functions stat64(), lstat64(), and
fstat64() respectively.

ver shall be 3 or the behavior of these functions is undefined.

__xstat64(3, path, stat_buf) shall behave as stat(path, stat_buf) as
specified by Large File Support.

__lxstat64(3, path, stat_buf) shall behave as lstat(path, stat_buf) as
specified by Large File Support.

__fxstat64(3, fildes, stat_buf) shall behave as fstat(fildes, stat_buf)
as specified by Large File Support.

__xstat(), __lxstat(), and __fxstat() are not in the source standard; they
are only in the binary standard.

stat(), lstat(), and fstat() are not in the binary standard; they are only in
the source standard.

__xstat64

Name
__xstat64 — get File Status

Synopsis
#define _LARGEFILE_SOURCE 1
#include <sys/stat.h>
#include <unistd.h>
int __xstat64(int ver, const char * path, struct stat64 * stat_buf);
int __lxstat64(int ver, const char * path, struct stat64 * stat_buf);
int __fxstat64(int ver, int fildes, struct stat64 * stat_buf);

__xstat64(), __lxstat64(), and __fxstat64() are not in the source standard;
they are only in the binary standard.

stat64(), lstat64(), and fstat64() are not in the binary standard; they are
only in the source standard.

142 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

_environ

Name
_environ — alias for environ - user environment

Synopsis
extern char * *_environ;

Description
_environ is an alias for environ - user environment.

_nl_msg_cat_cntr

Name
_nl_msg_cat_cntr — new catalog load counter

Synopsis
#include <libintl.h>

extern int _nl_msg_cat_cntr;

Description
The global variable _nl_msg_cat_cntr is incremented each time a new catalog
is loaded. This variable is only in the binary standard; it is not in the source
standard.

_sys_errlist

Name
_sys_errlist — array containing the "C" locale strings used by strerror()

Synopsis
#include <stdio.h>

extern const char *const _sys_errlist[];

Description
_sys_errlist is an array containing the "C" locale strings used by strerror().
This normally should not be used directly. strerror() provides all of the
needed functionality.

_sys_siglist

Name
_sys_siglist — array containing the names of the signal names

Synopsis
#include <signal.h>

 © 2007 Linux Foundation 143

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

extern const char *const _sys_siglist[NSIG];

Description
_sys_siglist is an array containing the names of the signal names.

The _sys_siglist array is only in the binary standard; it is not in the source
standard. Applications wishing to access the names of signals should use the
strsignal() function.

acct

Name
acct — switch process accounting on or off

Synopsis
#include <dirent.h>
int acct(const char * filename);

Description
When filename is the name of an existing file, acct() turns accounting on and
appends a record to filename for each terminating process. When filename is
NULL, acct() turns accounting off.

Return Value
On success, 0 is returned. On error, -1 is returned and the global variable errno
is set appropriately.

Errors

ENOSYS

 BSD process accounting has not been enabled when the operating system
kernel was compiled. The kernel configuration parameter controlling this
feature is CONFIG_BSD_PROCESS_ACCT.

ENOMEM

 Out of memory.

EPERM

 The calling process has no permission to enable process accounting.

EACCES

 filename is not a regular file.

EIO

 Error writing to the filename.

EUSERS

 There are no more free file structures or we run out of memory.

144 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

adjtime

Name
adjtime — correct the time to allow synchronization of the system clock

Synopsis
#include <time.h>
int adjtime(const struct timeval * delta, struct timeval *
olddelta);

Description
adjtime() makes small adjustments to the system time as returned by
gettimeofday()(2), advancing or retarding it by the time specified by the
timeval delta. If delta is negative, the clock is slowed down by incrementing it
more slowly than normal until the correction is complete. If delta is positive, a
larger increment than normal is used. The skew used to perform the correction
is generally a fraction of one percent. Thus, the time is always a monotonically
increasing function. A time correction from an earlier call to adjtime() may not
be finished when adjtime() is called again. If olddelta is non-NULL, the
structure pointed to will contain, upon return, the number of microseconds still
to be corrected from the earlier call.

adjtime() may be used by time servers that synchronize the clocks of
computers in a local area network. Such time servers would slow down the
clocks of some machines and speed up the clocks of others to bring them to the
average network time.

Appropriate privilege is required to adjust the system time.

Return Value
On success, 0 is returned. On error, -1 is returned and the global variable errno
is set appropriately.

Errors

EFAULT

 An argument points outside the process's allocated address space.

EPERM

 The process does not have appropriate privilege.

 © 2007 Linux Foundation 145

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

asprintf

Name
asprintf — write formatted output to a dynamically allocated string

Synopsis
#include <stdio.h>
int asprintf(char ** restrict ptr, const char * restrict format,
...);

Description
The asprintf() function shall behave as sprintf(), except that the output
string shall be dynamically allocated space of sufficient length to hold the
resulting string. The address of this dynamically allocated string shall be stored
in the location referenced by ptr.

Return Value
Refer to fprintf().

Errors
Refer to fprintf().

basename

Name
basename — return the last component of a file name

Synopsis
#include <libgen.h>
char * basename(const char * path);

Description
In the source standard, basename() is implemented as a macro causing it to
behave as described in ISO POSIX (2003), and is equivalent to the function
__xpg_basename(). If the macro is undefined, basename() from the binary
standard is used, with differences as described here:

The string identified by path shall not be modified.

If path is "/", or ends with a trailing '/' character, the basename() function
shall return a pointer to an empty string.

Return Value
On success, the basename() function shall return a pointer to the final
component of path. Otherwise, it shall return a null pointer.

See Also
__xpg_basename()

146 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

bind_textdomain_codeset

Name
bind_textdomain_codeset — specify encoding for message retrieval

Synopsis
#include <libintl.h>
char * bind_textdomain_codeset (const char * domainname , const char
* codeset);

Description
The bind_textdomain_codeset() function can be used to specify the output
codeset for message catalogs for domain domainname. The codeset argument
shall be a valid codeset name which can be used tor the iconv_open function, or
a null pointer. If the codeset argument is the null pointer, then function returns
the currently selected codeset for the domain with the name domainname. It
shall return a null pointer if no codeset has yet been selected.

Each successive call to bind_textdomain_codeset() function overrrides the
settings made by the preceding call with the same domainname.

The bind_textdomain_codeset() function shall return a pointer to a string
containing the name of the selected codeset. The string shall be allocated
internally in the function and shall not be changed or freed by the user.

Parameters

domainname

 The domainname argument is applied to the currently active LC_MESSAGE
locale. It is equivalent in syntax and meaning to the domainname argument
to textdomain, except that the selection of the domain is valid only for the
duration of the call.

codeset

 The name of the output codeset for the selected domain, or NULL to select
the current codeset.

If domainname is the null pointer, or is an empty string,
bind_textdomain_codeset() shall fail, but need not set errno.

Return Value
Returns the currently selected codeset name. It returns a null pointer if no
codeset has yet been selected.

Errors

ENOMEM

 Insufficient memory available to allocate return value.

See Also
gettext, dgettext, ngettext, dngettext, dcgettext, dcngettext, textdomain,
bindtextdomain

 © 2007 Linux Foundation 147

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

bindresvport

Name
bindresvport — bind socket to privileged IP port

Synopsis
#include <sys/types.h>
#include <rpc/rpc.h>
int bindresvport(int sd, struct sockaddr_in * sin);

Description
If the process has appropriate privilege, the bindresvport() function shall
bind a socket to a privileged IP port.

Return Value
On success, 0 is returned. On error, -1 is returned and the global variable errno
is set appropriately.

Errors

EPERM

 The process did not have appropriate privilege.

EPFNOSUPPORT

 Address of sin did not match address family of sd.

148 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

bindtextdomain

Name
bindtextdomain — specify the location of a message catalog

Synopsis
#include <libintl.h>
char * bindtextdomain(const char * domainname, const char * dirname);

Description
The bindtextdomain() shall set the the base directory of the hierarchy
containing message catalogs for a given message domain.

The bindtextdomain() function specifies that the domainname message catalog
can be found in the dirname directory hierarchy, rather than in the system
default locale data base.

If dirname is not NULL, the base directory for message catalogs belonging to
domain domainname shall be set to dirname. If dirname is NULL, the base
directory for message catalogs shall not be altered.

The function shall make copies of the argument strings as needed.

dirname can be an absolute or relative pathname.

Note: Applications that wish to use chdir() should always use absolute
pathnames to avoid misadvertently selecting the wrong or non-existant directory.

If domainname is the null pointer, or is an empty string, bindtextdomain()
shall fail, but need not set errno.

The bindtextdomain() function shall return a pointer to a string containing the
name of the selected directory. The string shall be allocated internally in the
function and shall not be changed or freed by the user.

Return Value
On success, bindtextdomain() shall return a pointer to a string containing the
directory pathname currently bound to the domain. On failure, a NULL pointer is
returned, and the global variable errno may be set to indicate the error.

Errors

ENOMEM

 Insufficient memory was available.

See Also
gettext, dgettext, ngettext, dngettext, dcgettext, dcngettext, textdomain,
bind_textdomain_codeset

 © 2007 Linux Foundation 149

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

cfmakeraw

Name
cfmakeraw — get and set terminal attributes

Synopsis
#include <termios.h>
void cfmakeraw(struct termios * termios_p);

Description
The cfmakeraw() function shall set the attributes of the termios structure
referenced by termios_p as follows:

 termios_p->c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
 |INLCR|IGNCR|ICRNL|IXON);

 termios_p->c_oflag &= ~OPOST;

 termios_p->c_lflag &= ~(ECHO|ECHONL|ICANON|ISIG|IEXTEN);

 termios_p->c_cflag &= ~(CSIZE|PARENB);

 termios_p->c_cflag |= CS8;

termios_p shall point to a termios structure that contains the following
members:

 tcflag_t c_iflag; /* input modes */
 tcflag_t c_oflag; /* output modes */
 tcflag_t c_cflag; /* control modes */
 tcflag_t c_lflag; /* local modes */
 cc_t c_cc[NCCS]; /* control chars */

150 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

cfsetspeed

Name
cfsetspeed — set terminal input and output data rate

Synopsis
#include <termios.h>
int cfsetspeed(struct termios *t, speed_t speed);

Description
The cfsetspeed() function shall set the input and output speeds in t to the
value specified by speed. The effects of the function on the terminal as
described below do not become effective, nor are all errors detected, until the
tcsetattr() function is called. Certain values for baud rates set in termios
and passed to tcsetattr() have special meanings.

Return Value
On success, 0 is returned. On error, -1 is returned and the global variable errno
is set appropriately.

Errors

EINVAL

 Invalid speed argument

daemon

Name
daemon — run in the background

Synopsis
#include <unistd.h>
int daemon(int nochdir, int noclose);

Description
The daemon() function shall create a new process, detached from the
controlling terminal. If successful, the calling process shall exit and the new
process shall continue to execute the application in the background. If nochdir
evaluates to true, the current directory shall not be changed. Otherwise,
daemon() shall change the current working directory to the root (`/'). If
noclose evaluates to true the standard input, standard output, and standard
error file descriptors shall not be altered. Otherwise, daemon() shall close the
standard input, standard output and standard error file descriptors and reopen
them attached to /dev/null.

Return Value
On error, -1 is returned, and the global variable errno is set to any of the errors
specified for the library functions fork() and setsid().

 © 2007 Linux Foundation 151

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

dcgettext

Name
dcgettext — perform domain and category specific lookup in message
catalog

Synopsis
#include <libintl.h>
#include <locale.h>
char * dcgettext(const char * domainname, const char * msgid, int
category);

Description
The dcgettext() function is a domain specified version of gettext().

The dcgettext() function shall lookup the translation in the current locale of
the message identified by msgid in the domain specified by domainname and in
the locale category specified by category. If domainname is NULL, the current
default domain shall be used. The msgid argument shall be a NULL-terminated
string to be matched in the catalogue. category shall specify the locale category
to be used for retrieving message strings. The category parameter shall be one
of LC_CTYPE, LC_COLLATE, LC_MESSAGES, LC_MONETARY, LC_NUMERIC, or
LC_TIME. The default domain shall not be changed by a call to dcgettext().

Return Value
If a translation was found in one of the specified catalogs, it shall be converted
to the current locale's codeset and returned. The resulting NULL-terminated
string shall be allocated by the dcgettext function, and must not be modified or
freed. If no translation was found, or category was invalid, msgid shall be
returned.

Errors
dcgettext() shall not modify the errno global variable.

See Also
gettext, dgettext, ngettext, dngettext, dcngettext, textdomain, bindtextdomain,
bind_textdomain_codeset

dcngettext

Name
dcngettext — perform domain and category specific lookup in message
catalog with plural

Synopsis
#include <libintl.h>

152 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

#include <locale.h>
char * dcngettext(const char * domainname, const char * msgid1, const
char * msgid2, unsigned long int n, int category);

Description
The dcngettext() function is a domain specific version of gettext, capable of
returning either a singular or plural form of the message. The dcngettext()
function shall lookup the translation in the current locale of the message
identified by msgid1 in the domain specified by domainname and in the locale
category specified by category. If domainname is NULL, the current default
domain shall be used. The msgid1 argument shall be a NULL-terminated string
to be matched in the catalogue. category shall specify the locale category to be
used for retrieving message strings. The category parameter shall be one of
LC_CTYPE, LC_COLLATE, LC_MESSAGES, LC_MONETARY, LC_NUMERIC, or LC_TIME.
The default domain shall not be changed by a call to dcngettext(). If n is 1
then the singular version of the message is returned, otherwise one of the plural
forms is returned, depending on the value of n and the current locale settings.

Return Value
If a translation corresponding to the value of n was found in one of the specified
catalogs for msgid1, it shall be converted to the current locale's codeset and
returned. The resulting NULL-terminated string shall be allocated by the
dcngettext() function, and must not be modified or freed. If no translation
was found, or category was invalid, msgid1 shall be returned if n has the value
1, otherwise msgid2 shall be returned.

Errors
dcngettext() shall not modify the errno global variable.

See Also
gettext, dgettext, ngettext, dngettext, dcgettext, textdomain, bindtextdomain,
bind_textdomain_codeset

 © 2007 Linux Foundation 153

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

dgettext

Name
dgettext — perform lookup in message catalog for the current
LC_MESSAGES locale

Synopsis
#include <libintl.h>
char * dgettext(const char * domainname, const char * msgid);

Description
dgettext() is a domain specified version of gettext().

The dgettext() function shall search the currently selected message catalogs in
the domain domainname for a string identified by the string msgid. If a string is
located, that string shall be returned. The domain specified by domainname
applies to the currently active LC_MESSAGE locale. The default domain shall not
be changed by a call to dgettext().

Note: The usage of domainanme is equivalent in syntax and meaning to the
textdomain() function's application of domainname, except that the selection of the
domain in dgettext() is valid only for the duration of the call.

The dgettext() function is equivalent to dcgettext(domainname, msgid,
LC_MESSAGES).

Return Value
On success of a msgid query, the translated NULL-terminated string is returned.
On error, the original msgid is returned. The length of the string returned is
undetermined until dgettext() is called.

Errors
dgettext() shall not modify the errno global variable.

See Also
gettext, dgettext, ngettext, dngettext, dcgettext, dcngettext, textdomain,
bindtextdomain, bind_textdomain_codeset

154 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

dngettext

Name
dngettext — perform lookup in message catalog for the current locale

Synopsis
#include <libintl.h>
char * dngettext(const char * domainname, const char * msgid1, const
char * msgid2, unsigned long int n);

Description
dngettext() shall be equivalent to a call to

dcngettext(domainname, msgid1, msgid2, n, LC_MESSAGES)

See dcngettext() for more information.

See Also
gettext, dgettext, ngettext, dcgettext, dcngettext, textdomain, bindtextdomain,
bind_textdomain_codeset

duplocale

Name
duplocale — provide new handle for selection of locale

Synopsis
#include <locale.h>
locale_t duplocale(locale_t locale);

Description
The duplocale() function shall provide a new locale object based on the locale
object provided in locale, suitable for use in the newlocale() or uselocale()
functions. The new object may be released by calling freelocale().

Return Value
On success, the duplocale() function shall return a locale object. Otherwise, it
shall return NULL, and set errno to indicate the error.

Errors
The duplocale() function shall fail if:

ENOMEM

 Insufficient memory.

See Also
setlocale(), freelocale(), newlocale(), uselocale()

 © 2007 Linux Foundation 155

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

endutent

Name
endutent — access utmp file entries

Synopsis
#include <utmp.h>
void endutent(void);

Description
endutent() closes the utmp file. It should be called when the user code is done
accessing the file with the other functions.

err

Name
err — display formatted error messages

Synopsis
#include <err.h>
void err(int eval, const char * fmt, ...);

Description
The err() function shall display a formatted error message on the standard
error stream. First, err() shall write the last component of the program name, a
colon character, and a space character. If fmt is non-NULL, it shall be used as a
format string for the printf() family of functions, and err() shall write the
formatted message, a colon character, and a space. Finally, the error message
string affiliated with the current value of the global variable errno shall be
written, followed by a newline character.

The err() function shall not return, the program shall terminate with the exit
value of eval.

See Also
error(), errx()

Return Value
None.

Errors
None.

156 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

error

Name
error — print error message

Synopsis
#include <err.h>
void error(int exitstatus, int errnum, const char * format, ...);

Description
error() shall print a message to standard error.

error() shall build the message from the following elements in their specified
order:

 1. the program name. If the application has provided a function named
error_print_progname(), error() shall call this to supply the program
name; otherwise, error() uses the content of the global variable
program_name.

 2. the colon and space characters, then the result of using the printf-style
format and the optional arguments.

 3. if errnum is nonzero, error() shall add the colon and space characters,
then the result of strerror(errnum).

 4. a newline.

If exitstatus is nonzero, error() shall call exit(exitstatus).

See Also
err(), errx()

 © 2007 Linux Foundation 157

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

errx

Name
errx — display formatted error message and exit

Synopsis
#include <err.h>
void errx(int eval, const char * fmt, ...);

Description
The errx() function shall display a formatted error message on the standard
error stream. The last component of the program name, a colon character, and a
space shall be output. If fmt is non-NULL, it shall be used as the format string for
the printf() family of functions, and the formatted error message, a colon
character, and a space shall be output. The output shall be followed by a
newline character.

errx() does not return, but shall exit with the value of eval.

Return Value
None.

Errors
None.

See Also
error(), err()

fcntl

Name
fcntl — file control

Description
fcntl() is as specified in ISO POSIX (2003), but with differences as listed
below.

Implementation may set O_LARGEFILE
According to ISO POSIX (2003), only an application sets fcntl() flags, for
example O_LARGEFILE. However, this specification also allows an
implementation to set the O_LARGEFILE flag in the case where the programming
environment is one of _POSIX_V6_ILP32_OFFBIG, _POSIX_V6_LP64_OFF64,
_POSIX_V6_LPBIG_OFFBIG. See getconf and c99 in ISO POSIX (2003) for a
description of these environments. Thus, calling fcntl() with the F_GETFL
command may return O_LARGEFILE as well as flags explicitly set by the
application in the case that both the implementation and the application
support an off_t of at least 64 bits.

158 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

fflush_unlocked

Name
fflush_unlocked — non thread safe fflush

Description
fflush_unlocked() is the same as fflush() except that it need not be thread
safe. That is, it may only be invoked in the ways which are legal for
getc_unlocked().

fgetwc_unlocked

Name
fgetwc_unlocked — non thread safe fgetwc

Description
fgetwc_unlocked() is the same as fgetwc() except that it need not be thread
safe. That is, it may only be invoked in the ways which are legal for
getc_unlocked().

 © 2007 Linux Foundation 159

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

flock

Name
flock — apply or remove an advisory lock on an open file

Synopsis
int flock(int fd, int operation);

Description
flock() applies or removes an advisory lock on the open file fd. Valid
operation types are:

LOCK_SH

 Shared lock. More than one process may hold a shared lock for a given file
at a given time.

LOCK_EX

 Exclusive lock. Only one process may hold an exclusive lock for a given file
at a given time.

LOCK_UN

 Unlock.

LOCK_NB

 Don't block when locking. May be specified (by oring) along with one of the
other operations.

A single file may not simultaneously have both shared and exclusive locks.

Return Value
On success, 0 is returned. On error, -1 is returned and the global variable errno
is set appropriately.

Errors

EWOULDBLOCK

 The file is locked and the LOCK_NB flag was selected.

EBADF

 fd is not a not an open file descriptor.

EINTR

 While waiting to acquire a lock, the call was interrupted by delivery of a
signal caught by a handler.

EINVAL

 The operation is invalid.

EWOULDBLOCK

 The implementation ran out of memory for allocating lock records.

160 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

freelocale

Name
freelocale — free a locale object

Synopsis
#include <locale.h>
void freelocale(locale_t locale);

Description
The freelocale() function shall free the locale object locale, and release any
resources associated with it.

Return Value
None.

Errors
None defined.

See Also
setlocale(), newlocale(), duplocale(), uselocale()

fscanf

Name
fscanf — convert formatted input

Description
The scanf() family of functions shall behave as described in ISO POSIX (2003),
except as noted below.

The %s, %S and %[conversion specifiers shall accept an option length modifier a,
which shall cause a memory buffer to be allocated to hold the string converted.
In such a case, the argument corresponding to the conversion specifier should
be a reference to a pointer value that will receive a pointer to the allocated
buffer. If there is insufficient memory to allocate a buffer, the function may set
errno to ENOMEM and a conversion error results.

Note: This directly conflicts with the ISO C (1999) usage of %a as a conversion
specifier for hexadecimal float values. While this conversion specifier should be
supported, a format specifier such as "%aseconds" will have a different meaning on
an LSB conforming system.

Differences

 © 2007 Linux Foundation 161

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

fstatfs

Name
fstatfs — (deprecated)

Synopsis
#include <sys/statfs.h>
int fstatfs(int fd, struct statfs * buf);

Description
The fstatfs() function returns information about a mounted file system. The
file system is identified by fd, a file descriptor of an open file within the
mounted filesystem. The results are placed in the structure pointed to by buf.

Fields that are undefined for a particular file system shall be set to 0.

Note: Application developers should use the fstatvfs() function to obtain general
file system information. Applications should only use the fstatfs() function if
they must determine the file system type, which need not be provided by
fstatvfs().

Return Value
On success, the fstatfs() function shall return 0 and set the fields of the
structure idenfitied by buf accordingly. On error, the fstatfs() function shall
return -1 and set errno accordingly.

Errors

EBADF

 fd is not a valid open file descriptor.

EFAULT

 buf points to an invalid address.

EIO

 An I/O error occurred while reading from or writing to the file system.

ENOSYS

 The filesystem fd is open on does not support statfs().

162 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

fstatfs64

Name
fstatfs64 — (deprecated)

Synopsis
#include <sys/statfs.h>
int fstatfs64(int fd, struct statfs64 * buf);

Description
The fstatfs64() function returns information about a mounted file system.
The file system is identified by fd, a file descriptor of an open file within the
mounted filesystem. The results are placed in the structure pointed to by buf.

Fields that are undefined for a particular file system shall be set to 0.

fstatfs64() is the 64-bit version of fstatfs().

Note: Application developers should use the fstatvfs64() function to obtain
general file system information. Applications should only use the fstatfs64()
function if they must determine the file system type, which need not be provided by
fstatvfs64().

Return Value
On success, the fstatfs64() function shall return 0 and set the fields of the
structure idenfitied by buf accordingly. On error, the fstatfs64() function
shall return -1 and set errno accordingly.

Errors
See fstatfs().

fwscanf

Name
fwscanf — convert formatted input

Description
The scanf() family of functions shall behave as described in ISO POSIX (2003),
except as noted below.

The %s, %S and %[conversion specifiers shall accept an option length modifier a,
which shall cause a memory buffer to be allocated to hold the string converted.
In such a case, the argument corresponding to the conversion specifier should
be a reference to a pointer value that will receive a pointer to the allocated
buffer. If there is insufficient memory to allocate a buffer, the function may set
errno to ENOMEM and a conversion error results.

Note: This directly conflicts with the ISO C (1999) usage of %a as a conversion
specifier for hexadecimal float values. While this conversion specifier should be
supported, a format specifier such as "%aseconds" will have a different meaning on
an LSB conforming system.

Differences

 © 2007 Linux Foundation 163

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

getdomainname

Name
getdomainname — get NIS domain name (DEPRECATED).

Synopsis
#include <unistd.h>
int getdomainname (char * name , size_t namelen);

Description
If the Network Information System (NIS) is in use, getdomainname() shall copy
the NIS domain name to the supplied buffer identified by name, with maximum
length namelen. If the NIS domain name is not currently set, getdomainname()
shall copy the string "(none)" to the name. If namelen is less than the length of
the string to be copied, getdomainname() shall either truncate the string to
namelen characters and place it in name (without a terminating null character),
or shall fail with EINVAL.

Note: The NIS domain name is not the same as the domain portion of a fully
qualified domain name (for example, in DNS).

The LSB does not include other NIS functions, nor does it specify how NIS may
affect other database functions. No conforming application can make use of this
information beyond noting whether or not the domain name has been set. If the
name is set to a value other than the string "(none)", the application should not
imply that NIS is in use. Similarly, if it is set to "(none)", the application should not
assume that NIS is not in use, although NIS functionality may be restricted in this
case.

Return Value
On success, getdomainname() shall return 0. Otherwise, it shall return -1 and
set errno to indicate the error.

Errors

EINVAL

 name is a null pointer.

EINVAL

 The buffer identified by name and namelen is of insufficient size to store the
NIS domain name string, and the implementation considers this an error.

Future Directions
The LSB does not include other NIS interfaces, and a future version of this
specification may remove this interface. Application developers should avoid
using this interface where possible.

164 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

getdtablesize

Name
getdtablesize — get file descriptor table size (DEPRECATED)

Synopsis
#include <unistd.h>
int getdtablesize (void);

Description
The function getdtablesize() returns the number of files a process can have
open.

Note: The getdtablesize() function is deprecated. Portable applications should
call getrlimit() with the RLIMIT_NOFILE option instead.

Return Value
The getdtablesize() function returns the current soft limit as if obtained by a
call to getrlimit() with the RLIMIT_NOFILE option.

Errors
No errors are defined.

 © 2007 Linux Foundation 165

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

getgrouplist

Name
getgrouplist — get groups a user belongs to

Synopsis
#include <grp.h>
int getgrouplist(const char * user, gid_t group, gid_t * groups, int
* ngroups);

Description
The getgrouplist() function shall fill in the array groups with the
supplementary groups for the user specified by user. On entry, ngroups shall
refer to an integer containing the maximum number of gid_t members in the
groups array. The group group shall also be included.

Return Value
If on entry the value referenced by ngroups was greater than or equal to the
number of supplementary group identifiers to be copied to the array identified
by groups, getgrouplist() shall return the number of group identifiers
actually copied, and shall set the value referenced by ngroups to this value.

If on entry the value referenced by ngroups was less than to the number of
supplementary group identifiers, getgrouplist() shall return -1. The initial
*ngroups entries in groups may be overwritten.

If user does not refer to a valid user on the system, getgrouplist() shall
return 1, and set the value referenced by ngroups to 1, reflecting the group
supplied as group.

Errors
None defined.

See Also
getgroups()

166 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

gethostbyaddr_r

Name
gethostbyaddr_r — find network host database entry matching host name
(DEPRECATED)

Synopsis
#include <netdb.h>
int gethostbyaddr_r(const void * restrict addr, socklen_t len, int
type, struct hostent * restrict result_buf, char * restrict buf,
size_t buflen, struct hostent * * restrict result, int * h_errnop);

Description

Note: The gethostbyaddr_r() function is deprecated; applications should use
getaddrinfo() instead.

gethostbyaddr_r() is a reentrant version of gethostbyaddr() that searches
the network host database for a host address match.

The gethostbyaddr_r() function shall search the network host database for an
entry of address family type with the host with address addr. The len
argument contains the length of the address referenced by addr.

If type is AF_INET, the addr argument shall be an in_addr structure. If type is
AF_INET6, the addr argument shall be an in6_addr structure. If type is any
other value, the behavior is unspecified.

The application must provide a buffer for the gethostbyaddr_r() to use
during the lookup process. The buffer is referenced by buf, and is of size
buflen. If the buffer is not of sufficient size, gethostbyaddr_r() may fail and
return ERANGE. If a matching entry is found in the database,
gethostbyaddr_r() shall copy the relevant information to the application
supplied hostent structure referenced by result_buf, and return a pointer to
this structure in *result. If no matching entry is found, *result shall be set to a
null pointer. Additional error information shall be set in the variable referenced
by h_errnop.

Return Value
On success, the gethostbyaddr_r() function shall return zero. If the return
value was ERANGE, the size of the buffer buf, indicated by buflen, was too
small. If the gethostbyaddr_r() function returns returns any other value, then
the variable referenced by h_errnop shall be set to indicate the cause as for
gethostbyaddr().

 © 2007 Linux Foundation 167

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

gethostbyname2

Name
gethostbyname2 — find network host database entry matching host name
(DEPRECATED)

Synopsis
int gethostbyname2(const char * restrict name, int af);

Description

Note: The gethostbyname2() function is deprecated; applications should use
getaddrinfo() instead.

The gethostbyname2() function shall search the network host database for an
entry with name name. This function is similar to the gethostbyname() function
but additionally allows the search to be restricted to a particular address family
specified by af.

Return Value
On success, the gethostbyname_r() function shall return zero. If the return
value was ERANGE, the size of the buffer buf, indicated by buflen, was too
small. If the gethostbyname_r() function returns returns any other value, then
the variable referenced by h_errnop shall be set to indicate the cause as for
gethostbyname().

168 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

gethostbyname2_r

Name
gethostbyname2_r — find network host database entry matching host name
(DEPRECATED)

Synopsis
int gethostbyname2_r(const char * restrict name, int af, struct
hostent * restrict result_buf, char * restrict buf, size_t buflen,
struct hostent ** restrict result, int * restrict h_errnop);

Description

Note: The gethostbyname2_r() function is deprecated; applications should use
getaddrinfo() instead.

The gethostbyname2_r() function shall search the network host database for
an entry with name name. gethostbyname2_r() is a reentrant version of
gethostbyname2(). These functions are similar to the gethostbyname() and
gethostbyname_r() functions but additionally allow the search to be restricted
to a particular address family specified by af.

The application must provide a buffer for the gethostbyname2_r() function to
use during the lookup process. The buffer is referenced by buf, and is of size
buflen. If the buffer is not of sufficient size, gethostbyname_r() may fail and
return ERANGE. If a matching entry is found in the database,
gethostbyname_r() shall copy the relevant information to the application-
supplied hostent structure referenced by result_buf, and return a pointer to
this structure in *result. If no matching entry is found, *result shall be set to a
null pointer. Additional error information shall be set in the variable referenced
by h_errnop.

Return Value
On success, the gethostbyname2_r() function shall return zero. If the return
value was ERANGE, the size of the buffer buf, indicated by buflen, was too
small. If the gethostbyname2_r() function returns returns any other value,
then the variable referenced by h_errnop shall be set to indicate the cause as for
gethostbyname_r().

 © 2007 Linux Foundation 169

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

gethostbyname_r

Name
gethostbyname_r — find network host database entry matching host name
(DEPRECATED)

Synopsis
int gethostbyname_r(const char * restrict name, struct hostent *
restrict result_buf, char * restrict buf, size_t buflen, struct
hostent ** restrict result, int * restrict h_errnop);

Description

Note: The gethostbyname_r() function is deprecated; applications should use
getaddrinfo() instead.

gethostbyname_r() is a reentrant version of gethostbyname() that searches
the network host database for a host name match.

The gethostbyname_r() function shall search the network host database for an
entry with name name.

The application must provide a buffer for the gethostbyname_r() to use
during the lookup process. The buffer is referenced by buf, and is of size
buflen. If the buffer is not of sufficient size, gethostbyname_r() may fail and
return ERANGE. If a matching entry is found in the database,
gethostbyname_r() shall copy the relevant information to the application
supplied hostent structure referenced by result_buf, and return a pointer to
this structure in *result. If no matching entry is found, *result shall be set to a
null pointer. Additional error information shall be set in the variable referenced
by h_errnop.

Return Value
On success, the gethostbyname_r() function shall return zero. If the return
value was ERANGE, the size of the buffer buf, indicated by buflen, was too
small. If the gethostbyname_r() function returns returns any other value, then
the variable referenced by h_errnop shall be set to indicate the cause as for
gethostbyname().

getloadavg

Name
getloadavg — get system load averages

Synopsis
#include <stdlib.h>
int getloadavg(double loadavg[], int nelem);

Description
getloadavg() returns the number of processes in the system run queue
averaged over various periods of time. Up to nelem samples are retrieved and
assigned to successive elements of loadavg[]. The system imposes a maximum
of 3 samples, representing averages over the last 1, 5, and 15 minutes,
respectively.

170 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

getopt

Name
getopt — parse command line options

Synopsis
#include <unistd.h>
int getopt(int argc, char * const argv[], const char * optstring);

extern char *optarg;

 © 2007 Linux Foundation 171

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

extern int optind, opterr, optopt;

Description
The getopt() function shall parse command line arguments as described in ISO
POSIX (2003), with the following exceptions, where LSB and POSIX
specifications vary. LSB systems shall implement the modified behaviors
described below.

Argument Ordering
The getopt() function can process command line arguments referenced by
argv in one of three ways:

PERMUTE

 the order of arguments in argv is altered so that all options (and their
arguments) are moved in front of all of the operands. This is the default
behavior.

Note: This behavior has undefined results if argv is not modifiable. This is to
support historic behavior predating the use of const and ISO C (1999). The
function prototype was aligned with ISO POSIX (2003) despite the fact that it
modifies argv, and the library maintainers are unwilling to change this.

REQUIRE_ORDER

 The arguments in argv are processed in exactly the order given, and option
processing stops when the first non-option argument is reached, or when
the element of argv is "--". This ordering can be enforced either by setting
the environment variable POSIXLY_CORRECT, or by setting the first
character of optstring to '+'.

RETURN_IN_ORDER

 The order of arguments is not altered, and all arguments are processed.
Non-option arguments (operands) are handled as if they were the
argument to an option with the value 1 ('\001'). This ordering is selected by
setting the first character of optstring to '-';

Option Characteristics
LSB specifies that:

• an element of argv that starts with "-" (and is not exactly "-" or "--") is an
option element.

• characters of an option element, aside from the initial "-", are option
characters.

POSIX specifies that:

• applications using getopt() shall obey the following syntax guidelines:

• option name is a single alphanumeric character from the portable character
set

• option is preceded by the '-' delimiter character

• options without option-arguments should be accepted when grouped
behind one '-' delimiter

• each option and option-argument is a separate argument

• option-arguments are not optional

172 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

• all options should precede operands on the command line

• the argument "--" is accepted as a delimiter indicating the end of options
and the consideration of subsequent arguments, if any, as operands

• historical implementations of getopt() support other characters as options as
an allowed extension, but applications that use extensions are not maximally
portable.

• support for multi-byte option characters is only possible when such
characters can be represented as type int.

• applications that call any utility with a first operand starting with '-' should
usually specify "--" to mark the end of the options. Standard utilities that do
not support this guideline indicate that fact in the OPTIONS section of the
utility description.

Extensions
LSB specifies that:

• if a character is followed by two colons, the option takes an optional
argument; if there is text in the current argv element, it is returned in optarg,
otherwise optarg is set to 0.

• if optstring contains W followed by a semi-colon (;), then -W foo is treated as
the long option --foo.

Note: See getopt_long() for a description of long options.

• The first character of optstring shall modify the behavior of getopt() as
follows:

• if the first character is '+', then REQUIRE_ORDER processing shall be in effect
(see above)

• if the first character is '-', then RETURN_IN_ORDER processing shall be in
effect (see above)

• if the first character is ':', then getopt() shall return ':' instead of '?' to
indicate a missing option argument, and shall not print any diagnostic
message to stderr.

POSIX specifies that:

• the -W option is reserved for implementation extensions.

Return Values
LSB specifies the following additional getopt() return values:

• '\001' is returned if RETURN_IN_ORDER argument ordering is in effect, and the
next argument is an operand, not an option. The argument is available in
optarg.

Any other return value has the same meaning as for POSIX.

POSIX specifies the following getopt() return values:

• the next option character is returned, if found successfully.

• ':' is returned if a parameter is missing for one of the options and the first
character of optstring is ':'.

 © 2007 Linux Foundation 173

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

• '?' is returned if an unknown option character not in optstring is
encountered, or if getopt() detects a missing argument and the first
character of optstring is not ':'.

• -1 is returned for the end of the option list.

Environment Variables
LSB specifies that:

• if the variable POSIXLY_CORRECT is set, option processing stops as soon as a
non-option argument is encountered.

• the variable _[PID]_GNU_nonoption_argv_flags_ (where [PID] is the
process ID for the current process), contains a space separated list of
arguments that should not be treated as arguments even though they appear
to be so.

Rationale: This was used by bash 2.0 to communicate to GNU libc which
arguments resulted from wildcard expansion and so should not be considered as
options. This behavior was removed in bash version 2.01, but the support
remains in GNU libc.

This behavior is DEPRECATED in this version of the LSB; future revisions of
this specification may not include this requirement.

getopt_long

Name
getopt_long — parse command line options

Synopsis
#define _GNU_SOURCE
#include <getopt.h>
int getopt_long(int argc, char * const argv[], const char * opstring,
const struct option * longopts, int * longindex);

Description
getopt_long() works like getopt() except that it also accepts long options,
started out by two dashes. Long option names may be abbreviated if the
abbreviation is unique or is an exact match for some defined option. A long
option may take a parameter, of the form --arg=param or --arg param.

longopts is a pointer to the first element of an array of struct option declared
in getopt.h as:

 struct option {
 const char *name;
 int has_arg;
 int *flag;
 int val;

174 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

 };

The fields in this structure have the following meaning:

name

 The name of the long option.

has_arg

 One of:

_argument (or 0) if the option does not take an argument,
uired_argument (or 1) if the option requires an argument, or
ional_argument (or 2) if the option takes an optional argument.

flag

 specifies how results are returned for a long option. If flag is NULL, then
getopt_long() shall return val. (For example, the calling program may set
val to the equivalent short option character.) Otherwise, getopt_long()
returns 0, and flag shall point to a variable which shall be set to val if the
option is found, but left unchanged if the option is not found.

val

 The value to return, or to load into the variable pointed to by flag.

If longindex is not NULL, it points to a variable which is set to the index of the
long option relative to longopts.

Return Value
getopt_long() returns the option character if a short option was found
successfully, or ":" if there was a missing parameter for one of the options, or "?"
for an unknown option character, or -1 for the end of the option list.

For a long option, getopt_long() returns val if flag is NULL, and 0 otherwise.
Error and -1 returns are the same as for getopt(), plus "?" for an ambiguous
match or an extraneous parameter.

getopt_long_only

Name
getopt_long_only — parse command line options

Synopsis
#define _GNU_SOURCE

 © 2007 Linux Foundation 175

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

#include <getopt.h>
int getopt_long_only(int argc, char * const argv[], const char *
optstring, const struct option * longopts, int * longindex);

Description
getopt_long_only() is like getopt_long(), but "-" as well as "--" can indicate
a long option. If an option that starts with "-" (not "--") doesn't match a long
option, but does match a short option, it is parsed as a short option instead.

Note: The getopt_long_only() function is intended only for supporting certain
programs whose command line syntax was designed before the Utility Syntax
Guidelines of ISO POSIX (2003) were developed. New programs should generally
call getopt_long() instead, which provides the --option syntax for long options,
which is preferred by GNU and consistent with ISO POSIX (2003).

Return Value
getopt_long_only() returns the option character if the option was found
successfully, or ":" if there was a missing parameter for one of the options, or "?"
for an unknown option character, or -1 for the end of the option list.

getopt_long_only() also returns the option character when a short option is
recognized. For a long option, they return val if flag is NULL, and 0 otherwise.
Error and -1 returns are the same as for getopt(), plus "?" for an ambiguous
match or an extraneous parameter.

getpagesize

Name
getpagesize — get memory page size (DEPRECATED)

Synopsis
#include <unistd.h>
int getpagesize (void);

Description
The function getpagesize() returns the number of bytes in a meory page.

Note: The getpagesize() function is deprecated. Portable applications should use
sysconf(_SC_PAGE_SIZE) instead.

Return Value
The getpagesize() function returns the current page size.

Errors
No errors are defined.

getsockopt

Name
getsockopt — get socket options

Synopsis
#include <sys/socket.h>

176 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

#include <netinet/ip.h>
int getsockopt(int socket, int level, int option_name, void *
restrict option_value, socklen_t * restrict option_len);

Description
The getsockopt() function shall behave as specified in ISO POSIX (2003), with
the following extensions.

IP Protocol Level Options
If the level parameter is IPPROTO_IP, the following values shall be supported
for option_name (see RFC 791:Internet Protocol for further details):

IP_OPTIONS

 Get the Internet Protocol options sent with every packet from this socket.
The option_value shall point to a memory buffer in which the options
shall be placed; on entry option_len shall point to an integer value
indicating the maximum size of the memory buffer, in bytes. On successful
return, the value referenced by option_len shall be updated to the size of
data copied to the buffer. For IPv4, the maximum length of options is 40
bytes.

IP_TTL

 Get the current unicast Internet Protocol Time To Live value used when
sending packets with this socket. The option_value shall point to a buffer
large enough to hold the time to live value (at least 1 byte), and
option_len shall point to an integer value holding the maximum size of
that buffer. On successful return, the value referenced by option_len shall
be updated to contain the number of bytes copied into the buffer, which
shall be no larger than the initial value, and option_value shall point to an
integer containing the time to live value.

IP_TOS

 Get the Internet Protocol type of service indicator used when sending
packets with this socket. The option_value shall point to a buffer large
enough to hold the type of service indicator (at least 1 byte), and
option_len shall point to an integer value holding the maximum size of
that buffer. On successful return, the value referenced by option_len shall
be updated to contain the number of bytes copied into the buffer, which
shall be no larger than the initial value, and option_value shall point to an
integer containing the time to live value.

 © 2007 Linux Foundation 177

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

gettext

Name
gettext — search message catalogs for a string

Synopsis
#include <libintl.h>
char * gettext(const char * msgid);

Description
The gettext() function shall search the currently selected message catalogs for
a string identified by the string msgid. If a string is located, that string shall be
returned.

The gettext() function is equivalent to dcgettext(NULL, msgid,
LC_MESSAGES).

Return Value
If a string is found in the currently selected message catalogs for msgid, then a
pointer to that string shall be returned. Otherwise, a pointer to msgid shall be
returned.

Applications shall not modify the string returned by gettext().

Errors
None.

The gettext() function shall not modify errno.

See Also
dgettext, ngettext, dngettext, dcgettext, dcngettext, textdomain,
bindtextdomain, bind_textdomain_codeset

178 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

getutent

Name
getutent — access user accounting database entries

Synopsis
#include <utmp.h>
struct utmp *getutent(void);

Description
The getutent() function shall read the next entry from the user accounting
database.

Return Value
Upon successful completion, getutent() shall return a pointer to a utmp
structure containing a copy of the requested entry in the user accounting
database. Otherwise, a null pointer shall be returned. The return value may
point to a static area which is overwritten by a subsequent call to getutent().

Errors
None defined.

getutent_r

Name
getutent_r — access user accounting database entries

Synopsis
int getutent_r(struct utmp * buffer, struct utmp ** result);

Description
The getutent_r() function is a reentrant version of the getutent() function.
On entry, buffer should point to a user supplied buffer to which the next entry
in the database will be copied, and result should point to a location where the
result will be stored.

Return Value
On success, getutent_r() shall return 0 and set the location referenced by
result to a pointer to buffer. Otherwise, getutent_r() shall return -1 and set
the location referenced by result to NULL.

 © 2007 Linux Foundation 179

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

glob64

Name
glob64 — find pathnames matching a pattern (Large File Support)

Synopsis
#include <glob.h>
int glob64(const char * pattern, int flags, int (*errfunc) (const
char *, int), glob64_t * pglob);

Description
The glob64() function is a large-file version of the glob() function defined in
ISO POSIX (2003). It shall search for pathnames matching pattern according to
the rules used by the shell, /bin/sh. No tilde expansion or parameter
substitution is done; see wordexp().

The results of a glob64() call are stored in the structure pointed to by pglob,
which is a glob64_t declared in glob.h with the following members:

typedef struct
{
 size_t gl_pathc;
 char **gl_pathv;
 size_t gl_offs;
 int gl_flags;
 void (*gl_closedir) (void *);
 struct dirent64 *(*gl_readdir64) (void *);
 void *(*gl_opendir) (const char *);
 int (*gl_lstat) (const char *, struct stat *);
 int (*gl_stat) (const char *, struct stat *);
}

180 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

glob64_t;

Structure members with the same name as corresponding members of a glob_t
as defined in ISO POSIX (2003) shall have the same purpose.

Other members are defined as follows:

gl_flags

 reserved for internal use

gl_closedir

 pointer to a function capable of closing a directory opened by gl_opendir

gl_readdir64

 pointer to a function capable of reading entries in a large directory

gl_opendir

 pointer to a function capable of opening a large directory

gl_stat

 pointer to a function capable of returning file status for a large file

gl_lstat

 pointer to a function capable of returning file status information for a large
file or symbolic link

A large file or large directory is one with a size which cannot be represented by
a variable of type off_t.

Return Value
On success, 0 is returned. Other possible returns are:

GLOB_NOSPACE

 out of memory

GLOB_ABORTED

 read error

GLOB_NOMATCH

 no match found

 © 2007 Linux Foundation 181

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

globfree64

Name
globfree64 — free memory from glob64() (Large File Support)

Synopsis
#include <glob.h>
void globfree64(glob64_t * pglob);

Description
globfree64() frees the dynamically allocated storage from an earlier call to
glob64().

globfree64() is a 64-bit version of globfree().

inet_aton

Name
inet_aton — Internet address manipulation routine

Synopsis
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
int anet_iton(const char * cp, struct in_addr * inp);

Description
inet_aton() converts the Internet host address cp from the standard IPv4
numbers-and-dots notation into binary data and stores it in the structure that
inp points to.

inet_aton() returns a nonzero value if the address is valid, 0 if not.

Note: Note that on some LSB architectures, the host byte order is Least Significant
Byte first, whereas the network byte order, as used on the Internet, is Most
Significant Byte first.

initgroups

Name
initgroups — initialize the supplementary group access list

Synopsis
#include <grp.h>

182 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

#include <sys/types.h>
int initgroups(const char * user, gid_t group);

Description
If the process has appropriate privilege, the initgroups() function shall
initialize the Supplementary Group IDs for the current process by reading the
group database and using all groups of which user is a member. The additional
group group is also added to the list.

Return Value
On success, 0 is returned. On error, -1 is returned and the global variable errno
is set appropriately.

Errors

EPERM

 The calling process does not have sufficient privileges.

ENOMEM

 Insufficient memory to allocate group information structure.

See Also
setgroups()

 © 2007 Linux Foundation 183

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

ioctl

Name
ioctl — control device

Synopsis
#include <sys/ioctl.h>
int ioctl (int fildes , int request , ...);

Description
The ioctl() function shall manipulate the underlying device parameters of
special files. fildes shall be an open file descriptor referring to a special file.
The ioctl() function shall take three parameters; the type and value of the
third parameter is dependent on the device and request.

Conforming LSB applications shall not call ioctl() except in situations
explicitly stated in this specification.

Return Value
On success, 0 is returned. An ioctl() may use the return value as an output
parameter and return a non-negative value on success. On error, -1 is returned
and the global variable errno is set appropriately.

Errors

EBADF

 fildes is not a valid descriptor.

EFAULT

 The third parameter references an inaccessible memory area.

ENOTTY

 fildes is not associated with a character special device.

ENOTTY

 The specified request does not apply to the kind of object that fildes
references.

EINVAL

 request or the third parameter is not valid.

Relationship to POSIX (Informative)
It should be noted that ISO POSIX (2003) contains an interface named ioctl().
The LSB only defines behavior when fildes refers to a socket (see sockio) or
terminal device (see ttyio), while ISO POSIX (2003) only defines behavior when
fildes refers to a STREAMS device. An implementation may support both
behaviors; the LSB does not require any STREAMS support.

184 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

sockio

Name
sockio — socket ioctl commands

Synopsis
#include <sys/ioctl.h>
#include <sys/socket.h>
#include <net/if.h>

 © 2007 Linux Foundation 185

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

#include <netinet/in.h>
int ioctl(int sockfd, int request, void * argp);

Description
Socket ioctl() commands are a subset of the ioctl() calls, which can perform
a variety of functions on sockets. sockfd shall be an open file descriptor
referring to a socket (see the socket() or accept() functions).

Socket ioctl() commands apply to the underlying network interfaces, and
affect the entire system, not just the file descriptor used to issue the ioctl().

The following values for request are accepted:

SIOCGIFCONF (Deprecated)

 Get the interface configuration list for the system.

Note: The SIOCGIFCONF interface is superceded by the if_nameindex() family of
functions (see ISO POSIX (2003)). A future version of this specification may
withdraw this value for request.

argp shall point to a ifconf structure, as described in <net/if.h>. Before
calling, the caller shall set the ifc_ifcu.ifcu_req field to point to an array
of ifreq structures, and set ifc_len to the size in bytes of this allocated
array. Upon return, ifc_len will contain the size in bytes of the array
which was actually used. If it is the same as the length upon calling, the
caller should assume that the array was too small and try again with a
larger array.

On success, SIOCGIFCONF shall return a nonnegative value.

Rationale: Historical UNIX systems disagree on the meaning of the return
value.

SIOCGIFFLAGS

 Get the interface flags for the indicated interface. argp shall point to a
ifreq structure. Before calling, the caller should fill in the ifr_name field
with the interface name, and upon return, the ifr_ifru.ifru_flags field
is set with the interface flags.

SIOCGIFADDR

 Get the interface address for the given interface. argp shall point to a ifreq
structure. Before calling, the caller should fill in the ifr_name field with the
interface name, and upon return, the ifr_ifru.ifru_addr field is set with
the interface address.

SIOCGIFBRDADDR

 Get the interface broadcast address for the given interface. argp shall point
to a ifreq structure. Before calling, the caller should fill in the ifr_name
field with the interface name, and upon return, the
ifr_ifru.ifru_broadcast field is set with the interface broadcast
address.

SIOCGIFDSTADDR

186 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

 Get the point-to-point address for the given interface. argp shall point to a
ifreq structure. Before calling, the caller should fill in the ifr_name field
with the interface name, and upon return, the ifr_dstaddr field is set with
the point-to-point address.

SIOCGIFNAME

 Get the name of an interface. argp shall point to a ifreq structure. Before
calling, the caller should fill in the ifr_ifindex field with the number
(index) of the interface, and upon return, the ifr_name field is set with the
interface name.

SIOCGIFNETMASK

 Get the network mask for the given interface. argp shall point to a ifreq
structure. Before calling, the caller should fill in the ifr_name field with the
interface name, and upon return, the ifr_ifru.ifru_netmask field is set
with the network mask.

SIOCGIFMTU

 Get the Maximum Transmission Unit (MTU) size for the given interface.
argp shall point to a ifreq structure. Before calling, the caller should fill in
the ifr_name field with the interface name, and upon return, the
ifr_ifru.ifru_mtu field is set with the MTU. Note: The range of valid
values for MTU varies for an interface depending on the interface type.

FIONREAD

 Get the amount of queued unread data in the receive buffer. argp shall
point to an integer where the result is to be placed.

Note: Some implementations may also support the use of FIONREAD on other types
of file descriptor. However, the LSB only specifies its behavior for a socket
related file descriptor.

Return Value
On success, if request is SIOCGIFCONF, a non-negative integer shall be
returned. If request is not SIOCGIFCONF, on success 0 is returned. On error, -1
is returned and the global variable errno is set appropriately.

Errors

EBADF

 sockfd is not a valid descriptor.

EFAULT

 argp references an inaccessible memory area.

ENOTTY

 The specified request does not apply to the kind of object that the
descriptor sockfd references.

EINVAL

 Either request or argp is invalid.

ENOTCONN

 © 2007 Linux Foundation 187

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

 The operation is only defined on a connected socket, but the socket wasn't
connected.

ttyio

Name
ttyio — tty ioctl commands

Synopsis
#include <sys/ioctl.h>
#include <fcntl.h>
int ioctl(int fd, unsigned long request, int * argp);

Description
Tty ioctl commands are a subset of the ioctl() calls, which can perform a
variety of functions on tty devices. fd shall be an open file descriptor referring
to a terminal device.

The following ioctl()s are provided:

TIOCGWINSZ

 Get the size attributes of the terminal or pseudo-terminal identified by fd.
On entry, argp shall reference a winsize structure. On return, the structure
will have ws_row set to the number of rows of text (i.e. lines of text) that can
be viewed on the device, and ws_col set to the number of columns (i.e. text
width).

Note: The number of columns stored in ws_col assumes that the terminal device is
using a mono-spaced font.

Return Value
On success, 0 is returned. On error, -1 is returned and the global variable errno
is set appropriately.

Errors

EBADF

 fd is not a valid descriptor.

EFAULT

 argp references an inaccessible memory area.

EINVAL

 request and argp are not valid.

188 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

kill

Name
kill — send a signal

Synopsis
#include <signal.h>
int kill(pid_t pid, int sig);

Description
kill() is as specified in the ISO POSIX (2003), but with differences as listed
below.

Process ID -1 doesn't affect calling process
If pid is specified as -1, sig shall not be sent to the calling process. Other than
this, the rules in the ISO POSIX (2003) apply.

link — create a link to a file

Synopsis
#include <unistd.h>
int link(const char * path1, const char * path2);

Description
The link() function shall behave as specified in ISO POSIX (2003), except with
differences as listed below.

Need Not Follow Symlinks
ISO POSIX (2003) specifies that pathname resolution shall follow symbolic links
during pathname resolution unless the function is required to act on the
symbolic link itself, or certain arguments direct that the function act on the
symbolic link itself. The link() function in ISO POSIX (2003) contains no such
requirement to operate on a symbolic link. However, a conforming LSB
implementation need not follow a symbolic link for the path1 argument.

Rationale: This was a deliberate Linus decision after an unpopular experiment in
including the calling process in the 2.5.1 kernel. See "What does it mean to signal
everybody?", Linux Weekly News, 20 December 2001,
http://lwn.net/2001/1220/kernel.php3

link

Name

 © 2007 Linux Foundation 189

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

mbsnrtowcs

Name
mbsnrtowcs — convert a multibyte string to a wide character string

Synopsis
#include <wchar.h>
size_t mbsnrtowcs(wchar_t * dest, const char * * src, size_t nms,
size_t len, mbstate_t * ps);

Description
mbsnrtowcs() is like mbsrtowcs(), except that the number of bytes to be
converted, starting at src, is limited to nms.

If dest is not a NULL pointer, mbsnrtowcs() converts at most nms bytes from the
multibyte string src to a wide-character string starting at dest. At most, len
wide characters are written to dest. The shift state ps is updated.

The conversion is effectively performed by repeatedly calling:

190 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

mbrtowc(dest, *src, n, ps)

where n is some positive number, as long as this call succeeds, and then
incrementing dest by one and src by the number of bytes consumed.

The conversion can stop for three reasons:

• An invalid multibyte sequence has been encountered. In this case src is left
pointing to the invalid multibyte sequence, (size_t)(-1) is returned, and errno
is set to EILSEQ.

• The nms limit forces a stop, or len non-L'\0' wide characters have been stored
at dest. In this case, src is left pointing to the next multibyte sequence to be
converted, and the number of wide characters written to dest is returned.

• The multibyte string has been completely converted, including the
terminating '\0' (which has the side effect of bringing back ps to the initial
state). In this case, src is set to NULL, and the number of wide characters
written to dest, excluding the terminating L'\0' character, is returned.

If dest is NULL, len is ignored, and the conversion proceeds as above, except
that the converted wide characters are not written out to memory, and that no
destination length limit exists.

In both of the above cases, if ps is a NULL pointer, a static anonymous state only
known to mbsnrtowcs() is used instead.

The programmer shall ensure that there is room for at least len wide characters
at dest.

Return Value
mbsnrtowcs() returns the number of wide characters that make up the
converted part of the wide character string, not including the terminating null
wide character. If an invalid multibyte sequence was encountered, (size_t)(-1) is
returned, and the global variable errno is set to EILSEQ.

Notes
The behavior of mbsnrtowcs() depends on the LC_CTYPE category of the
current locale.

Passing NULL as ps is not multi-thread safe.

memmem

Name
memmem — locate bytes

Synopsis
#define _GNU_SOURCE

 © 2007 Linux Foundation 191

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

#include <string.h>
void * memmem(const void * haystack, size_t haystacklen, const void *
needle, size_t needlelen);

Description
memmem() finds the start of the first occurrence of the byte array referenced by
needle of length needlelen in the memory area haystack of length
haystacklen.

Return Value
memmem() returns a pointer to the beginning of the byte array, or NULL if the
byte array is not found.

Notes
Earlier versions of the C library (prior to glibc 2.1) contained a memmem() with
various problems, and application developers should treat this function with
care.

memrchr

Name
memrchr — scan memory for a character

Synopsis
#include <string.h>
void * memrchr(const void * s, int c, size_t n);

Description
The memrchr() function shall locate the last occurence of c (converted to an
unsigned char) in the initial n bytes (each interpreted as an unsigned char) of
the object pointed to by s.

Return Value
The memrchr() shall return a pointer to the located byte, or a null pointer if the
byte does not occur in the object.

Errors
No errors are defined.

See Also
memchr()

192 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

mremap

Name
mremap — remap a virtual memory address

Synopsis
#include <sys/mman.h>
void * mremap(void * old_address, size_t old_size, size_t new_size,
int flags);

Description
The mremap() function expands (or shrinks) an existing memory mapping,
potentially moving it at the same time, depending on the flags argument and
the available virtual address space.

old_address is the old address of the virtual memory block to be resized. Note
that old_address must be page aligned. old_size is the old size of the virtual
memory block. new_size is the requested size of the virtual memory block after
the resize.

In Linux the memory is divided into pages. A user process has (one or) several
linear virtual memory segments. Each virtual memory segment has one or more
mappings to real memory pages (in the page table). Each virtual memory
segment has its own protection (access rights), which may cause a segmentation
violation if the memory is accessed incorrectly (e.g., writing to a read-only
segment). Accessing virtual memory outside of the segments will also cause a
segmentation violation.

mremap() uses the Linux page table scheme. mremap() changes the mapping
between virtual addresses and memory pages. This can be used to implement a
very efficient form of realloc().

The flags bit-mask argument may be 0, or include the following flag:

MREMAP_MAYMOVE

 By default, if there is not sufficient space to expand a mapping at its current
location, then mremap() fails. If this flag is specified, then the kernel is
permitted to relocate the mapping to a new virtual address, if necessary. If
the mapping is relocated, then absolute pointers into the old mapping
location become invalid (offsets relative to the starting address of the
mapping should be employed).

MREMAP_FIXED

 This flag serves a similar purpose to the MAP_FIXED flag of mmap(). If this
flag is specified, then mremap()accepts a fifth argument, void
*new_address, which specifies a pagealigned address to which the
mapping must be moved. Any previous mapping at the address range
specified by new_address and new_size is unmapped. If MREMAP_FIXED is
specified, then MREMAP_MAYMOVE must also be specified.

If the memory segment specified by old_address and old_size is locked
(using mlock() or similar), then this lock is maintained when the segment is
resized and/or relocated. As a consequence, the amount of memory locked by
the process may change.

Return Value

 © 2007 Linux Foundation 193

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

The mremap() function returns a pointer to the new virtual memory area on
success. On error, the value MAP_FAILED is returned, and errno is set
appropriately.

Errors

EAGAIN

 The caller tried to expand a memory segment that is locked, but this was
not possible without exceeding the RLIMIT_MEMLOCK resource limit.

EFAULT

 "Segmentation fault." Some address in the range old_address to
old_address+old_size is an invalid virtual memory address for this
process. You can also get EFAULT even if there exist mappings that cover
the whole address space requested, but those mappings are of different
types.

EINVAL

 An invalid argument was given. Possible causes are: old_address was not
page aligned; a value other than MREMAP_MAYMOVE or MREMAP_FIXED was
specified in flags; new_size was zero; new_size or new_address was
invalid; or the new address range specified by new_address and new_size
overlapped the old address range specified by old_address and old_size;
or MREMAP_FIXED was specified without also specifying MREMAP_MAYMOVE.

ENOMEM

 The memory area cannot be expanded at the current virtual address, and
the MREMAP_MAYMOVE flag is not set in flags, or, there is not enough
(virtual) memory available.

194 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

newlocale

Name
newlocale — allocate a locale object

Synopsis
#include <locale.h>
locale_t newlocale(int category_mask, const char * locale, locale_t
base);

Description
The newlocale() function shall initialize a locale object. If base is NULL, then
newlocale() shall first allocate the object; otherwise it shall use the locale object
referenced by base.

The object shall be initialized for the locale named by locale, and for the
categories selected in category_mask. The category_mask value is a bitwise
inclusive OR of the required LC_name_MASK values, or the value LC_ALL_MASK.

Return Value
On success, the newlocale() function shall return the initialized locale object.
Otherwise, it shall return NULL, and set errno to indicate the error.

Errors
The newlocale() function shall fail if:

ENOMEM

 Insufficient memory.

EINVAL

 An invalid category_mask was provided, or the locale was NULL.

ENOENT

 For any of the categories in category_mask, the locale data is not available.

Application Usage (Informative)
The only portable way to allocate a locale object is to call newlocale() with a
NULL base. The allocated object may be reinitialized to a new locale by passing
it back to newlocale(). The new object may be released by calling
freelocale().

See Also
setlocale(), freelocale(), duplocale(), uselocale()

 © 2007 Linux Foundation 195

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

ngettext

Name
ngettext — search message catalogs for plural string

Synopsis
#include <libintl.h>
char * ngettext(const char * msgid1, const char * msgid2, unsigned
long int n);

Description
The ngettext() function shall search the currently selected message catalogs
for a string matching the singular string msgid1. If a string is located, and if n is
1, that string shall be returned. If n is not 1, a pluralized version (dependent on
n) of the string shall be returned.

The ngettext() function is equivalent to dcngettext(NULL, msgid1,
msgid2, n, LC_MESSAGES)().

Return Value
If a string is found in the currently selected message catalogs for msgid1, then if
n is 1 a pointer to the located string shall be returned. If n is not 1, a pointer to
an appropriately pluralized version of the string shall be returned. If no
message could be found in the currently selected mesage catalogs, then if n is 1,
a pointer to msgid1 shall be returned, otherwise a pointer to msgid2 shall be
returned.

Applications shall not modify the string returned by ngettext().

Errors
None.

The ngettext() function shall not modify errno.

See Also
gettext, dgettext, ngettext, dngettext, dcgettext, dcngettext, textdomain,
bindtextdomain, bind_textdomain_codeset

196 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

pmap_getport

Name
pmap_getport — find the port number assigned to a service registered with a
portmapper.

Synopsis
#include <rpc/pmap_clnt.h>
u_short * pmap_getport(struct sockaddr_in * address, const u_long
program, const u_long * version, u_int protocol);

Description
The pmap_getport() function shall return the port number assigned to a
service registered with a RPC Binding service running on a given target system,
using the protocol described in RFC 1833: Binding Protocols for ONC RPC
Version 2. The pmap_getport() function shall be called given the RPC program
number program, the program version version, and transport protocol
protocol. Conforming implementations shall support both IPPROTO_UDP and
IPPROTO_TCP protocols. On entry, address shall specify the address of the
system on which the portmapper to be contacted resides. The value of address-
>sin_port shall be ignored, and the standard value for the portmapper port
shall always be used.

Note: Security and network restrictions may prevent a conforming application from
contacting a remote RPC Binding Service.

Return Value
On success, the pmap_getport() function shall return the port number in host
byte order of the RPC application registered with the remote portmapper. On
failure, if either the program was not registered or the remote portmapper
service could not be reached, the pmap_getport() function shall return 0. If the
remote portmap service could not be reached, the status is left in the global
variable rpc_createerr.

pmap_set

Name
pmap_set — establishes mapping to machine's RPC Bind service.

Synopsis
#include <rpc/pmap_clnt.h>
bool_t pmap_set(const u_long program, const u_long version, int
protocol, u_short port);

Description
pmap_set() establishes a mapping between the triple
[program,version,protocol] and port on the machine's RPC Bind service.
The value of protocol is most likely IPPROTO_UDP or IPPROTO_TCP.
Automatically done by svc_register().

Return Value
pmap_set() returns non-zero if it suceeds, 0 otherwise.

 © 2007 Linux Foundation 197

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

pmap_unset

Name
pmap_unset — destroys RPC Binding

Synopsis

#include <rpc/pmap_clnt.h>

bool_t pmap_unset(u_long prognum, u_long versnum);

Description
As a user interface to the RPC Bind service, pmap_unset() destroys all mapping
between the triple [prognum,versnum, *] and ports on the machine's RPC Bind
service.

Return Value
pmap_unset() returns non-zero if it succeeds, zero otherwise.

posix_fadvise64

Name
posix_fadvise64 — File advisory information (Large File Support)

Synopsis
#include <fcntl.h>
int posix_fadvise64(int fd, off64_t offset, off64_t len, int advice);

Description
The posix_fadvise64() function is a large-file version of the
posix_fadvise() function defined in ISO POSIX (2003). It shall advise the
implementation on the expected behavior of the application with respect to the
data in the file associated with the open file descriptor, fd, starting at offset
and continuing for len bytes. The specified range need not currently exist in the
file. If len is zero, all data following offset is specified. The implementation
may use this information to optimize handling of the specified data. The
posix_fadvise() function shall have no effect on the semantics of other
operations on the specified data, although it may affect the performance of
other operations.

The advice to be applied to the data is specified by the advice parameter, as
specified in posix_fadvise().

Return Value
On success, posix_fadvise64() shall return 0. Otherwise an error number
shall be returned to indicate the error. See posix_fadvise() for possible error
values.

198 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

posix_fallocate64

Name
posix_fallocate64 — file space control (Large File Support)

Synopsis
#include <fcntl.h>
int posix_fallocate64(int fd, off64_t offset, off64_t len);

Description
The posix_fallocate64() function is a large file version of
posix_fallocate(). It shall behave as posix_fallocate() in ISO POSIX
(2003), except that the offset and len arguments are off64_t objects rather
than off_t.

Return Value
See posix_fallocate().

Errors
See posix_fallocate().

psignal

Name
psignal — print signal message

Synopsis
#include <signal.h>
void psignal(int sig, const char * s);

extern const char *const sys_siglist[]

Description
The psignal() function shall display a message on the stderr stream. If s is
not the null pointer, and does not point to an empty string (e.g. "\0"), the
message shall consist of the string s, a colon, a space, and a string describing the
signal number sig; otherwise psignal() shall display only a message
describing the signal number sig. If sig is invalid, the message displayed shall
indicate an unknown signal.

The array sys_siglist holds the signal description strings indexed by signal
number.

Return Value
psignal() returns no value.

 © 2007 Linux Foundation 199

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

readdir64_r

Name
readdir64_r — read a directory (Large File Support)

Synopsis
#include <dirent.h>
int readdir64_r(DIR * dirp, struct dirent64 * entry, struct
dirent64 * * result);

Description
The readdir64_r() function is a large file version of readdir_r(). It shall
behave as readdir_r() in ISO POSIX (2003), except that the entry and result
arguments are dirent64 structures rather than dirent.

Description
The regexec() function shall behave as specified in ISO POSIX (2003), except
with differences as listed below.

Differences
Certain aspects of regular expression matching are optional; see Regular
Expressions.

Return Value
See readdir_r().

Errors
See readdir_r().

regexec

Name
regexec — regular expression matching

200 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

scanf

Name
scanf — convert formatted input

Description
The scanf() family of functions shall behave as described in ISO POSIX (2003),
except as noted below.

The %s, %S and %[conversion specifiers shall accept an option length modifier a,
which shall cause a memory buffer to be allocated to hold the string converted.
In such a case, the argument corresponding to the conversion specifier should
be a reference to a pointer value that will receive a pointer to the allocated
buffer. If there is insufficient memory to allocate a buffer, the function may set
errno to ENOMEM and a conversion error results.

Note: This directly conflicts with the ISO C (1999) usage of %a as a conversion
specifier for hexadecimal float values. While this conversion specifier should be
supported, a format specifier such as "%aseconds" will have a different meaning on
an LSB conforming system.

Description
The sched_setscheduler() shall behave as described in ISO POSIX (2003),
except as noted below.

Differences

sched_setscheduler

Name
sched_setscheduler — set scheduling policy and parameters

Synopsis
#include <sched.h>
int sched_setscheduler(pid_t pid, int policy, const struct
sched_param * param);

Return Value
On success, 0 is returned instead of the former scheduling policy.

 © 2007 Linux Foundation 201

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

setbuffer

Name
setbuffer — stream buffering operation

Synopsis
#include <stdio.h>
void setbuffer(FILE * stream, char * buf, size_t size);

Description
setbuffer() is an alias for the call to setvbuf(). It works the same, except that
the size of the buffer in setbuffer() is up to the caller, rather than being
determined by the default BUFSIZ.

setgroups

Name
setgroups — set list of supplementary group IDs

Synopsis
#include <grp.h>
int setgroups(size_t size, const gid_t * list);

Description
If the process has appropriate privilege, the setgroups() function shall set the
supplementary group IDs for the current process. list shall reference an array
of size group IDs. A process may have at most NGROUPS_MAX supplementary
group IDs.

Return Value
On successful completion, 0 is returned. On error, -1 is returned and the errno
is set to indicate the error.

Errors

EFAULT

 list has an invalid address.

EPERM

 The process does not have appropriate privileges.

EINVAL

 size is greater than NGROUPS_MAX.

202 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

sethostname

Name
sethostname — set host name

Synopsis
#include <unistd.h>
#include <sys/param.h.h>
#include <sys/utsname.h>
int sethostname(const char * name, size_t len);

Description
If the process has appropriate privileges, the sethostname() function shall
change the host name for the current machine. The name shall point to a null-
terminated string of at most len bytes that holds the new hostname.

If the symbol HOST_NAME_MAX is defined, or if sysconf(_SC_HOST_NAME_MAX)()
returns a value greater than 0, this value shall represent the maximum length of
the new hostname. Otherwise, if the symbol MAXHOSTLEN is defined, this value
shall represent the maximum length for the new hostname. If none of these
values are defined, the maximum length shall be the size of the nodename field
of the utsname structure.

Return Value
On success, 0 is returned. On error, -1 is returned and the global variable errno
is set appropriately.

Errors

EINVAL

 len is negative or larger than the maximum allowed size.

EPERM

 the process did not have appropriate privilege.

EFAULT

 name is an invalid address.

Rationale
ISO POSIX (2003) guarantees that:

Maximum length of a host name (not including the terminating null) as returned
from the gethostname() function shall be at least 255 bytes.

The glibc C library does not currently define HOST_NAME_MAX, and although it
provides the name _SC_HOST_NAME_MAX a call to sysconf() returns -1 and does
not alter errno in this case (indicating that there is no restriction on the
hostname length). However, the glibc manual idicates that some
implementations may have MAXHOSTNAMELEN as a means of detecting the
maximum length, while the Linux kernel at release 2.4 and 2.6 stores this
hostname in the utsname structure. While the glibc manual suggests simply
shortening the name until sethostname() succeeds, the LSB requires that one
of the first four mechanisms works. Future versions of glibc may provide a
more reasonable result from sysconf(_SC_HOST_NAME_MAX).

 © 2007 Linux Foundation 203

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

setsockopt

Name
setsockopt — set socket options

Synopsis
#include <sys/socket.h>

204 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

#include <netinet/ip.h>
int setsockopt(int socket, int level, int option_name, const void *
option_value, socklen_t option_len);

Description
The setsockopt() function shall behave as specified in ISO POSIX (2003), with
the following extensions.

IP Protocol Level Options
If the level parameter is IPPROTO_IP, the following values shall be supported
for option_name (see RFC 791:Internet Protocol for further details):

IP_OPTIONS

 Set the Internet Protocol options sent with every packet from this socket.
The option_value shall point to a memory buffer containing the options
and option_len shall contain the size in bytes of that buffer. For IPv4, the
maximum length of options is 40 bytes.

IP_TOS

 Set the Type of Service flags to use when sending packets with this socket.
The option_value shall point to a value containing the type of service
value. The least significant two bits of the value shall contain the new Type
of Service indicator. Use of other bits in the value is unspecified. The
option_len parameter shall hold the size, in bytes, of the buffer referred to
by option_value.

IP_TTL

 Set the current unicast Internet Protocol Time To Live value used when
sending packets with this socket. The option_value shall point to a value
containing the time to live value, which shall be between 1 and 255. The
option_len parameter shall hold the size, in bytes, of the buffer referred to
by option_value.

IP_MULTICAST_TTL

 Sets the Time To Live value of outgoing multicast packets for this socket.
optval shall point to an integer which contains the new TTL value. If the
new TTL value is -1, the implementation should use an unspecified default
TTL value. If the new TTL value is out of the range of acceptable values (0-
255), setsockopt() shall return -1 and set errno to indicate the error.

IP_MULTICAST_LOOP

 Sets a boolean flag indicating whether multicast packets originating locally
should be looped back to the local sockets. optval shall point to an integer
which contains the new flag value.

IP_ADD_MEMBERSHIP

 Join a multicast group. optval shall point to a ip_mreq structure. Before
calling, the caller should fill in the imr_multiaddr field with the multicast
group address and the imr_address field with the address of the local
interface. If imr_address is set to INADDR_ANY, then an appropriate
interface is chosen by the system.

IP_DROP_MEMBERSHIP

 © 2007 Linux Foundation 205

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

 Leave a multicast group. optval shall point to a ip_mreq structure
containing the same values as were used with IP_ADD_MEMBERSHIP.

IP_MULTICAST_IF

 Set the local device for a multicast socket. optval shall point to a ip_mreq
structure initialized in the same manner as with IP_ADD_MEMBERSHIP.

The ip_mreq structure contains two struct in_addr fields: imr_multiaddr
and imr_address.

Return Value
On success, 0 is returned. On error, -1 is returned and the global variable errno
is set appropriately.

Errors
As defined in ISO POSIX (2003).

setutent

Name
setutent — access user accounting database entries

Synopsis
#include <utmp.h>
void setutent(void);

Description
The setutent() function shall reset the user accounting database such that the
next call to getutent() shall return the first record in the database. It is
recommended to call it before any of the other functions that operate on the
user accounting databases (e.g. getutent())

Return Value
None.

206 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

sigandset

Name
sigandset — build a new signal set by combining the two input sets using
logical AND

Synopsis
#include <signal.h>
int sigandset(sigset_t * set, const sigset_t * left, const sigset_t
* right);

Description
The sigandset() function shall combine the two signal sets referenced by left
and right, using a logical AND operation, and shall place the result in the
location referenced by set, The resulting signal set shall contain only signals
that are in both the set referenced by left and the set referenced by right.

Applications shall call sigemptyset() or sigfillset() at least once for each
object of type sigset_t to initialize it. If an uninitialized or NULL object is passed
to sigandset(), the results are undefined.

Return Value
sigandset() returns 0. There are no defined error returns.

See Also
sigorset()

sigisemptyset

Name
sigisemptyset — check for empty signal set

Synopsis
#include <signal.h>
int sigisemptyset(const sigset_t * set);

Description
The sigisemptyset() function shall check for empty signal set referenced by
set.

Applications shall call sigemptyset() or sigfillset() at least once for each
object of type sigset_t to initialize it. If an uninitialized or NULL object is passed
to sigisemptyset(), the results are undefined.

Return Value
The sigisemptyset() function shall return a positive non-zero value if the
signal set referenced by set is empty, or zero if this set is empty. There are no
defined error returns.

 © 2007 Linux Foundation 207

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

sigorset

Name
sigorset — build a new signal set by combining the two input sets using
logical OR

Synopsis
#include <signal.h>
int sigorset(sigset_t * set, const sigset_t * left, const sigset_t *
right);

Description
The sigorset() function shall combine the two signal sets referenced by left
and right, using a logical OR operation, and shall place the result in the
location referenced by set, The resulting signal set shall contain only signals
that are in either the set referenced by left or the set referenced by right.

Applications shall call sigemptyset() or sigfillset() at least once for each
object of type sigset_t to initialize it. If an uninitialized or NULL object is passed
to sigorset(), the results are undefined.

Return Value
sigorset() returns 0. There are no defined error returns.

See Also
sigandset()

sigpause

Name
sigpause — remove a signal from the signal mask and suspend the thread
(deprecated)

Synopsis
#include <signal.h>
int sigpause(int sig);

Description
The sigpause() function is deprecated from the LSB and is expected to
disappear from a future version of the LSB. Conforming applications should use
sigsuspend() instead.

In the source standard, sigpause() is implemented as a macro causing it to
behave as described in ISO POSIX (2003), and is equivalent to the function
__xpg_sigpause(). If the macro is undefined, sigpause() from the binary
standard is used, with differences as described here:

The sigpause() function shall block those signals indicated by sig and
suspend execution of the thread until a signal is delivered. When a signal is
delivered, the original signal mask shall be restored.

See Also
__xpg_sigpause()

208 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

sigreturn

Name
sigreturn — return from signal handler and cleanup stack frame

Synopsis
int sigreturn(struct sigcontext * scp);

Description
The sigreturn() function is used by the system to cleanup after a signal
handler has returned. This function is not in the source standard; it is only in the
binary standard.

Return Value
sigreturn() never returns.

sscanf

Name
sscanf — convert formatted input

Description
The scanf() family of functions shall behave as described in ISO POSIX (2003),
except as noted below.

The %s, %S and %[conversion specifiers shall accept an option length modifier a,
which shall cause a memory buffer to be allocated to hold the string converted.
In such a case, the argument corresponding to the conversion specifier should
be a reference to a pointer value that will receive a pointer to the allocated
buffer. If there is insufficient memory to allocate a buffer, the function may set
errno to ENOMEM and a conversion error results.

Note: This directly conflicts with the ISO C (1999) usage of %a as a conversion
specifier for hexadecimal float values. While this conversion specifier should be
supported, a format specifier such as "%aseconds" will have a different meaning on
an LSB conforming system.

Differences

 © 2007 Linux Foundation 209

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

statfs

Name
statfs — (deprecated)

Synopsis
#include <sys/statfs.h>
int statfs(const char *path, (struct statfs * buf));

Description
The statfs() function returns information about a mounted file system. The
file system is identified by path, a path name of a file within the mounted
filesystem. The results are placed in the structure pointed to by

Fields that are undefined for a particular file system shall be set to 0.

Note: Application developers should use the statvfs() function to obtain general
file system information. Applications should only use the statfs() function if they
must determine the file system type, which need not be provided by statvfs().

Return Value
On success, the statfs() function shall return 0 and set the fields of the
structure idenfitied by buf accordingly. On error, the statfs() function shall
return -1 and set errno accordingly.

Errors

ENOTDIR

 A component of the path prefix of path is not a directory.

ENAMETOOLONG

 path is too long.

ENOENT

 The file referred to by path does not exist.

EACCES

 Search permission is denied for a component of the path prefix of path.

ELOOP

 Too many symbolic links were encountered in translating path.

EFAULT

 buf or path points to an invalid address.

EIO

 An I/O error occurred while reading from or writing to the file system.

ENOMEM

 Insufficient kernel memory was available.

ENOSYS

210 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

 The filesystem path is on does not support statfs().

statfs64

Name
statfs64 — (deprecated)

Synopsis
#include <sys/statfs.h>
int statfs64(const char * path, (struct statfs64 * buf));

Description
The statfs64() function returns information about a mounted file system. The
file system is identified by path, a path name of a file within the mounted
filesystem. The results are placed in the structure pointed to by buf.

statfs64() is the 64-bit version of statfs().

Fields that are undefined for a particular file system shall be set to 0.

Note: Application developers should use the statvfs64() function to obtain
general file system information. Applications should only use the statfs64()
function if they must determine the file system type, which need not be provided by
statvfs64().

Return Value
On success, the statfs64() function shall return 0 and set the fields of the
structure idenfitied by buf accordingly. On error, the statfs64() function shall
return -1 and set errno accordingly.

Errors
See fstatfs().

stime

Name
stime — set time

Synopsis
#define _SVID_SOURCE

 © 2007 Linux Foundation 211

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

#include <time.h>
int stime(const time_t * t);

Description
If the process has appropriate privilege, the stime() function shall set the
system's idea of the time and date. Time, referenced by t, is measured in
seconds from the epoch (defined in ISO POSIX (2003) as 00:00:00 UTC January 1,
1970).

Return Value
On success, stime() shall return 0. Otherwise, stime() shall return -1 and
errno shall be set to indicate the error.

Errors

EPERM

 The process does not have appropriate privilege.

EINVAL

 t is a null pointer.

stpcpy

Name
stpcpy — copy a string returning a pointer to its end

Synopsis
#include <string.h>
char * stpcpy(char * restrict dest, const char * restrict src);

Description
The stpcpy() function shall copy the string pointed to by src (including the
terminating null character) to the array pointed to by dest. The strings may not
overlap, and the destination string dest shall be large enough to receive the
copy.

Return Value
stpcpy() returns a pointer to the end of the string dest (that is, the address of
the terminating null character) rather than the beginning.

Example
This program uses stpcpy() to concatenate foo and bar to produce foobar,
which it then prints.

 #include <string.h>

 int
 main (void)
 {
 char buffer[256];
 char *to = buffer;
 to = stpcpy (to, "foo");
 to = stpcpy (to, "bar");
 printf ("%s\n", buffer);

212 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

 }

stpncpy

Name
stpncpy — copy a fixed-size string, returning a pointer to its end

Synopsis
#include <string.h>
char * stpncpy(char * restrict dest, const char * restrict src,
size_t n);

Description
The stpncpy() function shall copy at most n characters from the string pointed
to by src, including the terminating null character, to the array pointed to by
dest. Exactly n characters are written at dest. If the length strlen()(src) is
smaller than n, the remaining characters in dest are filled with '\0' characters. If
the length strlen(src) is greater than or equal to n, dest will not be null
terminated.

The strings may not overlap.

The programmer shall ensure that there is room for at least n characters at dest.

Return Value
The stpncpy() function shall return a pointer to the terminating NULL in dest,
or, if dest is not NULL-terminated, dest + n.

strcasestr

Name
strcasestr — locate a substring ignoring case

Synopsis
#include <string.h>
char * strcasestr(const char * s1, const char * s2);

Description
The strcasestr() shall behave as strstr(), except that it shall ignore the case
of both strings. The strcasestr() function shall be locale aware; that is
strcasestr() shall behave as if both strings had been converted to lower case
in the current locale before the comparison is performed.

Return Value
Upon successful completion, strcasestr() shall return a pointer to the located
string or a null pointer if the string is not found. If s2 points to a string with
zero length, the function shall return s1.

 © 2007 Linux Foundation 213

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

strerror_r

Name
strerror_r — return string describing error number

Synopsis
#include <string.h>
char * strerror_r(int errnum, char * buf, size_t buflen);

Description
In the source standard, strerror_r() is implemented as a macro causing it to
behave as described in ISO POSIX (2003), and is equivalent to the function
__xpg_strerror_r(). If the macro is undefined, strerror_r() from the binary
standard is used, with differences as described here.

The strerror_r() function shall return a pointer to the string corresponding to
errno. The returned pointer may point within the buffer buf (at most buflen
bytes).

Return Value
On success, strerror_r() shall return a pointer to the generated message
string (determined by the setting of the LC_MESSAGES category in the current
locale). Otherwise, strerror_r() shall return the string corresponding to
"Unknown error".

See Also
__xpg_strerror_r()

214 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

strndup

Name
strndup — return a malloc'd copy of at most the specified number of bytes of a
string

Synopsis
#include <string.h>
char * strndup(const char * string, size_t n);

Description
The strndup() function shall return a malloc()'d copy of at most n bytes of
string. The resultant string shall be terminated even if no NULL terminator
appears before string+n.

Return Value
On success, strndup() shall return a pointer to a newly allocated block of
memory containing a copy of at most n bytes of string. Otherwise, strndup()
shall return NULL and set errno to indicate the error.

Errors

ENOMEM

 Insufficient memory available.

strnlen

Name
strnlen — determine the length of a fixed-size string

Synopsis
#include <string.h>
size_t strnlen(const char * s, size_t maxlen);

Description
The strnlen() function shall compute the number of bytes in the array to
which s points, stopping at maxlen bytes. A null byte and any bytes following it
are not counted.

Return Value
The strnlen() function shall return the length of s if that is less than maxlen,
or maxlen if there is no null byte in the first maxlen bytes.

Errors
No errors are defined.

 © 2007 Linux Foundation 215

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

strptime

Name
strptime — parse a time string

Description
The strptime() shall behave as specified in the ISO POSIX (2003) with
differences as listed below.

Number of leading zeroes may be limited
The ISO POSIX (2003) specifies fields for which "leading zeros are permitted but
not required"; however, applications shall not expect to be able to supply more
leading zeroes for these fields than would be implied by the range of the field.
Implementations may choose to either match an input with excess leading
zeroes, or treat this as a non-matching input. For example, %j has a range of 001
to 366, so 0, 00, 000, 001, and 045 are acceptable inputs, but inputs such as
0000, 0366 and the like are not.

glibc developers consider it appropriate behavior to forbid excess leading
zeroes. When trying to parse a given input against several format strings,
forbidding excess leading zeroes could be helpful. For example, if one matches
0011-12-26 against %m-%d-%Y and then against %Y-%m-%d, it seems useful for
the first match to fail, as it would be perverse to parse that date as November
12, year 26. The second pattern parses it as December 26, year 11.

The ISO POSIX (2003) is not explicit that an unlimited number of leading zeroes
are required, although it may imply this. The LSB explicitly allows
implementations to have either behavior. Future versions of this standard may
require implementations to forbid excess leading zeroes.

An Interpretation Request is currently pending against ISO POSIX (2003) for
this matter.

Rationale

216 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

strsep

Name
strsep — extract token from string

Synopsis
#include <string.h>
char * strsep(char * * stringp, const char * delim);

Description
The strsep() function shall find the first token in the string referenced by the
pointer stringp, using the characters in delim as delimiters.

If stringp is NULL, strsep() shall return NULL and do nothing else.

If stringp is non-NULL, strsep() shall find the first token in the string
referenced by stringp, where tokens are delimited by characters in the string
delim. This token shall be terminated with a \0 character by overwriting the
delimiter, and stringp shall be updated to point past the token. In case no
delimiter was found, the token is taken to be the entire string referenced by
stringp, and the location referenced by stringp is made NULL.

Return Value
strsep() shall return a pointer to the beginning of the token.

Notes
The strsep() function was introduced as a replacement for strtok(), since the
latter cannot handle empty fields. However, strtok() conforms to ISO C (1999)
and to ISO POSIX (2003) and hence is more portable.

See Also
strtok(), strtok_r().

strsignal

Name
strsignal — return string describing signal

Synopsis
#define _GNU_SOURCE

 © 2007 Linux Foundation 217

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

#include <string.h>
char * strsignal(int sig);

extern const char * const sys_siglist[];

Description
The strsignal() function shall return a pointer to a string describing the signal
number sig. The string can only be used until the next call to strsignal().

The array sys_siglist holds the signal description strings indexed by signal
number. This array should not be accessed directly by applications.

Return Value
If sig is a valid signal number, strsignal() shall return a pointer to the
appropriate description string. Otherwise, strsignal() shall return either a
pointer to the string "unknown signal", or a null pointer.

Although the function is not declared as returning a pointer to a constant
character string, applications shall not modify the returned string.

strtoq

Name
strtoq — convert string value to a long or quad_t integer

Synopsis
#include <sys/types.h>
#include <stdlib.h>

218 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

#include <limits.h>
long long strtoq(const char * nptr, char * * endptr, int base);

Description
strtoq() converts the string nptr to a quadt value. The conversion is done
according to the given base, which shall be between 2 and 36 inclusive, or be
the special value 0.

nptr may begin with an arbitrary amount of white space (as determined by
isspace()), followed by a single optional + or - sign character. If base is 0 or
16, the string may then include a 0x prefix, and the number will be read in base
16; otherwise, a 0 base is taken as 10 (decimal), unless the next character is 0, in
which case it is taken as 8 (octal).

The remainder of the string is converted to a long value in the obvious manner,
stopping at the first character which is not a valid digit in the given base. (In
bases above 10, the letter A in either upper or lower case represents 10, B
represents 11, and so forth, with Z representing 35.)

Return Value
strtoq() returns the result of the conversion, unless the value would
underflow or overflow. If an underflow occurs, strtoq() returns QUAD_MIN. If
an overflow occurs, strtoq() returns QUAD_MAX. In both cases, the global
variable errno is set to ERANGE.

Errors

ERANGE

 The given string was out of range; the value converted has been clamped.

strtouq

Name
strtouq — convert a string to an unsigned long long

Synopsis
#include <sys/types.h>
#include <stdlib.h>

 © 2007 Linux Foundation 219

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

#include <limits.h>
unsigned long long strtouq(const char * nptr, char * * endptr, int
base);

Description
strtouq() converts the string nptr to an unsigned long long value. The
conversion is done according to the given base, which shall be between 2 and 36
inclusive, or be the special value 0.

nptr may begin with an arbitrary amount of white space (as determined by
isspace()), followed by a single optional + or - sign character. If base is 0 or
16, the string may then include a 0x prefix, and the number will be read in base
16; otherwise, a 0 base is taken as 10 (decimal), unless the next character is 0, in
which case it is taken as 8 (octal).

The remainder of the string is converted to an unsigned long value in the
obvious manner, stopping at the end of the string or at the first character that
does not produce a valid digit in the given base. (In bases above 10, the letter A
in either upper or lower case represents 10, B represents 11, and so forth, with Z
representing 35.)

Return Value
On success, strtouq() returns either the result of the conversion or, if there
was a leading minus sign, the negation of the result of the conversion, unless
the original (non-negated) value would overflow. In the case of an overflow the
function returns UQUAD_MAX and the global variable errno is set to ERANGE.

Errors

ERANGE

 The given string was out of range; the value converted has been clamped.

svc_register

Name
svc_register — register Remote Procedure Call interface

Synopsis
#include <rpc/rpc.h>
bool_t svc_register(SVCXPRT * xprt, rpcprog_t prognum, rpcvers_t
versnum, __dispatch_fn_t dispatch, rpcprot_t protocol);

Description
The svc_register() function shall associate the program identified by
prognum at version versnum with the service dispatch procedure, dispatch. If
protocol is zero, the service is not registered with the portmap service. If
protocol is non-zero, then a mapping of the triple [prognum, versnum,
protocol] to xprt->xp_port is established with the local portmap service. The
procedure dispatch has the following form:

int dispatch(struct svc_req * request, SVCXPRT * xprt);

Return Value
svc_register() returns 1 if it succeeds, and zero otherwise.

220 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

svc_run

Name
svc_run — waits for RPC requests to arrive and calls service procedure

Synopsis
#include <rpc/svc.h>
void svc_run(void);

Description
The svc_run() function shall wait for RPC requests to arrive, read and unpack
each request, and dispatch it to the appropriate registered handler. Under
normal conditions, svc_run() shall not return; it shall only return if serious
errors occur that prevent further processing.

svc_sendreply

Name
svc_sendreply — called by RPC service's dispatch routine

Synopsis
bool_t svc_sendreply(SVCXPRT *xprt, xdrproc_t outproc, caddr_t out);

Description
Called by an RPC service's dispatch routine to send the results of a remote
procedure call. The parameter xprt is the request's associated transport handle;
outproc is the XDR routine which is used to encode the results; and out is the
address of the results. This routine returns one if it succeeds, zero otherwise.

 © 2007 Linux Foundation 221

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

svctcp_create

Name
svctcp_create — create a TCP/IP-based RPC service transport

Synopsis
#include <rpc/rpc.h>
SVCXPRT * svctcp_create(int sock, u_int send_buf_size, u_int
recv_buf_size);

Description
svctcp_create() creates a TCP/IP-based RPC service transport, to which it
returns a pointer. The transport is associated with the socket sock, which may
be RPC_ANYSOCK, in which case a new socket is created. If the socket is not
bound to a local TCP port, then this routine binds it to an arbitrary port. Upon
completion, xprt->xp_sock is the transport's socket descriptor, and xprt-
>xp_port is the transport's port number. Since TCP-based RPC uses buffered
I/O, users may specify the size of buffers; values of zero choose suitable
defaults.

Return Value
svctcp_create() returns NULL if it fails, or a pointer to the RPC service
transport otherwise.

svcudp_create

Name
svcudp_create — create a UDP-based RPC service transport

Synopsis
SVCXPRT *
svcudp_create(int sock);

Description
The svcudp_create() function shall create a UDP/IP-based RPC service
transport, and return a pointer to its descriptor. The transport is associated with
the socket sock, which may be RPC_ANYSOCK, in which case a new socket shall
be created. If the socket is not bound to a local UDP port, then
svcudp_create() shall bind it to an arbitrary port.

If svcudp_create() returns successfully, then the xp_sock field in the result
shall be the transport's socket descriptor, and the xp_port field shall be the
transport's port number.

Return Value
Upon successful completion, svcudp_create() shall return a pointer to a RPC
service transport; otherwise, a null pointer shall be returned.

222 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

swscanf

Name
swscanf — convert formatted input

Description
The scanf() family of functions shall behave as described in ISO POSIX (2003),
except as noted below.

The %s, %S and %[conversion specifiers shall accept an option length modifier a,
which shall cause a memory buffer to be allocated to hold the string converted.
In such a case, the argument corresponding to the conversion specifier should
be a reference to a pointer value that will receive a pointer to the allocated
buffer. If there is insufficient memory to allocate a buffer, the function may set
errno to ENOMEM and a conversion error results.

Note: This directly conflicts with the ISO C (1999) usage of %a as a conversion
specifier for hexadecimal float values. While this conversion specifier should be
supported, a format specifier such as "%aseconds" will have a different meaning on
an LSB conforming system.

DESCRIPTION
sysconf() is as specified in ISO POSIX (2003), but with differences as listed
below.

Extra Variables
These additional values extend the list in ISO POSIX (2003).

Differences

sysconf

Name
sysconf — Get configuration information at runtime

Synopsis
#include <unistd.h>
long sysconf(int name);

 - _SC_PHYS_PAGES

 The number of pages of physical memory.

 - _SC_AVPHYS_PAGES

 The number of currently available pages of physical memory.

 - _SC_NPROCESSORS_CONF

 The number of processors configured.

 - _SC_NPROCESSORS_ONLN

 The number of processors currently online (available).

 © 2007 Linux Foundation 223

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

system

Name
system — execute a shell command

Synopsis
#include <stdlib.h>
int system(const char * string);

Description
The system() function shall behave as described in ISO POSIX (2003).

Notes
The fact that system() ignores interrupts is often not what a program wants.
ISO POSIX (2003) describes some of the consequences; an additional
consequence is that a program calling system() from a loop cannot be reliably
interrupted. Many programs will want to use the exec() family of functions
instead.

Do not use system() from a program with suid or sgid privileges, because
unexpected values for some environment variables might be used to subvert
system integrity. Use the exec() family of functions instead, but not execlp()
or execvp(). system() will not, in fact, work properly from programs with
suid or sgid privileges on systems on which /bin/sh is bash version 2, since
bash 2 drops privileges on startup. (Debian uses a modified bash which does
not do this when invoked as sh.)

The check for the availability of /bin/sh is not actually performed; it is always
assumed to be available. ISO C (1999) specifies the check, but ISO POSIX (2003)
specifies that the return shall always be nonzero, since a system without the
shell is not conforming, and it is this that is implemented.

It is possible for the shell command to return 127, so that code is not a sure
indication that the execve() call failed; check the global variable errno to make
sure.

224 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

textdomain

Name
textdomain — set the current default message domain

Synopsis
#include <libintl.h>
char * textdomain(const char * domainname);

Description
The textdomain() function shall set the current default message domain to
domainname. Subsequent calls to gettext() and ngettext() use the default
message domain.

If domainname is NULL, the default message domain shall not be altered.

If domainname is "", textdomain() shall reset the default domain to the system
default of "messages".

Return
On success, textdomain() shall return the currently selected domain.
Otherwise, a null pointer shall be returned, and errno is set to indicate the
error.

Errors

ENOMEM

 Insufficent memory available.

unlink

Name
unlink — remove a directory entry

Synopsis
int unlink(const char * path);

Description
unlink() is as specified in ISO POSIX (2003), but with differences as listed
below.

See also Section 18.1, Additional behaviors: unlink/link on directory.

May return EISDIR on directories
If path specifies a directory, the implementation may return EISDIR instead of
EPERM as specified by ISO POSIX (2003).

Rationale: The Linux kernel has deliberately chosen EISDIR for this case and does
not expect to change.

 © 2007 Linux Foundation 225

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

uselocale

Name
uselocale — set locale for thread

Synopsis
#include <locale.h>
locale_t uselocale(locale_t newloc);

Description
The uselocale() function shall set the locale for the calling thread to the locale
specified by newloc.

If newloc is the value LC_GLOBAL_LOCALE, the thread's locale shall be set to the
process current global locale, as set by setlocale(). If newloc is NULL, the
thread's locale is not altered.

Return Value
The uselocale() function shall return the previous locale, or
LC_GLOBAL_LOCALE if the thread local locale has not been previously set.

Errors
None defined.

See Also
setlocale(), freelocale(), duplocale(), newlocale()

utmpname

Name
utmpname — set user accounting database

Synopsis
#include <utmp.h>
int utmpname(const char * dbname);

Description
The utmpname() function shall cause the user accounting database used by the
getutent(), getutent_r(), getutxent(), getutxid(), getutxline(), and
pututxline() functions to be that named by dbname, instead of the system
default database. See Section 16.3 for further information.

Note: The LSB does not specify the format of the user accounting database, nor the
names of the file or files that may contain it.

Return Value
None.

Errors
None defined.

226 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

vasprintf

Name
vasprintf — write formatted output to a dynamically allocated string

Synopsis
#include <stdarg.h>
#include <stdio.h>
int vasprintf(char * * restrict ptr, const char * restrict format,
va_list arg);

Description
The vasprintf() function shall write formatted output to a dynamically
allocated string, and store the address of that string in the location referenced by
ptr. It shall behave as asprintf(), except that instead of being called with a
variable number of arguments, it is called with an argument list as defined by
<stdarg.h>.

Return Value
Refer to fprintf().

Errors
Refer to fprintf().

vdprintf

Name
vdprintf — write formatted output to a file descriptor

Synopsis
#include <stdio.h>
int vdprintf(int fd, const char * restrict format, va_list arg);

Description
The vdprintf() function shall behave as vfprintf(), except that vdprintf()
shall write output to the file associated with the file descriptor specified by the
fd argument, rather than place output on a stream (as defined by ISO POSIX
(2003)).

Return Value
Refer to fprintf().

Errors
Refer to fprintf().

 © 2007 Linux Foundation 227

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

verrx

Name
verrx — display formatted error message and exit

Synopsis
#include <stdarg.h>
#include <err.h>
void verrx(int eval, const char * fmt, va_list args);

Description
The verrx() shall behave as errx() except that instead of being called with a
variable number of arguments, it is called with an argument list as defined by
<stdarg.h>.

verrx() does not return, but exits with the value of eval.

Return Value
None.

Errors
None.

vfscanf

Name
vfscanf — convert formatted input

Description
The scanf() family of functions shall behave as described in ISO POSIX (2003),
except as noted below.

The %s, %S and %[conversion specifiers shall accept an option length modifier a,
which shall cause a memory buffer to be allocated to hold the string converted.
In such a case, the argument corresponding to the conversion specifier should
be a reference to a pointer value that will receive a pointer to the allocated
buffer. If there is insufficient memory to allocate a buffer, the function may set
errno to ENOMEM and a conversion error results.

Note: This directly conflicts with the ISO C (1999) usage of %a as a conversion
specifier for hexadecimal float values. While this conversion specifier should be
supported, a format specifier such as "%aseconds" will have a different meaning on
an LSB conforming system.

Differences

228 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

vfwscanf

Name
vfwscanf — convert formatted input

Description
The scanf() family of functions shall behave as described in ISO POSIX (2003),
except as noted below.

The %s, %S and %[conversion specifiers shall accept an option length modifier a,
which shall cause a memory buffer to be allocated to hold the string converted.
In such a case, the argument corresponding to the conversion specifier should
be a reference to a pointer value that will receive a pointer to the allocated
buffer. If there is insufficient memory to allocate a buffer, the function may set
errno to ENOMEM and a conversion error results.

Note: This directly conflicts with the ISO C (1999) usage of %a as a conversion
specifier for hexadecimal float values. While this conversion specifier should be
supported, a format specifier such as "%aseconds" will have a different meaning on
an LSB conforming system.

Description
The scanf() family of functions shall behave as described in ISO POSIX (2003),
except as noted below.

The %s, %S and %[conversion specifiers shall accept an option length modifier a,
which shall cause a memory buffer to be allocated to hold the string converted.
In such a case, the argument corresponding to the conversion specifier should
be a reference to a pointer value that will receive a pointer to the allocated
buffer. If there is insufficient memory to allocate a buffer, the function may set
errno to ENOMEM and a conversion error results.

Note: This directly conflicts with the ISO C (1999) usage of %a as a conversion
specifier for hexadecimal float values. While this conversion specifier should be
supported, a format specifier such as "%aseconds" will have a different meaning on
an LSB conforming system.

Differences

vscanf

Name
vscanf — convert formatted input

Differences

 © 2007 Linux Foundation 229

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

vsscanf

Name
vsscanf — convert formatted input

Description
The scanf() family of functions shall behave as described in ISO POSIX (2003),
except as noted below.

The %s, %S and %[conversion specifiers shall accept an option length modifier a,
which shall cause a memory buffer to be allocated to hold the string converted.
In such a case, the argument corresponding to the conversion specifier should
be a reference to a pointer value that will receive a pointer to the allocated
buffer. If there is insufficient memory to allocate a buffer, the function may set
errno to ENOMEM and a conversion error results.

Note: This directly conflicts with the ISO C (1999) usage of %a as a conversion
specifier for hexadecimal float values. While this conversion specifier should be
supported, a format specifier such as "%aseconds" will have a different meaning on
an LSB conforming system.

Description
The scanf() family of functions shall behave as described in ISO POSIX (2003),
except as noted below.

The %s, %S and %[conversion specifiers shall accept an option length modifier a,
which shall cause a memory buffer to be allocated to hold the string converted.
In such a case, the argument corresponding to the conversion specifier should
be a reference to a pointer value that will receive a pointer to the allocated
buffer. If there is insufficient memory to allocate a buffer, the function may set
errno to ENOMEM and a conversion error results.

Note: This directly conflicts with the ISO C (1999) usage of %a as a conversion
specifier for hexadecimal float values. While this conversion specifier should be
supported, a format specifier such as "%aseconds" will have a different meaning on
an LSB conforming system.

Differences

vswscanf

Name
vswscanf — convert formatted input

Differences

vsyslog

Name
vsyslog — log to system log

Synopsis
#include <stdarg.h>

230 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

#include <syslog.h>
void vsyslog(int priority, char * message, va_list arglist);

Description
The vsyslog() function is identical to syslog() as specified in ISO POSIX
(2003), except that arglist (as defined by stdarg.h) replaces the variable
number of arguments.

Description
The scanf() family of functions shall behave as described in ISO POSIX (2003),
except as noted below.

The %s, %S and %[conversion specifiers shall accept an option length modifier a,
which shall cause a memory buffer to be allocated to hold the string converted.
In such a case, the argument corresponding to the conversion specifier should
be a reference to a pointer value that will receive a pointer to the allocated
buffer. If there is insufficient memory to allocate a buffer, the function may set
errno to ENOMEM and a conversion error results.

Note: This directly conflicts with the ISO C (1999) usage of %a as a conversion
specifier for hexadecimal float values. While this conversion specifier should be
supported, a format specifier such as "%aseconds" will have a different meaning on
an LSB conforming system.

vwscanf

Name
vwscanf — convert formatted input

Differences

wait4

Name
wait4 — wait for process termination, BSD style

Synopsis
#include <sys/types.h>
#include <sys/resource.h>

 © 2007 Linux Foundation 231

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

#include <sys/wait.h>
pid_t wait4(pid_t pid, int * status, int options, struct rusage *
rusage);

Description
wait4() suspends execution of the current process until a child (as specified by
pid) has exited, or until a signal is delivered whose action is to terminate the
current process or to call a signal handling function. If a child (as requested by
pid) has already exited by the time of the call (a so-called "zombie" process), the
function returns immediately. Any system resources used by the child are freed.

The value of pid can be one of:

< -1

 wait for any child process whose process group ID is equal to the absolute
value of pid.

-1

 wait for any child process; this is equivalent to calling wait3().

0

 wait for any child process whose process group ID is equal to that of the
calling process.

> 0

 wait for the child whose process ID is equal to the value of pid.

The value of options is a bitwise or of zero or more of the following constants:

WNOHANG

 return immediately if no child is there to be waited for.

WUNTRACED

 return for children that are stopped, and whose status has not been
reported.

If status is not NULL, wait4() stores status information in the location status.
This status can be evaluated with the following macros:

Note: These macros take the status value (an int) as an argument -- not a pointer
to the value!

WIFEXITED(status)

 is nonzero if the child exited normally.

WEXITSTATUS(status)

 evaluates to the least significant eight bits of the return code of the child
that terminated, which may have been set as the argument to a call to
exit() or as the argument for a return statement in the main program. This
macro can only be evaluated if WIFEXITED() returned nonzero.

WIFSIGNALED(status)

 returns true if the child process exited because of a signal that was not
caught.

232 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

WTERMSIG(status)

 returns the number of the signal that caused the child process to terminate.
This macro can only be evaluated if WIFSIGNALED() returned nonzero.

WIFSTOPPED(status)

 returns true if the child process that caused the return is currently stopped;
this is only possible if the call was done using WUNTRACED().

WSTOPSIG(status)

 returns the number of the signal that caused the child to stop. This macro
can only be evaluated if WIFSTOPPED() returned nonzero.

If rusage is not NULL, the struct rusage (as defined in sys/resource.h) that it
points to will be filled with accounting information. See getrusage() for
details.

Return Value
On success, the process ID of the child that exited is returned. On error, -1 is
returned (in particular, when no unwaited-for child processes of the specified
kind exist), or 0 if WNOHANG() was used and no child was available yet. In the
latter two cases, the global variable errno is set appropriately.

Errors

ECHILD

 No unwaited-for child process as specified does exist.

ERESTARTSYS

 A WNOHANG() was not set and an unblocked signal or a SIGCHILD was
caught. This error is returned by the system call. The library interface is not
allowed to return ERESTARTSYS, but will return EINTR.

waitpid

Name
waitpid — wait for child process

Description
waitpid() is as specified in ISO POSIX (2003), but with differences as listed
below.

Need not support WCONTINUED or WIFCONTINUED
Implementations need not support the XSI optional functionality of
WCONTINUED() or WIFCONTINUED().

 © 2007 Linux Foundation 233

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

warn

Name
warn — formatted error messages

Synopsis
#include <err.h>
void warn(const char * fmt, ...);

Description
The warn() function shall display a formatted error message on the standard
error stream. The output shall consist of the last component of the program
name, a colon character, and a space character. If fmt is non-NULL, it shall be
used as a format string for the printf() family of functions, and the formatted
message, a colon character, and a space are written to stderr. Finally, the error
message string affiliated with the current value of the global variable errno
shall be written to stderr, followed by a newline character.

Return Value
None.

Errors
None.

warnx

Name
warnx — formatted error messages

Synopsis
#include <err.h>
void warnx(const char * fmt, ...);

Description
The warnx() function shall display a formatted error message on the standard
error stream. The last component of the program name, a colon character, and a
space shall be output. If fmt is non-NULL, it shall be used as the format string for
the printf() family of functions, and the formatted error message, a colon
character, and a space shall be output. The output shall be followed by a
newline character.

Return Value
None.

Errors
None.

234 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

wcpcpy

Name
wcpcpy — copy a wide character string, returning a pointer to its end

Synopsis
#include <wchar.h>
wchar_t * wcpcpy(wchar_t * dest, const wchar_t * src);

Description
wcpcpy() is the wide-character equivalent of stpcpy(). It copies the wide
character string src, including the terminating null wide character code, to the
array dest.

The strings may not overlap.

The programmer shall ensure that there is room for at least wcslen()(src)+1
wide characters at dest.

Return Value
wcpcpy() returns a pointer to the end of the wide-character string dest, that is,
a pointer to the terminating null wide character code.

wcpncpy

Name
wcpncpy — copy a fixed-size string of wide characters, returning a pointer to
its end

Synopsis
#include <wchar.h>
wchar_t * wcpncpy(wchar_t * dest, const wchar_t * src, size_t n);

Description
wcpncpy() is the wide-character equivalent of stpncpy(). It copies at most n
wide characters from the wide-character string src, including the terminating
null wide character code, to the array dest. Exactly n wide characters are
written at dest. If the length wcslen()(src) is smaller than n, the remaining
wide characters in the array dest are filled with null wide character codes. If
the length wcslen()(src) is greater than or equal to n, the string dest will not
be terminated with a null wide character code.

The strings may not overlap.

The programmer shall ensure that there is room for at least n wide characters at
dest.

Return Value
wcpncpy() returns a pointer to the wide character one past the last non-null
wide character written.

 © 2007 Linux Foundation 235

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

wcscasecmp

Name
wcscasecmp — compare two wide-character strings, ignoring case

Synopsis
#include <wchar.h>
int wcscasecmp(const wchar_t * s1, const wchar_t * s2);

Description
wcscasecmp() is the wide-character equivalent of strcasecmp(). It compares
the wide-character string s1 and the wide-character string s2, ignoring case
differences (towupper, towlower).

Return Value
The wcscasecmp() function shall return 0 if the wide-character strings s1 and
s2 are equal except for case distinctions. It shall return a positive integer if s1 is
greater than s2, ignoring case. It shall return a negative integer if s1 is less than
s2, ignoring case.

Notes
The behavior of wcscasecmp() depends upon the LC_CTYPE category of the
current locale.

wcsdup

Name
wcsdup — duplicate a wide-character string

Synopsis
#include <wchar.h>
wchar_t * wcsdup(const wchar_t * s);

Description
The wcsdup() function is the wide-character equivalent of strdup(). The
wcsdup() function shall return a pointer to a new wide character string, which
is a duplicate of the wide character string pointed to by s. The returned pointer
can be passed to free(). A null pointer is returned if the new string cannot be
created.

Return Value
The wcsdup() function returns a pointer to a new wide-character string on
success. Otherwise, it shall return NULL and set errno to indicate the error.

Errors

ENOMEM

 Insufficient memory available.

236 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

wcsncasecmp

Name
wcsncasecmp — compare two fixed-size wide-character strings, ignoring case

Synopsis
#include <wchar.h>
int wcsncasecmp(const wchar_t * s1, const wchar_t * s2, size_t n);

Description
wcsncasecmp() is the wide-character equivalent of strncasecmp(). It compares
the wide-character string s1 and the wide-character string s2, but at most n
wide characters from each string, ignoring case differences (towupper,
towlower).

Return Value
wcscasecmp() returns 0 if the wide-character strings s1 and s2, truncated to at
most length n, are equal except for case distinctions. It returns a positive integer
if truncated s1 is greater than truncated s2, ignoring case. It returns a negative
integer if truncated s1 is smaller than truncated s2, ignoring case.

Notes
The behavior of wcsncasecmp() depends upon the LC_CTYPE category of the
current locale.

wcsnlen

Name
wcsnlen — determine the length of a fixed-size wide-character string

Synopsis
#include <wchar.h>
size_t wcsnlen(const wchar_t * s, size_t maxlen);

Description
wcsnlen() is the wide-character equivalent of strnlen(). It returns the number
of wide-characters in the string s, not including the terminating null wide
character code, but at most maxlen. In doing this, wcsnlen() looks only at the
first maxlen wide-characters at s and never beyond s + maxlen.

Return Value
wcsnlen() returns wcslen()(s) if that is less than maxlen, or maxlen if there is
no null wide character code among the first maxlen wide characters pointed to
by s.

 © 2007 Linux Foundation 237

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

wcsnrtombs

Name
wcsnrtombs — convert a wide character string to a multi-byte string

Synopsis
#include <wchar.h>
size_t wcsnrtombs(char * dest, const wchar_t * * src, size_t nwc,
size_t len, mbstate_t * ps);

Description
wcsnrtombs() is like wcsrtombs(), except that the number of wide characters
to be converted, starting at src, is limited to nwc.

If dest is not a NULL pointer, wcsnrtombs() converts at most nwc wide
characters from the wide-character string src to a multibyte string starting at
dest. At most len bytes are written to dest. The shift state ps is updated.

The conversion is effectively performed by repeatedly calling:

wcrtomb(dest, *src, ps)

as long as this call succeeds, and then incrementing dest by the number of
bytes written and src by 1.

The conversion can stop for three reasons:

• A wide character has been encountered that cannot be represented as a
multibyte sequence (according to the current locale). In this case src is left
pointing to the invalid wide character, (size_t)(-1) is returned, and errno is
set to EILSEQ.

• nws wide characters have been converted without encountering a null wide
character code, or the length limit forces a stop. In this case, src is left
pointing to the next wide character to be converted, and the number bytes
written to dest is returned.

• The wide-character string has been completely converted, including the
terminating null wide character code (which has the side effect of bringing
back ps to the initial state). In this case, src is set to NULL, and the number of
bytes written to dest, excluding the terminating null wide character code, is
returned.

If dest is NULL, len is ignored, and the conversion proceeds as above, except
that the converted bytes are not written out to memory, and that no destination
length limit exists.

In both of the above cases, if ps is a NULL pointer, a static anonymous state only
known to wcsnrtombs() is used instead.

The programmer shall ensure that there is room for at least len bytes at dest.

Return Value
wcsnrtombs() returns the number of bytes that make up the converted part of
multibyte sequence, not including the terminating null wide character code. If a
wide character was encountered which could not be converted, (size_t)(-1) is
returned, and the global variable errno set to EILSEQ.

Notes

238 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

The behavior of wcsnrtombs() depends on the LC_CTYPE category of the
current locale.

Passing NULL as ps is not multi-thread safe.

wcstoq

Name
wcstoq — convert wide string to long long int representation

Synopsis
#include <wchar.h>
long long int wcstoq(const wchar_t * restrict nptr, wchar_t **
restrict endptr, int base);

Description
The wcstoq() function shall convert the initial portion of the wide string nptr
to long long int representation. It is identical to wcstoll().

Return Value
Refer to wcstoll().

Errors
Refer to wcstoll().

wcstouq

Name
wcstouq — convert wide string to unsigned long long int representation

Synopsis
#include <wchar.h>
unsigned long long wcstouq(const wchar_t * restrict nptr, wchar_t
** restrict endptr, int base);

Description
The wcstouq() function shall convert the initial portion of the wide string nptr
to unsigned long long int representation. It is identical to wcstoull().

Return Value
Refer to wcstoull().

Errors
Refer to wcstoull().

 © 2007 Linux Foundation 239

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

wscanf

Name
wscanf — convert formatted input

Description
The scanf() family of functions shall behave as described in ISO POSIX (2003),
except as noted below.

The %s, %S and %[conversion specifiers shall accept an option length modifier a,
which shall cause a memory buffer to be allocated to hold the string converted.
In such a case, the argument corresponding to the conversion specifier should
be a reference to a pointer value that will receive a pointer to the allocated
buffer. If there is insufficient memory to allocate a buffer, the function may set
errno to ENOMEM and a conversion error results.

Note: This directly conflicts with the ISO C (1999) usage of %a as a conversion
specifier for hexadecimal float values. While this conversion specifier should be
supported, a format specifier such as "%aseconds" will have a different meaning on
an LSB conforming system.

Differences

xdr_u_int

Name
xdr_u_int — library routines for external data representation

Synopsis
int xdr_u_int(XDR * xdrs, unsigned int * up);

Description
xdr_u_int() is a filter primitive that translates between C unsigned integers
and their external representations.

Return Value
On success, 1 is returned. On error, 0 is returned.

240 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

xdrstdio_create

Name
xdrstdio_create — library routines for external data representation

Synopsis
#include <rpc/xdr.h>
void xdrstdio_create(XDR * xdrs, FILE * file, enum xdr_op op);

Description
The xdrstdio_create() function shall initialize the XDR stream object referred
to by xdrs. The XDR stream data shall be written to, or read from, the standard
I/O stream associated with file. If the operation op is XDR_ENCODE, encoded
data shall be written to file. If op is XDR_DECODE, encoded data shall be read
from file. If op is XDR_FREE, the XDR stream object may be used to deallocate
storage allocated by a previous XDR_DECODE.

The associated destroy function shall flush the file I/O stream, but not close it.

Return Value
None.

13.6 Interfaces for libm
Table 13-33 defines the library name and shared object name for the libm library

Table 13-33 libm Definition

Library: libm

SONAME: See archLSB.
The behavior of the interfaces in this library is specified by the following speci-
fications:

[ISOC99] ISO C (1999)
[LSB] This Specification
[SUSv3] ISO POSIX (2003)
[SVID.3] SVID Issue 3

13.6.1 Math

13.6.1.1 Interfaces for Math
An LSB conforming implementation shall provide the generic functions for
Math specified in Table 13-34, with the full mandatory functionality as
described in the referenced underlying specification.

Table 13-34 libm - Math Function Interfaces

__finite [LSB] __finitef [LSB] __finitel [LSB] __fpclassify
[LSB]

__fpclassifyf
[LSB]

__signbit [LSB] __signbitf [LSB] acos [SUSv3]

acosf [SUSv3] acosh [SUSv3] acoshf [SUSv3] acoshl [SUSv3]

 © 2007 Linux Foundation 241

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

acosl [SUSv3] asin [SUSv3] asinf [SUSv3] asinh [SUSv3]

asinhf [SUSv3] asinhl [SUSv3] asinl [SUSv3] atan [SUSv3]

atan2 [SUSv3] atan2f [SUSv3] atan2l [SUSv3] atanf [SUSv3]

atanh [SUSv3] atanhf [SUSv3] atanhl [SUSv3] atanl [SUSv3]

cabs [SUSv3] cabsf [SUSv3] cabsl [SUSv3] cacos [SUSv3]

cacosf [SUSv3] cacosh [SUSv3] cacoshf [SUSv3] cacoshl [SUSv3]

cacosl [SUSv3] carg [SUSv3] cargf [SUSv3] cargl [SUSv3]

casin [SUSv3] casinf [SUSv3] casinh [SUSv3] casinhf [SUSv3]

casinhl [SUSv3] casinl [SUSv3] catan [SUSv3] catanf [SUSv3]

catanh [SUSv3] catanhf [SUSv3] catanhl [SUSv3] catanl [SUSv3]

cbrt [SUSv3] cbrtf [SUSv3] cbrtl [SUSv3] ccos [SUSv3]

ccosf [SUSv3] ccosh [SUSv3] ccoshf [SUSv3] ccoshl [SUSv3]

ccosl [SUSv3] ceil [SUSv3] ceilf [SUSv3] ceill [SUSv3]

cexp [SUSv3] cexpf [SUSv3] cexpl [SUSv3] cimag [SUSv3]

cimagf [SUSv3] cimagl [SUSv3] clog [SUSv3] clog10 [LSB]

clog10f [LSB] clog10l [LSB] clogf [SUSv3] clogl [SUSv3]

conj [SUSv3] conjf [SUSv3] conjl [SUSv3] copysign
[SUSv3]

copysignf
[SUSv3]

copysignl
[SUSv3]

cos [SUSv3] cosf [SUSv3]

cosh [SUSv3] coshf [SUSv3] coshl [SUSv3] cosl [SUSv3]

cpow [SUSv3] cpowf [SUSv3] cpowl [SUSv3] cproj [SUSv3]

cprojf [SUSv3] cprojl [SUSv3] creal [SUSv3] crealf [SUSv3]

creall [SUSv3] csin [SUSv3] csinf [SUSv3] csinh [SUSv3]

csinhf [SUSv3] csinhl [SUSv3] csinl [SUSv3] csqrt [SUSv3]

csqrtf [SUSv3] csqrtl [SUSv3] ctan [SUSv3] ctanf [SUSv3]

ctanh [SUSv3] ctanhf [SUSv3] ctanhl [SUSv3] ctanl [SUSv3]

drem [LSB] dremf [LSB] dreml [LSB] erf [SUSv3]

erfc [SUSv3] erfcf [SUSv3] erfcl [SUSv3] erff [SUSv3]

erfl [SUSv3] exp [SUSv3] exp10 [LSB] exp10f [LSB]

exp10l [LSB] exp2 [SUSv3] exp2f [SUSv3] expf [SUSv3]

expl [SUSv3] expm1 [SUSv3] expm1f [SUSv3] expm1l [SUSv3]

fabs [SUSv3] fabsf [SUSv3] fabsl [SUSv3] fdim [SUSv3]

fdimf [SUSv3] fdiml [SUSv3] feclearexcept
[SUSv3]

fedisableexcept
[LSB]

feenableexcept fegetenv [SUSv3] fegetexcept [LSB] fegetexceptflag

242 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

[LSB] [SUSv3]

fegetround
[SUSv3]

feholdexcept
[SUSv3]

feraiseexcept
[SUSv3]

fesetenv [SUSv3]

fesetexceptflag
[SUSv3]

fesetround
[SUSv3]

fetestexcept
[SUSv3]

feupdateenv
[SUSv3]

finite [LSB] finitef [LSB] finitel [LSB] floor [SUSv3]

floorf [SUSv3] floorl [SUSv3] fma [SUSv3] fmaf [SUSv3]

fmal [SUSv3] fmax [SUSv3] fmaxf [SUSv3] fmaxl [SUSv3]

fmin [SUSv3] fminf [SUSv3] fminl [SUSv3] fmod [SUSv3]

fmodf [SUSv3] fmodl [SUSv3] frexp [SUSv3] frexpf [SUSv3]

frexpl [SUSv3] gamma [LSB] gammaf [LSB] gammal [LSB]

hypot [SUSv3] hypotf [SUSv3] hypotl [SUSv3] ilogb [SUSv3]

ilogbf [SUSv3] ilogbl [SUSv3] j0 [SUSv3] j0f [LSB]

j0l [LSB] j1 [SUSv3] j1f [LSB] j1l [LSB]

jn [SUSv3] jnf [LSB] jnl [LSB] ldexp [SUSv3]

ldexpf [SUSv3] ldexpl [SUSv3] lgamma [SUSv3] lgamma_r [LSB]

lgammaf [SUSv3] lgammaf_r [LSB] lgammal [SUSv3] lgammal_r [LSB]

llrint [SUSv3] llrintf [SUSv3] llrintl [SUSv3] llround [SUSv3]

llroundf [SUSv3] llroundl [SUSv3] log [SUSv3] log10 [SUSv3]

log10f [SUSv3] log10l [SUSv3] log1p [SUSv3] log1pf [SUSv3]

log1pl [SUSv3] log2 [SUSv3] log2f [SUSv3] log2l [SUSv3]

logb [SUSv3] logbf [SUSv3] logbl [SUSv3] logf [SUSv3]

logl [SUSv3] lrint [SUSv3] lrintf [SUSv3] lrintl [SUSv3]

lround [SUSv3] lroundf [SUSv3] lroundl [SUSv3] matherr [SVID.3]

modf [SUSv3] modff [SUSv3] modfl [SUSv3] nan [SUSv3]

nanf [SUSv3] nanl [SUSv3] nearbyint
[SUSv3]

nearbyintf
[SUSv3]

nearbyintl
[SUSv3]

nextafter [SUSv3] nextafterf
[SUSv3]

nextafterl
[SUSv3]

nexttoward
[SUSv3]

nexttowardf
[SUSv3]

nexttowardl
[SUSv3]

pow [SUSv3]

pow10 [LSB] pow10f [LSB] pow10l [LSB] powf [SUSv3]

powl [SUSv3] remainder
[SUSv3]

remainderf
[SUSv3]

remainderl
[SUSv3]

remquo [SUSv3] remquof [SUSv3] remquol [SUSv3] rint [SUSv3]

rintf [SUSv3] rintl [SUSv3] round [SUSv3] roundf [SUSv3]

roundl [SUSv3] scalb [SUSv3] scalbf [ISOC99] scalbl [ISOC99]

 © 2007 Linux Foundation 243

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

scalbln [SUSv3] scalblnf [SUSv3] scalblnl [SUSv3] scalbn [SUSv3]

scalbnf [SUSv3] scalbnl [SUSv3] significand [LSB] significandf
[LSB]

significandl
[LSB]

sin [SUSv3] sincos [LSB] sincosf [LSB]

sincosl [LSB] sinf [SUSv3] sinh [SUSv3] sinhf [SUSv3]

sinhl [SUSv3] sinl [SUSv3] sqrt [SUSv3] sqrtf [SUSv3]

sqrtl [SUSv3] tan [SUSv3] tanf [SUSv3] tanh [SUSv3]

tanhf [SUSv3] tanhl [SUSv3] tanl [SUSv3] tgamma [SUSv3]

tgammaf
[SUSv3]

tgammal [SUSv3] trunc [SUSv3] truncf [SUSv3]

truncl [SUSv3] y0 [SUSv3] y0f [LSB] y0l [LSB]

y1 [SUSv3] y1f [LSB] y1l [LSB] yn [SUSv3]

ynl [LSB]
 ynf [LSB]

An LSB conforming implementation shall provide the generic deprecated
functions for Math specified in Table 13-35, with the full mandatory
functionality as described in the referenced underlying specification.

Table 13-35 libm - Math Deprecated Function Interfaces

drem [LSB]

Note: These interfaces are deprecated, and applications should avoid using them.
These interfaces may be withdrawn in future releases of this specification.

dremf [LSB] dreml [LSB] finite [LSB]

finitef [LSB] finitel [LSB] gamma [LSB] gammaf [LSB]

matherr [SVID.3]
 gammal [LSB]

An LSB conforming implementation shall provide the generic data interfaces for
Math specified in Table 13-36, with the full mandatory functionality as
described in the referenced underlying specification.

Table 13-36 libm - Math Data Interfaces

signgam [SUSv3]

13.7 Data Definitions for libm
This section defines global identifiers and their values that are associated with
interfaces contained in libm. These definitions are organized into groups that
correspond to system headers. This convention is used as a convenience for the
reader, and does not imply the existence of these headers, or their content.
Where an interface is defined as requiring a particular system header file all of
the data definitions for that system header file presented here shall be in effect.

This section gives data definitions to promote binary application portability, not
to repeat source interface definitions available elsewhere. System providers and
application developers should use this ABI to supplement - not to replace -
source interface definition specifications.

244 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

This specification uses the ISO C (1999) C Language as the reference
programming language, and data definitions are specified in ISO C format. The
C language is used here as a convenient notation. Using a C language
description of these data objects does not preclude their use by other
programming languages.

13.7.1 complex.h

#define complex _Complex

extern double cabs(double complex);
extern float cabsf(float complex);
extern long double cabsl(long double complex);
extern double complex cacos(double complex);
extern float complex cacosf(float complex);
extern double complex cacosh(double complex);
extern float complex cacoshf(float complex);
extern long double complex cacoshl(long double complex);
extern long double complex cacosl(long double complex);
extern double carg(double complex);
extern float cargf(float complex);
extern long double cargl(long double complex);
extern double complex casin(double complex);
extern float complex casinf(float complex);
extern double complex casinh(double complex);
extern float complex casinhf(float complex);
extern long double complex casinhl(long double complex);
extern long double complex casinl(long double complex);
extern double complex catan(double complex);
extern float complex catanf(float complex);
extern double complex catanh(double complex);
extern float complex catanhf(float complex);
extern long double complex catanhl(long double complex);
extern long double complex catanl(long double complex);
extern double complex ccos(double complex);
extern float complex ccosf(float complex);
extern double complex ccosh(double complex);
extern float complex ccoshf(float complex);
extern long double complex ccoshl(long double complex);
extern long double complex ccosl(long double complex);
extern double complex cexp(double complex);
extern float complex cexpf(float complex);
extern long double complex cexpl(long double complex);
extern double cimag(double complex);
extern float cimagf(float complex);
extern long double cimagl(long double complex);
extern double complex clog(double complex);
extern double complex clog10(double complex);
extern float complex clog10f(float complex);
extern long double complex clog10l(long double complex);
extern float complex clogf(float complex);
extern long double complex clogl(long double complex);
extern double complex conj(double complex);
extern float complex conjf(float complex);
extern long double complex conjl(long double complex);
extern double complex cpow(double complex, double complex);
extern float complex cpowf(float complex, float complex);
extern long double complex cpowl(long double complex, long double
complex);
extern double complex cproj(double complex);
extern float complex cprojf(float complex);
extern long double complex cprojl(long double complex);
extern double creal(double complex);
extern float crealf(float complex);

 © 2007 Linux Foundation 245

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

extern long double creall(long double complex);
extern double complex csin(double complex);
extern float complex csinf(float complex);
extern double complex csinh(double complex);
extern float complex csinhf(float complex);
extern long double complex csinhl(long double complex);
extern long double complex csinl(long double complex);
extern double complex csqrt(double complex);
extern float complex csqrtf(float complex);
extern long double complex csqrtl(long double complex);
extern double complex ctan(double complex);
extern float complex ctanf(float complex);
extern double complex ctanh(double complex);
extern float complex ctanhf(float complex);
extern long double complex ctanhl(long double complex);
extern long double complex ctanl(long double complex);

13.7.2 fenv.h

extern int fedisableexcept(int);
extern int feenableexcept(int);
extern int fegetexcept(void);
extern int feclearexcept(int);
extern int fegetenv(fenv_t *);
extern int fegetexceptflag(fexcept_t *, int);
extern int fegetround(void);
extern int feholdexcept(fenv_t *);
extern int feraiseexcept(int);
extern int fesetenv(const fenv_t *);
extern int fesetexceptflag(const fexcept_t *, int);
extern int fesetround(int);
extern int fetestexcept(int);
extern int feupdateenv(const fenv_t *);

13.7.3 math.h

#define DOMAIN 1
#define SING 2

struct exception {
 int type;
 char *name;
 double arg1;
 double arg2;
 double retval;
};

#define FP_NAN 0
#define FP_INFINITE 1
#define FP_ZERO 2
#define FP_SUBNORMAL 3
#define FP_NORMAL 4

#define isnormal(x) (fpclassify (x) == FP_NORMAL)

#define HUGE_VAL 0x1.0p2047
#define HUGE_VALF 0x1.0p255f

#define NAN ((float)0x7fc00000UL)
#define M_1_PI 0.31830988618379067154
#define M_LOG10E 0.43429448190325182765
#define M_2_PI 0.63661977236758134308
#define M_LN2 0.69314718055994530942
#define M_SQRT1_2 0.70710678118654752440

246 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

#define M_PI_4 0.78539816339744830962
#define M_2_SQRTPI 1.12837916709551257390
#define M_SQRT2 1.41421356237309504880
#define M_LOG2E 1.4426950408889634074
#define M_PI_2 1.57079632679489661923
#define M_LN10 2.30258509299404568402
#define M_E 2.7182818284590452354
#define M_PI 3.14159265358979323846
#define INFINITY HUGE_VALF

#define MATH_ERRNO 1
#define MATH_ERREXCEPT 2

#define isunordered(u, v) \
 (__extension__({ __typeof__(u) __u = (u); __typeof__(v)
__v = (v);fpclassify (__u) == FP_NAN || fpclassify (__v) ==
FP_NAN; }))
#define islessgreater(x, y) \
 (__extension__({ __typeof__(x) __x = (x); __typeof__(y)
__y = (y);!isunordered (__x, __y) && (__x < __y || __y < __x);
}))
#define isless(x,y) \
 (__extension__({ __typeof__(x) __x = (x); __typeof__(y)
__y = (y);!isunordered (__x, __y) && __x < __y; }))
#define islessequal(x, y) \
 (__extension__({ __typeof__(x) __x = (x); __typeof__(y)
__y = (y);!isunordered (__x, __y) && __x <= __y; }))
#define isgreater(x,y) \
 (__extension__({ __typeof__(x) __x = (x); __typeof__(y)
__y = (y);!isunordered (__x, __y) && __x > __y; }))
#define isgreaterequal(x,y) \
 (__extension__({ __typeof__(x) __x = (x); __typeof__(y)
__y = (y);!isunordered (__x, __y) && __x >= __y; }))

extern int __finite(double);
extern int __finitef(float);
extern int __finitel(long double);
extern int __isinf(double);
extern int __isinff(float);
extern int __isinfl(long double);
extern int __isnan(double);
extern int __isnanf(float);
extern int __isnanl(long double);
extern int __signbit(double);
extern int __signbitf(float);
extern int __fpclassify(double);
extern int __fpclassifyf(float);
extern int signgam;
extern double copysign(double, double);
extern int finite(double);
extern double frexp(double, int *);
extern double ldexp(double, int);
extern double modf(double, double *);
extern double acos(double);
extern double acosh(double);
extern double asinh(double);
extern double atanh(double);
extern double asin(double);
extern double atan(double);
extern double atan2(double, double);
extern double cbrt(double);
extern double ceil(double);
extern double cos(double);
extern double cosh(double);
extern double erf(double);
extern double erfc(double);

 © 2007 Linux Foundation 247

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

extern double exp(double);
extern double expm1(double);
extern double fabs(double);
extern double floor(double);
extern double fmod(double, double);
extern double gamma(double);
extern double hypot(double, double);
extern int ilogb(double);
extern double j0(double);
extern double j1(double);
extern double jn(int, double);
extern double lgamma(double);
extern double log(double);
extern double log10(double);
extern double log1p(double);
extern double logb(double);
extern double nextafter(double, double);
extern double pow(double, double);
extern double remainder(double, double);
extern double rint(double);
extern double scalb(double, double);
extern double sin(double);
extern double sinh(double);
extern double sqrt(double);
extern double tan(double);
extern double tanh(double);
extern double y0(double);
extern double y1(double);
extern double yn(int, double);
extern double drem(double, double);
extern float copysignf(float, float);
extern long double copysignl(long double, long double);
extern int finitef(float);
extern int finitel(long double);
extern float frexpf(float, int *);
extern long double frexpl(long double, int *);
extern float ldexpf(float, int);
extern long double ldexpl(long double, int);
extern float modff(float, float *);
extern long double modfl(long double, long double *);
extern double scalbln(double, long int);
extern float scalblnf(float, long int);
extern long double scalblnl(long double, long int);
extern double scalbn(double, int);
extern float scalbnf(float, int);
extern long double scalbnl(long double, int);
extern float acosf(float);
extern float acoshf(float);
extern long double acoshl(long double);
extern long double acosl(long double);
extern float asinf(float);
extern float asinhf(float);
extern long double asinhl(long double);
extern long double asinl(long double);
extern float atan2f(float, float);
extern long double atan2l(long double, long double);
extern float atanf(float);
extern float atanhf(float);
extern long double atanhl(long double);
extern long double atanl(long double);
extern float cbrtf(float);
extern long double cbrtl(long double);
extern float ceilf(float);
extern long double ceill(long double);
extern float cosf(float);
extern float coshf(float);

248 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

extern long double coshl(long double);
extern long double cosl(long double);
extern float dremf(float, float);
extern long double dreml(long double, long double);
extern float erfcf(float);
extern long double erfcl(long double);
extern float erff(float);
extern long double erfl(long double);
extern double exp10(double);
extern float exp10f(float);
extern long double exp10l(long double);
extern double exp2(double);
extern float exp2f(float);
extern float expf(float);
extern long double expl(long double);
extern float expm1f(float);
extern long double expm1l(long double);
extern float fabsf(float);
extern long double fabsl(long double);
extern double fdim(double, double);
extern float fdimf(float, float);
extern long double fdiml(long double, long double);
extern float floorf(float);
extern long double floorl(long double);
extern double fma(double, double, double);
extern float fmaf(float, float, float);
extern long double fmal(long double, long double, long double);
extern double fmax(double, double);
extern float fmaxf(float, float);
extern long double fmaxl(long double, long double);
extern double fmin(double, double);
extern float fminf(float, float);
extern long double fminl(long double, long double);
extern float fmodf(float, float);
extern long double fmodl(long double, long double);
extern float gammaf(float);
extern long double gammal(long double);
extern float hypotf(float, float);
extern long double hypotl(long double, long double);
extern int ilogbf(float);
extern int ilogbl(long double);
extern float j0f(float);
extern long double j0l(long double);
extern float j1f(float);
extern long double j1l(long double);
extern float jnf(int, float);
extern long double jnl(int, long double);
extern double lgamma_r(double, int *);
extern float lgammaf(float);
extern float lgammaf_r(float, int *);
extern long double lgammal(long double);
extern long double lgammal_r(long double, int *);
extern long long int llrint(double);
extern long long int llrintf(float);
extern long long int llrintl(long double);
extern long long int llround(double);
extern long long int llroundf(float);
extern long long int llroundl(long double);
extern float log10f(float);
extern long double log10l(long double);
extern float log1pf(float);
extern long double log1pl(long double);
extern double log2(double);
extern float log2f(float);
extern long double log2l(long double);
extern float logbf(float);

 © 2007 Linux Foundation 249

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

extern long double logbl(long double);
extern float logf(float);
extern long double logl(long double);
extern long int lrint(double);
extern long int lrintf(float);
extern long int lrintl(long double);
extern long int lround(double);
extern long int lroundf(float);
extern long int lroundl(long double);
extern double nan(const char *);
extern float nanf(const char *);
extern long double nanl(const char *);
extern double nearbyint(double);
extern float nearbyintf(float);
extern long double nearbyintl(long double);
extern float nextafterf(float, float);
extern long double nextafterl(long double, long double);
extern double nexttoward(double, long double);
extern float nexttowardf(float, long double);
extern long double nexttowardl(long double, long double);
extern double pow10(double);
extern float pow10f(float);
extern long double pow10l(long double);
extern float powf(float, float);
extern long double powl(long double, long double);
extern float remainderf(float, float);
extern long double remainderl(long double, long double);
extern double remquo(double, double, int *);
extern float remquof(float, float, int *);
extern long double remquol(long double, long double, int *);
extern float rintf(float);
extern long double rintl(long double);
extern double round(double);
extern float roundf(float);
extern long double roundl(long double);
extern float scalbf(float, float);
extern long double scalbl(long double, long double);
extern double significand(double);
extern float significandf(float);
extern long double significandl(long double);
extern void sincos(double, double *, double *);
extern void sincosf(float, float *, float *);
extern void sincosl(long double, long double *, long double *);
extern float sinf(float);
extern float sinhf(float);
extern long double sinhl(long double);
extern long double sinl(long double);
extern float sqrtf(float);
extern long double sqrtl(long double);
extern float tanf(float);
extern float tanhf(float);
extern long double tanhl(long double);
extern long double tanl(long double);
extern double tgamma(double);
extern float tgammaf(float);
extern long double tgammal(long double);
extern double trunc(double);
extern float truncf(float);
extern long double truncl(long double);
extern float y0f(float);
extern long double y0l(long double);
extern float y1f(float);
extern long double y1l(long double);
extern float ynf(int, float);
extern long double ynl(int, long double);

250 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

13.8 Interface Definitions for libm
The interfaces defined on the following pages are included in libm and are
defined by this specification. Unless otherwise noted, these interfaces shall be
included in the source standard.

Other interfaces listed in Section 13.6 shall behave as described in the referenced
base document.

Description
__finite() has the same specification as isfinite() in ISO POSIX (2003),
except that the argument type for __finite() is known to be double.

Description
__finitef() has the same specification as isfinite() in ISO POSIX (2003)
except that the argument type for __finitef() is known to be float.

Description
__finitel() has the same specification as isfinite() in the ISO POSIX (2003),
except that the argument type for __finitel() is known to be long double.

__finite

Name
__finite — test for infinity

Synopsis
#include <math.h>
int __finite(double arg);

__finite() is not in the source standard; it is only in the binary standard.

__finitef

Name
__finitef — test for infinity

Synopsis
#include <math.h>
int __finitef(float arg);

__finitef() is not in the source standard; it is only in the binary standard.

__finitel

Name
__finitel — test for infinity

Synopsis
#include <math.h>
int __finitel(long double arg);

__finitel() is not in the source standard; it is only in the binary standard.

 © 2007 Linux Foundation 251

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

__fpclassify

Name
__fpclassify — Classify real floating type

Synopsis
int __fpclassify(double arg);

Description
__fpclassify() has the same specification as fpclassify() in ISO POSIX
(2003), except that the argument type for __fpclassify() is known to be
double.

Description
__fpclassifyf() has the same specification as fpclassify() in ISO POSIX
(2003), except that the argument type for __fpclassifyf() is known to be float.

Description
__signbit() has the same specification as signbit() in ISO POSIX (2003),
except that the argument type for __signbit() is known to be double.

__fpclassify() is not in the source standard; it is only in the binary standard.

__fpclassifyf

Name
__fpclassifyf — Classify real floating type

Synopsis
int __fpclassifyf(float arg);

__fpclassifyf() is not in the source standard; it is only in the binary standard.

__signbit

Name
__signbit — test sign of floating point value

Synopsis
#include <math.h>
int __signbit(double arg);

__signbit() is not in the source standard; it is only in the binary standard.

252 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

__signbitf

Name
__signbitf — test sign of floating point value

Synopsis
#include <math.h>
int __signbitf(float arg);

Description
__signbitf() has the same specification as signbit() in ISO POSIX (2003),
except that the argument type for __signbitf() is known to be float.

__signbitf() is not in the source standard; it is only in the binary standard.

clog10

Name
clog10 — Logarithm of a Complex Number

Synopsis
#include <complex.h>
double complex clog10(double complex z);

Description
The clog10() function shall compute the base 10 logarithm of the complex
number z.

Return Value
The clog10() function shall return the base 10 logarithm.

clog10f

Name
clog10f — Logarithm of a Complex Number

Synopsis
#include <complex.h>
float complex clog10f(float complex z);

Description
The clog10f() function shall compute the base 10 logarithm of the complex
number z.

Return Value
The clog10f() function shall return the base 10 logarithm.

 © 2007 Linux Foundation 253

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

clog10l

Name
clog10l — Logarithm of a Complex Number

Synopsis
#include <complex.h>
long double complex clog10l(long double complex z);

Description
The clog10l() function shall compute the base 10 logarithm of the complex
number z.

Return Value
The clog10l() function shall return the base 10 logarithm.

drem

Name
drem — Floating Point Remainder (DEPRECATED)

Synopsis
#include <math.h>
double drem(double x, double y);

Description
The drem() function shall return the floating point remainder, x REM y as
required by IEC 60559/IEEE 754 Floating Point in the same way as
remainder().

Note: This function is included only for backwards compatibility; applications
should use remainder() instead.

Returns
See remainder().

See Also
remainder(), dremf(), dreml()

254 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

dremf

Name
dremf — Floating Point Remainder (DEPRECATED)

Synopsis
#include <math.h>
double dremf(double x, double y);

Description
The dremf() function shall return the floating point remainder, x REM y as
required by IEC 60559/IEEE 754 Floating Point in the same way as
remainderf().

Description
The dreml() function shall return the floating point remainder, x REM y as
required by IEC 60559/IEEE 754 Floating Point in the same way as
remainderl().

Note: This function is included only for backwards compatibility; applications
should use remainderf() instead.

Returns
See remainderf().

See Also
remainderf(), drem(), dreml()

dreml

Name
dreml — Floating Point Remainder (DEPRECATED)

Synopsis
#include <math.h>
double dreml(double x, double y);

Note: This function is included only for backwards compatibility; applications
should use remainderl() instead.

Returns
See remainderl().

See Also
remainderl(), drem(), dremf()

 © 2007 Linux Foundation 255

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

exp10

Name
exp10 — Base-10 power function

Synopsis
#include <math.h>
double exp10(double x);

Description
The exp10() function shall return 10x.

Note: This function is identical to pow10().

Returns
Upon successful completion, exp10() shall return 10 rised to the power of x.

If the correct value would cause overflow, a range error shall occur and
exp10() shall return ±HUGE_VAL, with the same sign as the correct value of
the function.

See Also
pow10(), exp10f(), exp10l()

exp10f

Name
exp10f — Base-10 power function

Synopsis
#include <math.h>
float exp10f(float x);

Description
The exp10f() function shall return 10x.

Note: This function is identical to pow10f().

Returns
Upon successful completion, exp10f() shall return 10 rised to the power of x.

If the correct value would cause overflow, a range error shall occur and
exp10f() shall return ±HUGE_VALF, with the same sign as the correct value of
the function.

See Also
pow10f(), exp10(), exp10l()

256 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

exp10l

Name
exp10l — Base-10 power function

Synopsis
#include <math.h>
long double exp10l(long double x);

Description
The exp10l() function shall return 10x.

Note: This function is identical to pow10l().

Returns
Upon successful completion, exp10l() shall return 10 rised to the power of x.

If the correct value would cause overflow, a range error shall occur and
exp10l() shall return ±HUGE_VALL, with the same sign as the correct value of
the function.

See Also
pow10l(), exp10(), exp10f()

fedisableexcept

Name
fedisableexcept — disable floating point exceptions

Synopsis
#include <fenv.h>
int fedisableexcept(int excepts);

Description
The fedisableexcept() function disables traps for each of the exceptions
represented by the mask excepts.

Return Value
The fedisableexcept() function returns the previous set of enabled
exceptions on success. On error, -1 is returned.

Errors
No errors are defined, but the function will fail if not supported on the
architecture.

 © 2007 Linux Foundation 257

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

feenableexcept

Name
feenableexcept — enable floating point exceptions

Synopsis
#include <fenv.h>
int feenableexcept(int excepts);

Description
The feenableexcept() function enables traps for each of the exceptions
represented by the mask excepts.

Return Value
The feenableexcept() function returns the previous set of enabled exceptions
on success. On error, -1 is returned.

Errors
No errors are defined, but the function will fail if not supported on the
architecture.

fegetexcept

Name
fegetexcept — query floating point exception handling state

Synopsis
#include <fenv.h>
int fegetexcept

Description
The fegetexcept() function returns the set of all currently enabled exceptions.

Return Value
The mremap() function returns the set of all currently enabled exceptions on
success. On error, -1 is returned.

Errors
No errors are defined, but the function will fail if not supported on the
architecture.

finite

Name
finite — test for infinity (DEPRECATED)

Synopsis
#define _SVID_SOURCE

258 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

#include <math.h>
int finite(double arg);

Description
The finite() function shall test whether its argument is neither INFINITY nor
not a number (NaN).

Returns
On success, finite() shall return 1. Otherwise the function shall return 0.

Note: The ISO C (1999) standard defines the function isfinite(), which is more
general purpose. The finite() function is deprecated, and applications should use
isfinite() instead. A future revision of this standard may remove this function.

See Also
isfinite(), finitef(), finitel()

finitef

Name
finitef — test for infinity (DEPRECATED)

Synopsis
#define _SVID_SOURCE
#include <math.h>
int finitef(float arg);

Description
The finitef() function shall test whether its argument is neither INFINITY nor
not a number (NaN).

Returns
On success, finitef() shall return 1. Otherwise the function shall return 0.

Note: The ISO C (1999) standard defines the function isfinite(), which is more
general purpose. The finitef() function is deprecated, and applications should
use isfinite() instead. A future revision of this standard may remove this
function.

See Also
isfinite(), finite(), finitel()

finitel

Name
finitel — test for infinity (DEPRECATED)

Synopsis
#define _SVID_SOURCE

 © 2007 Linux Foundation 259

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

#include <math.h>
int finitel(long double arg);

Description
The finitel() function shall test whether its argument is neither INFINITY nor
not a number (NaN).

Returns
On success, finitel() shall return 1. Otherwise the function shall return 0.

Note: The ISO C (1999) standard defines the function isfinite(), which is more
general purpose. The finitel() function is deprecated, and applications should
use isfinite() instead. A future revision of this standard may remove this
function.

See Also
isfinite(), finite(), finitef()

gamma

Name
gamma — log gamma function (DEPRECATED)

Synopsis
#include <math.h>
double gammaf(double x);

Description
The gamma() function is identical to lgamma() in ISO POSIX (2003).

Note: The name gamma() for this function is deprecated and should not be used.

Returns
See lgamma().

See Also
lgamma(), lgammaf(), lgammal(), gammaf(), gammal()

260 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

gammaf

Name
gammaf — log gamma function (DEPRECATED)

Synopsis
#include <math.h>
float gammaf(float x);

Description
The gammaf() function is identical to lgammaf() in ISO POSIX (2003).

Note: The name gammaf() for this function is deprecated and should not be used.

Returns
See lgammaf().

See Also
lgamma(), lgammaf(), lgammal(), gamma(), gammal()

gammal

Name
gammal — log gamma function (DEPRECATED)

Synopsis
#include <math.h>
long double gammal(long double x);

Description
The gammal() function is identical to lgammal() in ISO POSIX (2003).

Note: The name gammal() for this function is deprecated and should not be used.

Returns
See lgammal().

See Also
lgamma(), lgammaf(), lgammal(), gamma(), gammaf()

 © 2007 Linux Foundation 261

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

j0f

Name
j0f — Bessel functions

Synopsis
#include <math.h>
float j0f(float x);

Description
The j0f() function is identical to j0(), except that the argument x and the
return value is a float.

Returns
See j0().

See Also
j0(), j0l(), j1(), j1f(), j1l(), jn(), jnf(), jnl(), y0(), y0f(), y0l(), y1(),
y1f(), y1l(), yn(), ynf(), ynl()

j0l

Name
j0l — Bessel functions

Synopsis
#include <math.h>
long double j0l(long double x);

Description
The j0l() function is identical to j0(), except that the argument x and the
return value is a long double.

Returns
See j0().

See Also
j0(), j0f(), j1(), j1f(), j1l(), jn(), jnf(), jnl(), y0(), y0f(), y0l(), y1(),
y1f(), y1l(), yn(), ynf(), ynl()

262 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

j1f

Name
j1f — Bessel functions

Synopsis
#include <math.h>
float j1f(float x);

Description
The j1f() function is identical to j1(), except that the argument x and the
return value is a float.

Returns
See j1().

See Also
j0(), j0f(), j0l(), j1(), j1l(), jn(), jnf(), jnl(), y0(), y0f(), y0l(), y1(),
y1f(), y1l(), yn(), ynf(), ynl()

j1l

Name
j1l — Bessel functions

Synopsis
#include <math.h>
long double j1l(long double x);

Description
The j1l() function is identical to j1(), except that the argument x and the
return value is a long double.

Returns
See j0().

See Also
j0(), j0f(), j0l(), j1(), j1f(), jn(), jnf(), jnl(), y0(), y0f(), y0l(), y1(),
y1f(), y1l(), yn(), ynf(), ynl()

 © 2007 Linux Foundation 263

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

jnf

Name
jnf — Bessel functions

Synopsis
#include <math.h>
float jnf(float x);

Description
The jnf() function is identical to jn(), except that the argument x and the
return value is a float.

Returns
See jn().

See Also
j0(), j0f(), j0l(), j1(), j1f(), j1l(), jn(), jnl(), y0(), y0f(), y0l(), y1(),
y1f(), y1l(), yn(), ynf(), ynl()

jnl

Name
jnl — Bessel functions

Synopsis
#include <math.h>
long double jnl(long double x);

Description
The jnl() function is identical to jn(), except that the argument x and the
return value is a long double.

Returns
See jn().

See Also
j0(), j0f(), j0l(), j1(), j1f(), j1l(), jn(), jnf(), y0(), y0f(), y0l(), y1(),
y1f(), y1l(), yn(), ynf(), ynl()

264 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

lgamma_r

Name
lgamma_r — log gamma functions

Synopsis
#include <math.h>
double lgamma_r(double x, int * signp);

Description
The lgamma_r() function shall compute the natural logarithm of the absolute
value of the Gamma function, as lgamma(). However, instead of setting the
external integer signgam to the sign of the Gamma function, lgamma_r() shall
set the integer referenced by signp to the sign.

Returns
See lgamma() and signgam.

See Also
lgamma(), lgammaf_r(), lgammal_r(), signgam

lgammaf_r

Name
lgammaf_r — log gamma functions

Synopsis
#include <math.h>
float lgammaf_r(float x, int * signp);

Description
The lgammaf_r() function shall compute the natural logarithm of the absolute
value of the Gamma function, as lgammaf(). However, instead of setting the
external integer signgam to the sign of the Gamma function, lgammaf_r() shall
set the integer referenced by signp to the sign.

Returns
See lgammaf() and signgam.

See Also
lgamma(), lgamma_r(), lgammal_r(), signgam

 © 2007 Linux Foundation 265

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

lgammal_r

Name
lgammal_r — log gamma functions

Synopsis
#include <math.h>
double lgammal_r(double x, int * signp);

Description
The lgammal_r() function shall compute the natural logarithm of the absolute
value of the Gamma function, as lgammal(). However, instead of setting the
external integer signgam to the sign of the Gamma function, lgammal_r() shall
set the integer referenced by signp to the sign.

Returns
See lgammal() and signgam.

See Also
lgamma(), lgamma_r(), lgammaf_r(), signgam

pow10

Name
pow10 — Base-10 power function

Synopsis
#include <math.h>
double pow10(double x);

Description
The pow10() function shall return 10x.

Note: This function is identical to exp10().

Returns
Upon successful completion, pow10() shall return 10 rised to the power of x.

If the correct value would cause overflow, a range error shall occur and
pow10() shall return ±HUGE_VAL, with the same sign as the correct value of
the function.

See Also
exp10(), pow10f(), pow10l()

266 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

pow10f

Name
pow10f — Base-10 power function

Synopsis
#include <math.h>
float pow10f(float x);

Description
The pow10f() function shall return 10x.

Note: This function is identical to exp10f().

Returns
Upon successful completion, pow10f() shall return 10 rised to the power of x.

If the correct value would cause overflow, a range error shall occur and
pow10f() shall return ±HUGE_VALF, with the same sign as the correct value of
the function.

See Also
exp10f(), pow10(), pow10l()

pow10l

Name
pow10l — Base-10 power function

Synopsis
#include <math.h>
long double pow10l(long double x);

Description
The pow10l() function shall return 10x.

Note: This function is identical to exp10l().

Returns
Upon successful completion, pow10l() shall return 10 rised to the power of x.

If the correct value would cause overflow, a range error shall occur and
pow10l() shall return ±HUGE_VALL, with the same sign as the correct value of
the function.

See Also
exp10l(), pow10(), pow10f()

 © 2007 Linux Foundation 267

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

significand

Name
significand — floating point mantissa

Synopsis
#include <math.h>
double significand(double x);

Description
The significand() function shall return the mantissa of x, sig such that x ≡
sig × 2n scaled such that 1 ≤ sig < 2.

Note: This function is intended for testing confomance to IEC 60559/IEEE 754
Floating Point, and its use is not otherwise recommended.

The significandf() function shall return the mantissa of x, sig such that x ≡
sig × 2n scaled such that 1 ≤ sig < 2.

Note: This function is intended for testing confomance to IEC 60559/IEEE 754
Floating Point, and its use is not otherwise recommended.

This function is equivalent to scalb(x, (double)-ilogb(x)).

Returns
Upon successful completion, significand() shall return the mantissa of x in
the range 1 ≤ sig < 2.

If x is 0, ±HUGE_VAL, or NaN, the result is undefined.

See Also
significandf(), significandl()

significandf

Name
significandf — floating point mantissa

Synopsis
#include <math.h>
float significandf(float x);

Description

This function is equivalent to scalb(x, (double)-ilogb(x)).

Returns
Upon successful completion, significandf() shall return the mantissa of x in
the range 1 ≤ sig < 2.

If x is 0, ±HUGE_VALF, or NaN, the result is undefined.

See Also
significand(), significandl()

268 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

significandl

Name
significandl — floating point mantissa

Synopsis
#include <math.h>
long double significandl(long double x);

Description
The significandl() function shall return the mantissa of x, sig such that x ≡
sig × 2n scaled such that 1 ≤ sig < 2.

Note: This function is intended for testing confomance to IEC 60559/IEEE 754
Floating Point, and its use is not otherwise recommended.

This function is equivalent to scalb(x, (double)-ilogb(x)).

Returns
Upon successful completion, significandl() shall return the mantissa of x in
the range 1 ≤ sig < 2.

If x is 0, ±HUGE_VALL, or NaN, the result is undefined.

See Also
significand(), significandf()

sincos

Name
sincos — trigonometric functions

Synopsis
#define _GNU_SOURCE
#include <math.h>
void sincos(double x, double * sin, double * cos);

Description
The sincos() function shall calculate both the sine and cosine of x. The sine
shall be stored in the location referenced by sin, and the cosine in the location
referenced by cosine.

Returns
None. See sin() and cos() for possible error conditions.

See Also
cos(), sin(), sincosf(), sincosl()

 © 2007 Linux Foundation 269

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

sincosf

Name
sincosf — trigonometric functions

Synopsis
#define _GNU_SOURCE
#include <math.h>
void sincosf(float x, float * sin, float * cos);

Description
The sincosf() function shall calculate both the sine and cosine of x. The sine
shall be stored in the location referenced by sin, and the cosine in the location
referenced by cosine.

Returns
None. See sin() and cos() for possible error conditions.

See Also
cos(), sin(), sincos(), sincosl()

sincosl

Name
sincosl — trigonometric functions

Synopsis
#define _GNU_SOURCE
#include <math.h>
void sincosl(long double x, long double * sin, long double * cos);

Description
The sincosl() function shall calculate both the sine and cosine of x. The sine
shall be stored in the location referenced by sin, and the cosine in the location
referenced by cosine.

Returns
None. See sin() and cos() for possible error conditions.

See Also
cos(), sin(), sincos(), sincosl()

270 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

y0f

Name
y0f — Bessel functions

Synopsis
#include <math.h>
float y0f(float x);

Description
The y0f() function is identical to y0(), except that the argument x and the
return value is a float.

Returns
See y0().

See Also
j0(), j0f(), j0l(), j1(), j1f(), j1l(), jn(), jnf(), jnl(), y0(), y0l(), y1(),
y1f(), y1l(), yn(), ynf(), ynl()

y0l

Name
y0l — Bessel functions

Synopsis
#include <math.h>
long double y0l(long double x);

Description
The y0l() function is identical to y0(), except that the argument x and the
return value is a long double.

Returns
See y0().

See Also
j0(), j0f(), j0l(), j1(), j1f(), j1l(), jn(), jnf(), jnl(), y0(), y0f(), y1(),
y1f(), y1l(), yn(), ynf(), ynl()

 © 2007 Linux Foundation 271

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

y1f

Name
y1f — Bessel functions

Synopsis
#include <math.h>
float y1f(float x);

Description
The y1f() function is identical to y1(), except that the argument x and the
return value is a float.

Returns
See y1().

See Also
j0(), j0f(), j0l(), j1(), j1f(), j1l(), jn(), jnf(), jnl(), y0(), y0f(),
y0l(), y1(), y1l(), yn(), ynf(), ynl()

y1l

Name
y1l — Bessel functions

Synopsis
#include <math.h>
long double y1l(long double x);

Description
The y1l() function is identical to y1(), except that the argument x and the
return value is a long double.

Returns
See j0().

See Also
j0(), j0f(), j0l(), j1(), j1f(), j1l(), jn(), jnf(), jnl(), y0(), y0f(),
y0l(), y1(), y1f(), yn(), ynf(), ynl()

272 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

ynf

Name
ynf — Bessel functions

Synopsis
#include <math.h>
float ynf(float x);

Description
The ynf() function is identical to yn(), except that the argument x and the
return value is a float.

Returns
See yn().

See Also
j0(), j0f(), j0l(), j1(), j1f(), j1l(), jn(), jnf(), jnl(), y0(), y0f(),
y0l(), y1(), y1f(), y1l(), yn(), ynl()

ynl

Name
ynl — Bessel functions

Synopsis
#include <math.h>
long double ynl(long double x);

Description
The ynl() function is identical to yn(), except that the argument x and the
return value is a long double.

Returns
See yn().

See Also
j0(), j0f(), j0l(), j1(), j1f(), j1l(), jn(), jnf(), jnl(), y0(), y0f(),
y0l(), y1(), y1f(), y1l(), yn(), ynf()

13.9 Interfaces for libpthread
Table 13-37 defines the library name and shared object name for the libpthread
library

Table 13-37 libpthread Definition

Library: libpthread

SONAME: libpthread.so.0

 © 2007 Linux Foundation 273

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

The behavior of the interfaces in this library is specified by the following speci-
fications:

[LFS] Large File Support
[LSB] This Specification
[SUSv3] ISO POSIX (2003)

13.9.1 Realtime Threads

13.9.1.1 Interfaces for Realtime Threads
An LSB conforming implementation shall provide the generic functions for
Realtime Threads specified in Table 13-38, with the full mandatory functionality
as described in the referenced underlying specification.

Table 13-38 libpthread - Realtime Threads Function Interfaces

pthread_attr_geti
nheritsched
[SUSv3]

pthread_attr_get
schedpolicy
[SUSv3]

pthread_attr_get
scope [SUSv3]

pthread_attr_seti
nheritsched
[SUSv3]

pthread_attr_sets
chedpolicy
[SUSv3]

pthread_setsched
param [SUSv3]

pthread_attr_sets
cope [SUSv3]

pthread_getsche
dparam [SUSv3]

pthread_setsched
prio(GLIBC_2.3.4
) [SUSv3]

13.9.2 Advanced Realtime Threads

13.9.2.1 Interfaces for Advanced Realtime Threads
An LSB conforming implementation shall provide the generic functions for
Advanced Realtime Threads specified in Table 13-39, with the full mandatory
functionality as described in the referenced underlying specification.

Table 13-39 libpthread - Advanced Realtime Threads Function Interfaces

pthread_barrier_
destroy [SUSv3]

pthread_barrier_
init [SUSv3]

pthread_barrier_
wait [SUSv3]

pthread_barriera
ttr_destroy
[SUSv3]

pthread_barriera
ttr_getpshared(G
LIBC_2.3.3)
[SUSv3]

pthread_barriera
ttr_init [SUSv3]

pthread_barriera
ttr_setpshared
[SUSv3]

pthread_getcpucl
ockid [SUSv3]

pthread_spin_de
stroy [SUSv3]

pthread_spin_try
lock [SUSv3]

pthread_spin_ini
t [SUSv3]

pthread_spin_loc
k [SUSv3]

pthread_spin_un
lock [SUSv3]

274 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

13.9.3 Posix Threads

13.9.3.1 Interfaces for Posix Threads
An LSB conforming implementation shall provide the generic functions for
Posix Threads specified in Table 13-40, with the full mandatory functionality as
described in the referenced underlying specification.

Table 13-40 libpthread - Posix Threads Function Interfaces

_pthread_cleanu
p_pop [LSB]

_pthread_cleanu
p_push [LSB]

pthread_attr_des
troy [SUSv3]

pthread_attr_get
detachstate
[SUSv3]

pthread_attr_get
guardsize
[SUSv3]

pthread_attr_get
schedparam
[SUSv3]

pthread_attr_get
stack [SUSv3]

pthread_attr_get
stackaddr
[SUSv3]

pthread_attr_get
stacksize [SUSv3]

pthread_attr_set
guardsize
[SUSv3]

pthread_attr_init
[SUSv3]

pthread_attr_set
detachstate
[SUSv3]

pthread_attr_sets
chedparam
[SUSv3]

pthread_attr_sets
tack [SUSv3]

pthread_attr_sets
tackaddr [SUSv3]

pthread_attr_sets
tacksize [SUSv3]

pthread_cancel
[SUSv3]

pthread_cond_de
stroy [SUSv3]

pthread_cond_br
oadcast [SUSv3]

pthread_cond_in
it [SUSv3]

pthread_cond_si
gnal [SUSv3]

pthread_condattr
_destroy [SUSv3]

pthread_cond_ti
medwait [SUSv3]

pthread_cond_w
ait [SUSv3]

pthread_condattr
_getpshared
[SUSv3]

pthread_condattr
_init [SUSv3]

pthread_condattr
_setpshared
[SUSv3]

pthread_create
[SUSv3]

pthread_detach
[SUSv3]

pthread_exit
[SUSv3]

pthread_equal
[SUSv3]

pthread_getconc
urrency [SUSv3]

pthread_getspeci
fic [SUSv3]

pthread_key_cre
ate [SUSv3]

pthread_join
[SUSv3]

pthread_key_del
ete [SUSv3]

pthread_kill
[SUSv3]

pthread_mutex_l
ock [SUSv3]

pthread_mutex_
destroy [SUSv3]

pthread_mutex_i
nit [SUSv3]

pthread_mutex_t
imedlock
[SUSv3]

pthread_mutex_t
rylock [SUSv3]

pthread_mutex_
unlock [SUSv3]

pthread_mutexat
tr_destroy
[SUSv3]

pthread_mutexat
tr_getpshared
[SUSv3]

pthread_mutexat
tr_gettype
[SUSv3]

pthread_mutexat
tr_init [SUSv3]

pthread_mutexat
tr_setpshared
[SUSv3]

pthread_mutexat
tr_settype
[SUSv3]

pthread_once
[SUSv3]

pthread_rwlock_
destroy [SUSv3]

pthread_rwlock_
init [SUSv3]

pthread_rwlock_
rdlock [SUSv3]

pthread_rwlock_
timedrdlock
[SUSv3]

pthread_rwlock_
timedwrlock
[SUSv3]

pthread_rwlock_
tryrdlock
[SUSv3]

 © 2007 Linux Foundation 275

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

pthread_rwlock_
trywrlock
[SUSv3]

pthread_rwlock_
unlock [SUSv3]

pthread_rwlock_
wrlock [SUSv3]

pthread_rwlocka
ttr_destroy
[SUSv3]

pthread_rwlocka
ttr_getpshared
[SUSv3]

pthread_rwlocka
ttr_init [SUSv3]

pthread_rwlocka
ttr_setpshared
[SUSv3]

pthread_self
[SUSv3]

pthread_setcance
lstate [SUSv3]

pthread_setcance
ltype [SUSv3]

pthread_setconc
urrency [SUSv3]

pthread_setspeci
fic [SUSv3]

pthread_sigmask
[SUSv3]

pthread_testcanc
el [SUSv3]

sem_close
[SUSv3]

sem_destroy
[SUSv3]

sem_getvalue
[SUSv3]

sem_init [SUSv3] sem_open
[SUSv3]

sem_post
[SUSv3]

sem_timedwait
[SUSv3]

sem_trywait
[SUSv3]

sem_unlink
[SUSv3]

sem_wait
[SUSv3]

An LSB conforming implementation shall provide the generic deprecated
functions for Posix Threads specified in Table 13-41, with the full mandatory
functionality as described in the referenced underlying specification.

Table 13-41 libpthread - Posix Threads Deprecated Function Interfaces

pthread_attr_get
stackaddr
[SUSv3]

Note: These interfaces are deprecated, and applications should avoid using them.
These interfaces may be withdrawn in future releases of this specification.

pthread_attr_sets
tackaddr [SUSv3]

13.9.4 Thread aware versions of libc interfaces

13.9.4.1 Interfaces for Thread aware versions of libc interfaces
An LSB conforming implementation shall provide the generic functions for
Thread aware versions of libc interfaces specified in Table 13-42, with the full
mandatory functionality as described in the referenced underlying specification.

Table 13-42 libpthread - Thread aware versions of libc interfaces Function
Interfaces

lseek64 [LFS] open64 [LFS] pread [SUSv3] pread64 [LFS]

pwrite64 [LFS]
 pwrite [SUSv3]

13.10 Data Definitions for libpthread
This section defines global identifiers and their values that are associated with
interfaces contained in libpthread. These definitions are organized into groups
that correspond to system headers. This convention is used as a convenience for
the reader, and does not imply the existence of these headers, or their content.
Where an interface is defined as requiring a particular system header file all of
the data definitions for that system header file presented here shall be in effect.

This section gives data definitions to promote binary application portability, not
to repeat source interface definitions available elsewhere. System providers and

276 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

application developers should use this ABI to supplement - not to replace -
source interface definition specifications.

This specification uses the ISO C (1999) C Language as the reference
programming language, and data definitions are specified in ISO C format. The
C language is used here as a convenient notation. Using a C language
description of these data objects does not preclude their use by other
programming languages.

13.10.1 pthread.h

#define PTHREAD_MUTEX_DEFAULT 0
#define PTHREAD_MUTEX_NORMAL 0
#define PTHREAD_SCOPE_SYSTEM 0
#define PTHREAD_MUTEX_RECURSIVE 1
#define PTHREAD_SCOPE_PROCESS 1
#define PTHREAD_MUTEX_ERRORCHECK 2
#define PTHREAD_RWLOCK_DEFAULT_NP 2
#define __SIZEOF_PTHREAD_BARRIERATTR_T 4
#define PTHREAD_MUTEX_INITIALIZER \
 {0,0,0,PTHREAD_MUTEX_NORMAL,__LOCK_INITIALIZER}
#define PTHREAD_RWLOCK_INITIALIZER \
 { __LOCK_INITIALIZER, 0, NULL, NULL,
NULL,PTHREAD_RWLOCK_DEFAULT_NP,\
 PTHREAD_PROCESS_PRIVATE }
#define pthread_cleanup_push(routine,arg) \
 {struct _pthread_cleanup_buffer _buffer;\
 _pthread_cleanup_push(&_buffer,(routine),(arg));
#define pthread_cleanup_pop(execute)
_pthread_cleanup_pop(&_buffer,(execute));}
#define __LOCK_INITIALIZER { 0, 0 }
#define PTHREAD_COND_INITIALIZER {__LOCK_INITIALIZER,0}

struct _pthread_cleanup_buffer {
 void (*__routine) (void *);
 void *__arg;
 int __canceltype;
 struct _pthread_cleanup_buffer *__prev;
};
typedef unsigned int pthread_key_t;
typedef int pthread_once_t;
typedef long long int __pthread_cond_align_t;
typedef volatile int pthread_spinlock_t;
typedef union {
 char __size[__SIZEOF_PTHREAD_BARRIERATTR_T];
 int __align;
} pthread_barrierattr_t;

typedef unsigned long int pthread_t;
struct _pthread_fastlock {
 long int __status;
 int __spinlock;
};

typedef struct _pthread_descr_struct *_pthread_descr;

typedef struct {
 int __m_reserved;
 int __m_count;
 _pthread_descr __m_owner;
 int __m_kind;
 struct _pthread_fastlock __m_lock;
} pthread_mutex_t;
typedef struct {

 © 2007 Linux Foundation 277

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

 int __mutexkind;
} pthread_mutexattr_t;

typedef struct {
 int __detachstate;
 int __schedpolicy;
 struct sched_param __schedparam;
 int __inheritsched;
 int __scope;
 size_t __guardsize;
 int __stackaddr_set;
 void *__stackaddr;
 unsigned long int __stacksize;
} pthread_attr_t;

typedef struct {
 struct _pthread_fastlock __c_lock;
 _pthread_descr __c_waiting;
 char __padding[48 - sizeof(struct _pthread_fastlock) -
 sizeof(_pthread_descr) -
 sizeof(__pthread_cond_align_t)];
 __pthread_cond_align_t __align;
} pthread_cond_t;
typedef struct {
 int __dummy;
} pthread_condattr_t;

typedef struct _pthread_rwlock_t {
 struct _pthread_fastlock __rw_lock;
 int __rw_readers;
 _pthread_descr __rw_writer;
 _pthread_descr __rw_read_waiting;
 _pthread_descr __rw_write_waiting;
 int __rw_kind;
 int __rw_pshared;
} pthread_rwlock_t;
typedef struct {
 int __lockkind;
 int __pshared;
} pthread_rwlockattr_t;

#define PTHREAD_CREATE_JOINABLE 0
#define PTHREAD_INHERIT_SCHED 0
#define PTHREAD_ONCE_INIT 0
#define PTHREAD_PROCESS_PRIVATE 0
#define PTHREAD_CREATE_DETACHED 1
#define PTHREAD_EXPLICIT_SCHED 1
#define PTHREAD_PROCESS_SHARED 1

#define PTHREAD_CANCELED ((void*)-1)
#define PTHREAD_CANCEL_DEFERRED 0
#define PTHREAD_CANCEL_ENABLE 0
#define PTHREAD_CANCEL_ASYNCHRONOUS 1
#define PTHREAD_CANCEL_DISABLE 1

extern int pthread_barrier_destroy(pthread_barrier_t *);
extern int pthread_barrier_init(pthread_barrier_t *,
 const pthread_barrierattr_t *,
 unsigned int);
extern int pthread_barrier_wait(pthread_barrier_t *);
extern int pthread_barrierattr_destroy(pthread_barrierattr_t *);
extern int pthread_barrierattr_init(pthread_barrierattr_t *);
extern int pthread_barrierattr_setpshared(pthread_barrierattr_t
*, int);
extern int pthread_getcpuclockid(pthread_t, clockid_t *);
extern int pthread_spin_destroy(pthread_spinlock_t *);

278 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

extern int pthread_spin_init(pthread_spinlock_t *, int);
extern int pthread_spin_lock(pthread_spinlock_t *);
extern int pthread_spin_trylock(pthread_spinlock_t *);
extern int pthread_spin_unlock(pthread_spinlock_t *);
extern int pthread_mutex_timedlock(pthread_mutex_t *,
 const struct timespec *);
extern int pthread_barrierattr_getpshared(const
pthread_barrierattr_t *,
 int *);
extern void _pthread_cleanup_pop(struct _pthread_cleanup_buffer
*, int);
extern void _pthread_cleanup_push(struct _pthread_cleanup_buffer
*,
 void (*__pshared) (void *)
 , void *);
extern int pthread_attr_destroy(pthread_attr_t *);
extern int pthread_attr_getdetachstate(const pthread_attr_t *,
int *);
extern int pthread_attr_getinheritsched(const pthread_attr_t *,
int *);
extern int pthread_attr_getschedparam(const pthread_attr_t *,
 struct sched_param *);
extern int pthread_attr_getschedpolicy(const pthread_attr_t *,
int *);
extern int pthread_attr_getscope(const pthread_attr_t *, int *);
extern int pthread_attr_init(pthread_attr_t *);
extern int pthread_attr_setdetachstate(pthread_attr_t *, int);
extern int pthread_attr_setinheritsched(pthread_attr_t *, int);
extern int pthread_attr_setschedparam(pthread_attr_t *,
 const struct sched_param
*);
extern int pthread_attr_setschedpolicy(pthread_attr_t *, int);
extern int pthread_attr_setscope(pthread_attr_t *, int);
extern int pthread_cancel(pthread_t);
extern int pthread_cond_broadcast(pthread_cond_t *);
extern int pthread_cond_destroy(pthread_cond_t *);
extern int pthread_cond_init(pthread_cond_t *, const
pthread_condattr_t *);
extern int pthread_cond_signal(pthread_cond_t *);
extern int pthread_cond_timedwait(pthread_cond_t *,
pthread_mutex_t *,
 const struct timespec *);
extern int pthread_cond_wait(pthread_cond_t *, pthread_mutex_t
*);
extern int pthread_condattr_destroy(pthread_condattr_t *);
extern int pthread_condattr_init(pthread_condattr_t *);
extern int pthread_create(pthread_t *, const pthread_attr_t *,
 void *(*__pshared) (void *p1)
 , void *);
extern int pthread_detach(pthread_t);
extern int pthread_equal(pthread_t, pthread_t);
extern void pthread_exit(void *);
extern int pthread_getschedparam(pthread_t, int *, struct
sched_param *);
extern void *pthread_getspecific(pthread_key_t);
extern int pthread_join(pthread_t, void **);
extern int pthread_key_create(pthread_key_t *, void (*__pshared)
(void *)
);
extern int pthread_key_delete(pthread_key_t);
extern int pthread_mutex_destroy(pthread_mutex_t *);
extern int pthread_mutex_init(pthread_mutex_t *,
 const pthread_mutexattr_t *);
extern int pthread_mutex_lock(pthread_mutex_t *);
extern int pthread_mutex_trylock(pthread_mutex_t *);
extern int pthread_mutex_unlock(pthread_mutex_t *);

 © 2007 Linux Foundation 279

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

extern int pthread_mutexattr_destroy(pthread_mutexattr_t *);
extern int pthread_mutexattr_init(pthread_mutexattr_t *);
extern int pthread_once(pthread_once_t *, void (*__pshared)
(void)
);
extern int pthread_rwlock_destroy(pthread_rwlock_t *);
extern int pthread_rwlock_init(pthread_rwlock_t *,
 const pthread_rwlockattr_t *);
extern int pthread_rwlock_rdlock(pthread_rwlock_t *);
extern int pthread_rwlock_tryrdlock(pthread_rwlock_t *);
extern int pthread_rwlock_trywrlock(pthread_rwlock_t *);
extern int pthread_rwlock_unlock(pthread_rwlock_t *);
extern int pthread_rwlock_wrlock(pthread_rwlock_t *);
extern int pthread_rwlockattr_destroy(pthread_rwlockattr_t *);
extern int pthread_rwlockattr_getpshared(const
pthread_rwlockattr_t *,
 int *);
extern int pthread_rwlockattr_init(pthread_rwlockattr_t *);
extern int pthread_rwlockattr_setpshared(pthread_rwlockattr_t *,
int);
extern pthread_t pthread_self(void);
extern int pthread_setcancelstate(int, int *);
extern int pthread_setcanceltype(int, int *);
extern int pthread_setschedparam(pthread_t, int,
 const struct sched_param *);
extern int pthread_setspecific(pthread_key_t, const void *);
extern void pthread_testcancel(void);
extern int pthread_attr_getguardsize(const pthread_attr_t *,
size_t *);
extern int pthread_attr_setguardsize(pthread_attr_t *, size_t);
extern int pthread_attr_setstackaddr(pthread_attr_t *, void *);
extern int pthread_attr_getstackaddr(const pthread_attr_t *, void
**);
extern int pthread_attr_setstacksize(pthread_attr_t *, size_t);
extern int pthread_attr_getstacksize(const pthread_attr_t *,
size_t *);
extern int pthread_mutexattr_gettype(const pthread_mutexattr_t *,
int *);
extern int pthread_mutexattr_settype(pthread_mutexattr_t *, int);
extern int pthread_getconcurrency(void);
extern int pthread_setconcurrency(int);
extern int pthread_attr_getstack(const pthread_attr_t *, void **,
 size_t *);
extern int pthread_attr_setstack(pthread_attr_t *, void *,
size_t);
extern int pthread_condattr_getpshared(const pthread_condattr_t
*, int *);
extern int pthread_condattr_setpshared(pthread_condattr_t *,
int);
extern int pthread_mutexattr_getpshared(const pthread_mutexattr_t
*,
 int *);
extern int pthread_mutexattr_setpshared(pthread_mutexattr_t *,
int);
extern int pthread_rwlock_timedrdlock(pthread_rwlock_t *,
 const struct timespec *);
extern int pthread_rwlock_timedwrlock(pthread_rwlock_t *,
 const struct timespec *);
extern int __register_atfork(void (*__pshared) (void)
 , void (*__pshared) (void)
 , void (*__pshared) (void)
 , void *);
extern int pthread_setschedprio(pthread_t, int);

280 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

13.10.2 semaphore.h

typedef struct {
 struct _pthread_fastlock __sem_lock;
 int __sem_value;
 _pthread_descr __sem_waiting;
} sem_t;

#define SEM_FAILED ((sem_t*)0)

#define SEM_VALUE_MAX ((int)((~0u)>>1))

extern int sem_close(sem_t *);
extern int sem_destroy(sem_t *);
extern int sem_getvalue(sem_t *, int *);
extern int sem_init(sem_t *, int, unsigned int);
extern sem_t *sem_open(const char *, int, ...);
extern int sem_post(sem_t *);
extern int sem_trywait(sem_t *);
extern int sem_unlink(const char *);
extern int sem_wait(sem_t *);
extern int sem_timedwait(sem_t *, const struct timespec *);

13.11 Interface Definitions for libpthread
The interfaces defined on the following pages are included in libpthread and are
defined by this specification. Unless otherwise noted, these interfaces shall be
included in the source standard.

Other interfaces listed in Section 13.9 shall behave as described in the referenced
base document.

Description
The _pthread_cleanup_pop() function provides an implementation of the
pthread_cleanup_pop() macro described in ISO POSIX (2003).

_pthread_cleanup_pop

Name
_pthread_cleanup_pop — establish cancellation handlers

Synopsis
#include <pthread.h>
void _pthread_cleanup_pop(struct _pthread_cleanup_buffer *, int);

The _pthread_cleanup_pop() function is not in the source standard; it is only
in the binary standard.

 © 2007 Linux Foundation 281

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

_pthread_cleanup_push

Name
_pthread_cleanup_push — establish cancellation handlers

Synopsis
#include <pthread.h>
void _pthread_cleanup_push(struct _pthread_cleanup_buffer *, void
(*) (void *), void *);

Description
The _pthread_cleanup_push() function provides an implementation of the
pthread_cleanup_push() macro described in ISO POSIX (2003).

13.12 Interfaces for libgcc_s
Table 13-43 defines the library name and shared object name for the libgcc_s
library

The _pthread_cleanup_push() function is not in the source standard; it is only
in the binary standard.

Table 13-43 libgcc_s Definition

Library: libgcc_s

SONAME: libgcc_s.so.1

13.12.1 Unwind Library

13.12.1.1 Interfaces for Unwind Library
No external functions are defined for libgcc_s - Unwind Library in this part of
the specification. See also the relevant architecture specific part of this
specification.

13.13 Data Definitions for libgcc_s
This section defines global identifiers and their values that are associated with
interfaces contained in libgcc_s. These definitions are organized into groups that
correspond to system headers. This convention is used as a convenience for the
reader, and does not imply the existence of these headers, or their content.
Where an interface is defined as requiring a particular system header file all of
the data definitions for that system header file presented here shall be in effect.

This section gives data definitions to promote binary application portability, not
to repeat source interface definitions available elsewhere. System providers and
application developers should use this ABI to supplement - not to replace -
source interface definition specifications.

This specification uses the ISO C (1999) C Language as the reference
programming language, and data definitions are specified in ISO C format. The
C language is used here as a convenient notation. Using a C language
description of these data objects does not preclude their use by other
programming languages.

282 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

13.13.1 unwind.h

struct _Unwind_Context;

typedef void *_Unwind_Ptr;
typedef unsigned int _Unwind_Word;
typedef u_int64_t _Unwind_Exception_Class;

typedef enum {
 _URC_NO_REASON = 0,
 _URC_FOREIGN_EXCEPTION_CAUGHT = 1,
 _URC_FATAL_PHASE2_ERROR = 2,
 _URC_FATAL_PHASE1_ERROR = 3,
 _URC_NORMAL_STOP = 4,
 _URC_END_OF_STACK = 5,
 _URC_HANDLER_FOUND = 6,
 _URC_INSTALL_CONTEXT = 7,
 _URC_CONTINUE_UNWIND = 8
} _Unwind_Reason_Code;

typedef void (*_Unwind_Exception_Cleanup_Fn) (enum,
 struct
_Unwind_Exception *);

struct _Unwind_Exception {
 u_int64_t exception_class;
 _Unwind_Exception_Cleanup_Fn exception_cleanup;
 u_int64_t private_1;
 u_int64_t private_2;
};

#define _UA_SEARCH_PHASE 1
#define _UA_END_OF_STACK 16
#define _UA_CLEANUP_PHASE 2
#define _UA_HANDLER_FRAME 4
#define _UA_FORCE_UNWIND 8

typedef int _Unwind_Action;

13.14 Interfaces for libdl
Table 13-44 defines the library name and shared object name for the libdl library

Table 13-44 libdl Definition

Library: libdl

SONAME: libdl.so.2
The behavior of the interfaces in this library is specified by the following speci-
fications:

[LSB] This Specification
[SUSv3] ISO POSIX (2003)

13.14.1 Dynamic Loader

13.14.1.1 Interfaces for Dynamic Loader
An LSB conforming implementation shall provide the generic functions for
Dynamic Loader specified in Table 13-45, with the full mandatory functionality
as described in the referenced underlying specification.

 © 2007 Linux Foundation 283

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

Table 13-45 libdl - Dynamic Loader Function Interfaces

dladdr [LSB] dlclose [SUSv3] dlerror [SUSv3] dlopen [LSB]
 dlsym [LSB]

13.15 Data Definitions for libdl
This section defines global identifiers and their values that are associated with
interfaces contained in libdl. These definitions are organized into groups that
correspond to system headers. This convention is used as a convenience for the
reader, and does not imply the existence of these headers, or their content.
Where an interface is defined as requiring a particular system header file all of
the data definitions for that system header file presented here shall be in effect.

This section gives data definitions to promote binary application portability, not
to repeat source interface definitions available elsewhere. System providers and
application developers should use this ABI to supplement - not to replace -
source interface definition specifications.

This specification uses the ISO C (1999) C Language as the reference
programming language, and data definitions are specified in ISO C format. The
C language is used here as a convenient notation. Using a C language
description of these data objects does not preclude their use by other
programming languages.

The interfaces defined on the following pages are included in libdl and are
defined by this specification. Unless otherwise noted, these interfaces shall be
included in the source standard.

Other interfaces listed in Section 13.14 shall behave as described in the
referenced base document.

13.15.1 dlfcn.h

#define RTLD_NEXT ((void *) -1l)
#define RTLD_LOCAL 0
#define RTLD_LAZY 0x00001
#define RTLD_NOW 0x00002
#define RTLD_GLOBAL 0x00100

typedef struct {
 char *dli_fname;
 void *dli_fbase;
 char *dli_sname;
 void *dli_saddr;
} Dl_info;
extern int dladdr(const void *, Dl_info *);
extern int dlclose(void *);
extern char *dlerror(void);
extern void *dlopen(const char *, int);
extern void *dlsym(void *, const char *);

13.16 Interface Definitions for libdl

284 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

dladdr

Name
dladdr — find the shared object containing a given address

Synopsis
#include <dlfcn.h>

typedef struct {
 const char *dli_fname;
 void *dli_fbase;
 const char *dli_sname;
 void *dli_saddr;

 © 2007 Linux Foundation 285

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

} Dl_info;

int dladdr(const void * addr, Dl_info * dlip);

Description
The dladdr() function shall query the dynamic linker for information about the
shared object containing the address addr. The information shall be returned in
the user supplied data structure referenced by dlip.

The structure shall contain at least the following members:

dli_fname

 The pathname of the shared object containing the address

dli_fbase

 The base address at which the shared object is mapped into the address
space of the calling process.

dli_sname

 The name of the nearest runtime symbol with value less than or equal to
addr. Where possible, the symbol name shall be returned as it would
appear in C source code.

If no symbol with a suitable value is found, both this field and dli_saddr
shall be set to NULL.

dli_saddr

 The address of the symbol returned in dli_sname. This address has type
"pointer to type", where type is the type of the symbol dli_sname.

Example: If the symbol in dli_sname is a function, then the type of dli_saddr is of
type "pointer to function".

The behavior of dladdr() is only specified in dynamically linked programs.

Return Value
On success, dladdr() shall return non-zero, and the structure referenced by
dlip shall be filled in as described. Otherwise, dladdr() shall return zero, and
the cause of the error can be fetched with dlerror().

Errors
See dlerror().

Environment

LD_LIBRARY_PATH

 directory search-path for object files

286 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

dlopen

Name
dlopen — open dynamic object

Synopsis
#include <dlfcn.h>

void * dlopen(const char * filename, int flag);

Description
The dlopen() function shall behave as specified in ISO POSIX (2003), but with
additional behaviors listed below.

Description
dlsym() is as specified in the ISO POSIX (2003), but with differences as listed
below.

The special purpose value for handle RTLD_NEXT
The value RTLD_NEXT, which is reserved for future use shall be available, with
the behavior as described in ISO POSIX (2003).

13.17 Interfaces for librt
Table 13-46 defines the library name and shared object name for the librt library

If the file argument does not contain a slash character, then the system shall
look for a library of that name in at least the following directories, and use the
first one which is found:

• The directories specified by the DT_RPATH dynamic entry.

• The directories specified in the LD_LIBRARY_PATH environment variable
(which is a colon separated list of pathnames). This step shall be skipped for
setuid and setgid executables.

• A set of directories sufficient to contain the libraries specified in this standard.

Note: Traditionally, /lib and /usr/lib. This case would also cover cases in which
the system used the mechanism of /etc/ld.so.conf and /etc/ld.so.cache to
provide access.

Example: An application which is not linked against libm may choose to dlopen
libm.

dlsym

Name
dlsym — obtain the address of a symbol from a dlopen object

Table 13-46 librt Definition

Library: librt

SONAME: librt.so.1

 © 2007 Linux Foundation 287

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

The behavior of the interfaces in this library is specified by the following speci-
fications:

[SUSv3] ISO POSIX (2003)

13.17.1 Shared Memory Objects

13.17.1.1 Interfaces for Shared Memory Objects
An LSB conforming implementation shall provide the generic functions for
Shared Memory Objects specified in Table 13-47, with the full mandatory
functionality as described in the referenced underlying specification.

Table 13-47 librt - Shared Memory Objects Function Interfaces

shm_open
[SUSv3]

shm_unlink
[SUSv3]

13.17.2 Clock

13.17.2.1 Interfaces for Clock
An LSB conforming implementation shall provide the generic functions for
Clock specified in Table 13-48, with the full mandatory functionality as
described in the referenced underlying specification.

Table 13-48 librt - Clock Function Interfaces

clock_getcpucloc
kid [SUSv3]

clock_getres
[SUSv3]

clock_gettime
[SUSv3]

clock_nanosleep
[SUSv3]

 clock_settime
[SUSv3]

13.17.3 Timers

13.17.3.1 Interfaces for Timers
An LSB conforming implementation shall provide the generic functions for
Timers specified in Table 13-49, with the full mandatory functionality as
described in the referenced underlying specification.

Table 13-49 librt - Timers Function Interfaces

timer_create
[SUSv3]

timer_delete
[SUSv3]

timer_getoverru
n [SUSv3]

timer_gettime
[SUSv3]

 timer_settime
[SUSv3]

13.17.4 Message Queues

13.17.4.1 Interfaces for Message Queues
An LSB conforming implementation shall provide the generic functions for
Message Queues specified in Table 13-50, with the full mandatory functionality
as described in the referenced underlying specification.

288 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

Table 13-50 librt - Message Queues Function Interfaces

mq_close(GLIBC
_2.3.4) [SUSv3]

mq_getattr(GLIB
C_2.3.4) [SUSv3]

mq_notify(GLIB
C_2.3.4) [SUSv3]

mq_open(GLIBC
_2.3.4) [SUSv3]

mq_receive(GLIB
C_2.3.4) [SUSv3]

mq_send(GLIBC
_2.3.4) [SUSv3]

mq_setattr(GLIB
C_2.3.4) [SUSv3]

mq_timedreceive
(GLIBC_2.3.4)
[SUSv3]

mq_unlink(GLIB
C_2.3.4) [SUSv3]

 mq_timedsend(G
LIBC_2.3.4)
[SUSv3]

13.18 Data Definitions for librt
This section defines global identifiers and their values that are associated with
interfaces contained in librt. These definitions are organized into groups that
correspond to system headers. This convention is used as a convenience for the
reader, and does not imply the existence of these headers, or their content.
Where an interface is defined as requiring a particular system header file all of
the data definitions for that system header file presented here shall be in effect.

This section gives data definitions to promote binary application portability, not
to repeat source interface definitions available elsewhere. System providers and
application developers should use this ABI to supplement - not to replace -
source interface definition specifications.

This specification uses the ISO C (1999) C Language as the reference
programming language, and data definitions are specified in ISO C format. The
C language is used here as a convenient notation. Using a C language
description of these data objects does not preclude their use by other
programming languages.

13.18.1 mqueue.h

typedef int mqd_t;
struct mq_attr {
 long int mq_flags;
 long int mq_maxmsg;
 long int mq_msgsize;
 long int mq_curmsgs;
 long int __pad[4];
};
extern int mq_close(mqd_t);
extern int mq_getattr(mqd_t, struct mq_attr *);
extern int mq_notify(mqd_t, const struct sigevent *);
extern mqd_t mq_open(const char *, int, ...);
extern ssize_t mq_receive(mqd_t, char *, size_t, unsigned int *);
extern int mq_send(mqd_t, const char *, size_t, unsigned int);
extern int mq_setattr(mqd_t, const struct mq_attr *, struct
mq_attr *);
extern ssize_t mq_timedreceive(mqd_t, char *, size_t, unsigned
int *,
 const struct timespec *);
extern int mq_timedsend(mqd_t, const char *, size_t, unsigned
int,
 const struct timespec *);
extern int mq_unlink(const char *);

 © 2007 Linux Foundation 289

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

13.19 Interfaces for libcrypt
Table 13-51 defines the library name and shared object name for the libcrypt
library

Table 13-51 libcrypt Definition

Library: libcrypt

SONAME: libcrypt.so.1
The behavior of the interfaces in this library is specified by the following speci-
fications:

[SUSv3] ISO POSIX (2003)

13.19.1 Encryption

13.19.1.1 Interfaces for Encryption
An LSB conforming implementation shall provide the generic functions for
Encryption specified in Table 13-52, with the full mandatory functionality as
described in the referenced underlying specification.

Table 13-52 libcrypt - Encryption Function Interfaces

crypt [SUSv3] encrypt [SUSv3] setkey [SUSv3]

13.20 Interfaces for libpam
Table 13-53 defines the library name and shared object name for the libpam
library

Table 13-53 libpam Definition

Library: libpam

SONAME: libpam.so.0
The Pluggable Authentication Module (PAM) interfaces allow applications to
request authentication via a system administrator defined mechanism, known
as a service.

A single service name, other, shall always be present. The behavior of this
service shall be determined by the system administrator. Additional service
names may also exist.

Note: Future versions of this specification might define additional service names.

The behavior of the interfaces in this library is specified by the following speci-
fications:

[LSB] This Specification

13.20.1 Pluggable Authentication API

13.20.1.1 Interfaces for Pluggable Authentication API
An LSB conforming implementation shall provide the generic functions for
Pluggable Authentication API specified in Table 13-54, with the full mandatory
functionality as described in the referenced underlying specification.

290 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

Table 13-54 libpam - Pluggable Authentication API Function Interfaces

pam_acct_mgmt
[LSB]

pam_authenticat
e [LSB]

pam_chauthtok
[LSB]

pam_close_sessio
n [LSB]

pam_end [LSB] pam_fail_delay
[LSB]

pam_get_item
[LSB]

pam_getenv
[LSB]

pam_getenvlist
[LSB]

pam_open_sessio
n [LSB]

pam_putenv
[LSB]

pam_set_item
[LSB]

pam_start [LSB] pam_strerror
[LSB]

 pam_setcred
[LSB]

13.21 Data Definitions for libpam
This section defines global identifiers and their values that are associated with
interfaces contained in libpam. These definitions are organized into groups that
correspond to system headers. This convention is used as a convenience for the
reader, and does not imply the existence of these headers, or their content.
Where an interface is defined as requiring a particular system header file all of
the data definitions for that system header file presented here shall be in effect.

This section gives data definitions to promote binary application portability, not
to repeat source interface definitions available elsewhere. System providers and
application developers should use this ABI to supplement - not to replace -
source interface definition specifications.

This specification uses the ISO C (1999) C Language as the reference
programming language, and data definitions are specified in ISO C format. The
C language is used here as a convenient notation. Using a C language
description of these data objects does not preclude their use by other
programming languages.

13.21.1 security/pam_appl.h

typedef struct pam_handle pam_handle_t;
struct pam_message {
 int msg_style;
 const char *msg;
};
struct pam_response {
 char *resp;
 int resp_retcode;
};

struct pam_conv {
 int (*conv) (int num_msg, const struct pam_message * *msg,
 struct pam_response * *resp, void *appdata_ptr);
 void *appdata_ptr;
};

#define PAM_PROMPT_ECHO_OFF 1
#define PAM_PROMPT_ECHO_ON 2
#define PAM_ERROR_MSG 3
#define PAM_TEXT_INFO 4

#define PAM_SERVICE 1
#define PAM_USER 2
#define PAM_TTY 3
#define PAM_RHOST 4

 © 2007 Linux Foundation 291

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

#define PAM_CONV 5
#define PAM_RUSER 8
#define PAM_USER_PROMPT 9

#define PAM_SUCCESS 0
#define PAM_OPEN_ERR 1
#define PAM_USER_UNKNOWN 10
#define PAM_MAXTRIES 11
#define PAM_NEW_AUTHTOK_REQD 12
#define PAM_ACCT_EXPIRED 13
#define PAM_SESSION_ERR 14
#define PAM_CRED_UNAVAIL 15
#define PAM_CRED_EXPIRED 16
#define PAM_CRED_ERR 17
#define PAM_CONV_ERR 19
#define PAM_SYMBOL_ERR 2
#define PAM_AUTHTOK_ERR 20
#define PAM_AUTHTOK_RECOVER_ERR 21
#define PAM_AUTHTOK_LOCK_BUSY 22
#define PAM_AUTHTOK_DISABLE_AGING 23
#define PAM_TRY_AGAIN 24
#define PAM_ABORT 26
#define PAM_AUTHTOK_EXPIRED 27
#define PAM_BAD_ITEM 29
#define PAM_SERVICE_ERR 3
#define PAM_SYSTEM_ERR 4
#define PAM_BUF_ERR 5
#define PAM_PERM_DENIED 6
#define PAM_AUTH_ERR 7
#define PAM_CRED_INSUFFICIENT 8
#define PAM_AUTHINFO_UNAVAIL 9

#define PAM_DISALLOW_NULL_AUTHTOK 0x0001U
#define PAM_ESTABLISH_CRED 0x0002U
#define PAM_DELETE_CRED 0x0004U
#define PAM_REINITIALIZE_CRED 0x0008U
#define PAM_REFRESH_CRED 0x0010U
#define PAM_CHANGE_EXPIRED_AUTHTOK 0x0020U
#define PAM_SILENT 0x8000U

extern int pam_set_item(pam_handle_t *, int, const void *);
extern int pam_get_item(const pam_handle_t *, int, const void
**);
extern const char *pam_strerror(pam_handle_t *, int);
extern char **pam_getenvlist(pam_handle_t *);
extern int pam_fail_delay(pam_handle_t *, unsigned int);
extern int pam_start(const char *, const char *, const struct
pam_conv *,
 pam_handle_t * *);
extern int pam_end(pam_handle_t *, int);
extern int pam_authenticate(pam_handle_t *, int);
extern int pam_setcred(pam_handle_t *, int);
extern int pam_acct_mgmt(pam_handle_t *, int);
extern int pam_open_session(pam_handle_t *, int);
extern int pam_close_session(pam_handle_t *, int);
extern int pam_chauthtok(pam_handle_t *, int);
extern const char *pam_getenv(const pam_handle_t *, const char
*);
extern int pam_putenv(const pam_handle_t *, const char *);

13.22 Interface Definitions for libpam
The interfaces defined on the following pages are included in libpam and are
defined by this specification. Unless otherwise noted, these interfaces shall be
included in the source standard.

292 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

Other interfaces listed in Section 13.20 shall behave as described in the
referenced base document.

pam_acct_mgmt

Name
pam_acct_mgmt — establish the status of a user's account

Synopsis
#include <security/pam_appl.h>
int pam_acct_mgmt(pam_handle_t * pamh, int flags);

Description
pam_acct_mgmt() establishes the account's usability and the user's accessibility
to the system. It is typically called after the user has been authenticated.

flags may be specified as any valid flag (namely, one of those applicable to the
flags argument of pam_authenticate()). Additionally, the value of flags
may be logically or'd with PAM_SILENT.

Return Value

PAM_SUCCESS

 Success.

PAM_NEW_AUTHTOK_REQD

 User is valid, but user's authentication token has expired. The correct
response to this return-value is to require that the user satisfy the
pam_chauthtok() function before obtaining service. It may not be possible
for an application to do this. In such a case, the user should be denied
access until the account password is updated.

PAM_ACCT_EXPIRED

 User is no longer permitted access to the system.

PAM_AUTH_ERR

 Authentication error.

PAM_PERM_DENIED

 User is not permitted to gain access at this time.

PAM_USER_UNKNOWN

 User is not known to a module's account management component.

Note: Errors may be translated to text with pam_strerror().

 © 2007 Linux Foundation 293

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

pam_authenticate

Name
pam_authenticate — authenticate the user

Synopsis
#include <security/pam_appl.h>
int pam_authenticate(pam_handle_t * pamh, int flags);

Description
pam_authenticate() serves as an interface to the authentication mechanisms
of the loaded modules.

flags is an optional parameter that may be specified by the following value:

PAM_DISALLOW_NULL_AUTHTOK

 Instruct the authentication modules to return PAM_AUTH_ERR if the user
does not have a registered authorization token.

Additionally, the value of flags may be logically or'd with PAM_SILENT.

The process may need to be privileged in order to successfully call this function.

Return Value

PAM_SUCCESS

 Success.

PAM_AUTH_ERR

 User was not authenticated or process did not have sufficient privileges to
perform authentication.

PAM_CRED_INSUFFICIENT

 Application does not have sufficient credentials to authenticate the user.

PAM_AUTHINFO_UNAVAIL

 Modules were not able to access the authentication information. This might
be due to a network or hardware failure, etc.

PAM_USER_UNKNOWN

 Supplied username is not known to the authentication service.

PAM_MAXTRIES

 One or more authentication modules has reached its limit of tries
authenticating the user. Do not try again.

PAM_ABORT

 One or more authentication modules failed to load.

Note: Errors may be translated to text with pam_strerror().

294 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

pam_chauthtok

Name
pam_chauthtok — change the authentication token for a given user

Synopsis
#include <security/pam_appl.h>
int pam_chauthtok(pam_handle_t * pamh, const int flags);

Description
pam_chauthtok() is used to change the authentication token for a given user as
indicated by the state associated with the handle pamh.

flags is an optional parameter that may be specified by the following value:

PAM_CHANGE_EXPIRED_AUTHTOK

 User's authentication token should only be changed if it has expired.

Additionally, the value of flags may be logically or'd with PAM_SILENT.

RETURN VALUE

PAM_SUCCESS

 Success.

PAM_AUTHTOK_ERR

 A module was unable to obtain the new authentication token.

PAM_AUTHTOK_RECOVER_ERR

 A module was unable to obtain the old authentication token.

PAM_AUTHTOK_LOCK_BUSY

 One or more modules were unable to change the authentication token since
it is currently locked.

PAM_AUTHTOK_DISABLE_AGING

 Authentication token aging has been disabled for at least one of the
modules.

PAM_PERM_DENIED

 Permission denied.

PAM_TRY_AGAIN

 Not all modules were in a position to update the authentication token(s). In
such a case, none of the user's authentication tokens are updated.

PAM_USER_UNKNOWN

 User is not known to the authentication token changing service.

Note: Errors may be translated to text with pam_strerror().

 © 2007 Linux Foundation 295

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

pam_close_session

Name
pam_close_session — indicate that an authenticated session has ended

Synopsis
#include <security/pam_appl.h>
int pam_close_session(pam_handle_t * pamh, int flags);

Description
pam_close_session() is used to indicate that an authenticated session has
ended. It is used to inform the module that the user is exiting a session. It
should be possible for the PAM library to open a session and close the same
session from different applications.

flags may have the value PAM_SILENT to indicate that no output should be
generated as a result of this function call.

Return Value

PAM_SUCCESS

 Success.

PAM_SESSION_ERR

 One of the required loaded modules was unable to close a session for the
user.

Note: Errors may be translated to text with pam_strerror().

pam_end

Name
pam_end — terminate the use of the PAM library

Synopsis
#include <security/pam_appl.h>
int pam_end(pam_handle_t * pamh, int pam_status);

Description
pam_end() terminates use of the PAM library. On success, the contents of *pamh
are no longer valid, and all memory associated with it is invalid.

Normally, pam_status is passed the value PAM_SUCCESS, but in the event of an
unsuccessful service application, the appropriate PAM error return value
should be used.

Return Value

PAM_SUCCESS

 Success.

Note: Errors may be translated to text with pam_strerror().

296 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

pam_fail_delay

Name
pam_fail_delay — specify delay time to use on authentication error

Synopsis
#include <security/pam_appl.h>
int pam_fail_delay(pam_handle_t * pamh, unsigned int micro_sec);

Description
pam_fail_delay() specifies the minimum delay for the PAM library to use
when an authentication error occurs. The actual delay can vary by as much at
25%. If this function is called multiple times, the longest time specified by any of
the call will be used.

The delay is invoked if an authentication error occurs during the
pam_authenticate() or pam_chauthtok() function calls.

Independent of the success of pam_authenticate() or pam_chauthtok(), the
delay time is reset to its default value of 0 when the PAM library returns control
to the application from these two functions.

Return Value

PAM_SUCCESS

 Success.

Note: Errors may be translated to text with pam_strerror().

 © 2007 Linux Foundation 297

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

pam_get_item

Name
pam_get_item — obtain the value of the indicated item.

Synopsis
#include <security/pam_appl.h>
int pam_get_item(const pam_handle_t * pamh, int item_type, const void
* * item);

Description
pam_get_item() obtains the value of the indicated item_type. The possible
values of item_type are the same as listed for pam_set_item().

On success, item contains a pointer to the value of the corresponding item. Note
that this is a pointer to the actual data and should not be free()'d or over-
written.

Return Value

PAM_SUCCESS

 Success.

PAM_PERM_DENIED

 Application passed a NULL pointer for item.

PAM_BAD_ITEM

 Application attempted to get an undefined item.

Note: Errors may be translated to text with pam_strerror().

pam_getenv

Name
pam_getenv — get a PAM environment variable

Synopsis
#include <security/pam_appl.h>
const char * pam_getenv(const pam_handle_t * pamh, const char *
name);

Description
The pam_getenv() function shall search the environment associated with the
PAM handle pamh for the environment variable name. If the specified
environment variable cannot be found, a null pointer shall be returned. The
application shall ensure that it does not modify the string pointed to by the
pam_getenv() function.

Return Value
On success, pam_getenv() returns a pointer to a string of the form name=value.

298 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

pam_getenvlist

Name
pam_getenvlist — returns a pointer to the complete PAM environment.

Synopsis
#include <security/pam_appl.h>
char * const * pam_getenvlist(pam_handle_t * pamh);

Description
pam_getenvlist() returns a pointer to the complete PAM environment. This
pointer points to an array of pointers to NUL-terminated strings and must be
terminated by a NULL pointer. Each string has the form "name=value".

The PAM library module allocates memory for the returned value and the
associated strings. The calling application is responsible for freeing this
memory.

Return Value
pam_getenvlist() returns an array of string pointers containing the PAM
environment. On error, NULL is returned.

pam_open_session

Name
pam_open_session — indicate session has started

Synopsis
#include <security/pam_appl.h>
int pam_open_session(pam_handle_t * pamh, int flags);

Description
The pam_open_session() function is used to indicate that an authenticated
session has begun, after the user has been identified (see pam_authenticate())
and, if necessary, granted credentials (see pam_setcred()). It is used to inform
the module that the user is currently in a session. It should be possible for the
PAM library to open a session and close the same session from different
applications.

flags may have the value PAM_SILENT to indicate that no output be generated
as a result of this function call.

Return Value

PAM_SUCCESS

 Success.

PAM_SESSION_ERR

 One of the loaded modules was unable to open a session for the user.

Note: Errors may be translated to text with pam_strerror().

 © 2007 Linux Foundation 299

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

pam_putenv

Name
pam_putenv — Add, replace or delete a PAM environment variable

Synopsis
#include <security/pam_appl.h>
int pam_putenv(const pam_handle_t * pamh, const char * name_value);

Description
The pam_putenv() function shall modify the environment list associated with
pamh. If name_value contains an '=' character, the characters to the left of the
first '=' character represent the name, and the remaining characters after the
'=' represent the value.

If the name environment variable exists in the environment associated with
pamh, it shall be modified to have the value value. Otherwise, the name shall be
added to the environment associated with pamh with the value value.

If there is no '=' character in name_value, the variable in the environment
associated with pamh named name_value shall be deleted.

Return Value
On success, the pam_putenv() function shall return PAM_SUCCESS. Otherwise
the return value indicates the error:

PAM_PERM_DENIED

 The name_value argument is a null pointer.

PAM_BAD_ITEM

 The PAM environment varable named name_value does not exist and
therefore cannot be deleted.

PAM_ABORT

 The PAM handle identifed by pamh is corrupt.

PAM_BUF_ERR

 Memory buffer error.

300 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

pam_set_item

Name
pam_set_item — (re)set the value of an item.

Synopsis
#include <security/pam_appl.h>
int pam_set_item(pam_handle_t * pamh, int item_type, const void *
item);

Description
pam_set_item() (re)sets the value of one of the following item_types:

PAM_SERVICE

 service name

PAM_USER

 user name

PAM_TTY

 terminal name

The value for a device file should include the /dev/ prefix. The value for
graphical, X-based, applications should be the $DISPLAY variable.

PAM_RHOST

 remote host name

PAM_CONV

 conversation structure

PAM_RUSER

 remote user name

PAM_USER_PROMPT

 string to be used when prompting for a user's name

The default value for this string is Please enter username: .

For all item_types other than PAM_CONV, item is a pointer to a NULL-terminated
character string. In the case of PAM_CONV, item points to an initialized pam_conv
structure.

Return Value

PAM_SUCCESS

 Success.

PAM_PERM_DENIED

 An attempt was made to replace the conversation structure with a NULL
value.

PAM_BUF_ERR

 © 2007 Linux Foundation 301

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

 Function ran out of memory making a copy of the item.

PAM_BAD_ITEM

 Application attempted to set an undefined item.

Note: Errors may be translated to text with pam_strerror().

302 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

pam_setcred

Name
pam_setcred — set the module-specific credentials of the user

Synopsis
#include <security/pam_appl.h>
extern int pam_setcred(pam_handle_t * pamh, int flags);

Description
pam_setcred() sets the module-specific credentials of the user. It is usually
called after the user has been authenticated, after the account management
function has been called and after a session has been opened for the user.

flags maybe specified from among the following values:

PAM_ESTABLISH_CRED

 set credentials for the authentication service

PAM_DELETE_CRED

 delete credentials associated with the authentication service

PAM_REINITIALIZE_CRED

 reinitialize the user credentials

PAM_REFRESH_CRED

 extend lifetime of the user credentials

Additionally, the value of flags may be logically or'd with PAM_SILENT.

Return Value

PAM_SUCCESS

 Success.

PAM_CRED_UNAVAIL

 Module cannot retrieve the user's credentials.

PAM_CRED_EXPIRED

 User's credentials have expired.

PAM_USER_UNKNOWN

 User is not known to an authentication module.

PAM_CRED_ERR

 Module was unable to set the credentials of the user.

Note: Errors may be translated to text with pam_strerror().

 © 2007 Linux Foundation 303

13 Base Libraries ISO/IEC 23360 Part 1:2007(E)

pam_start

Name
pam_start — initialize the PAM library

Synopsis
#include <security/pam_appl.h>
int pam_start(const char * service_name, const char * user, const
struct pam_conv * pam_conversation, pam_handle_t * * pamh);

Description
pam_start() is used to initialize the PAM library. It must be called prior to any
other usage of the PAM library. On success, *pamh becomes a handle that
provides continuity for successive calls to the PAM library. pam_start()
expects arguments as follows: the service_name of the program, the username
of the individual to be authenticated, a pointer to an application-supplied
pam_conv structure, and a pointer to a pam_handle_t pointer.

An application must provide the conversation function used for direct
communication between a loaded module and the application. The application
also typically provides a means for the module to prompt the user for a
password, etc.

The structure, pam_conv, is defined to be,

 struct pam_conv {
 int (*conv) (int num_msg,
 const struct pam_message * *msg,
 struct pam_response * *resp,
 void *appdata_ptr);
 void *appdata_ptr;

304 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 13 Base Libraries

 };

It is initialized by the application before it is passed to the library. The contents
of this structure are attached to the *pamh handle. The point of this argument is
to provide a mechanism for any loaded module to interact directly with the
application program; this is why it is called a conversation structure.

When a module calls the referenced conv() function, appdata_ptr is set to the
second element of this structure.

The other arguments of a call to conv() concern the information exchanged by
module and application. num_msg holds the length of the array of pointers
passed via msg. On success, the pointer resp points to an array of num_msg
pam_response structures, holding the application-supplied text. Note that resp
is a struct pam_response array and not an array of pointers.

Return Value

PAM_SUCCESS

 Success.

PAM_BUF_ERR

 Memory allocation error.

PAM_ABORT

 Internal failure.

ERRORS
May be translated to text with pam_strerror().

pam_strerror

Name
pam_strerror — returns a string describing the PAM error

Synopsis
#include <security/pam_appl.h>
const char * pam_strerror(pam_handle_t * pamh, int errnum);

Description
pam_strerror() returns a string describing the PAM error associated with
errnum.

Return Value
On success, this function returns a description of the indicated error. The
application should not free or modify this string. Otherwise, a string indicating
that the error is unknown shall be returned. It is unspecified whether or not the
string returned is translated according to the setting of LC_MESSAGES.

 © 2007 Linux Foundation 305

IV Utility Libraries

 ISO/IEC 23360 Part 1:2007(E)

14 Utility Libraries

14.1 Introduction
An LSB-conforming implementation shall also support the following utility
libraries which are built on top of the interfaces provided by the base libraries.
These libraries implement common functionality, and hide additional system
dependent information such as file formats and device names.

• libz

• libcurses

• libutil

The structure of the definitions for these libraries follows the same model as
used for Base Libraries.

14.2 Interfaces for libz
Table 14-1 defines the library name and shared object name for the libz library

Table 14-1 libz Definition

Library: libz

SONAME: libz.so.1
The behavior of the interfaces in this library is specified by the following speci-
fications:

[LSB] This Specification

14.2.1 Compression Library

14.2.1.1 Interfaces for Compression Library
An LSB conforming implementation shall provide the generic functions for
Compression Library specified in Table 14-2, with the full mandatory
functionality as described in the referenced underlying specification.

Table 14-2 libz - Compression Library Function Interfaces

adler32 [LSB] compress [LSB] compress2 [LSB] compressBound
[LSB]

crc32 [LSB] deflate [LSB] deflateBound
[LSB]

deflateCopy
[LSB]

deflateEnd [LSB] deflateInit2_
[LSB]

deflateInit_ [LSB] deflateParams
[LSB]

deflateReset
[LSB]

deflateSetDiction
ary [LSB]

get_crc_table
[LSB]

gzclose [LSB]

gzdopen [LSB] gzeof [LSB] gzerror [LSB] gzflush [LSB]

gzgetc [LSB] gzgets [LSB] gzopen [LSB] gzprintf [LSB]

gzputc [LSB] gzputs [LSB] gzread [LSB] gzrewind [LSB]

gzseek [LSB] gzsetparams gztell [LSB] gzwrite [LSB]

 © 2007 Linux Foundation 307

14 Utility Libraries ISO/IEC 23360 Part 1:2007(E)

[LSB]

inflate [LSB] inflateEnd [LSB] inflateInit2_
[LSB]

inflateInit_ [LSB]

inflateReset
[LSB]

inflateSetDiction
ary [LSB]

inflateSync [LSB] inflateSyncPoint
[LSB]

zError [LSB] zlibVersion [LSB]
 uncompress

[LSB]

14.3 Data Definitions for libz
This section defines global identifiers and their values that are associated with
interfaces contained in libz. These definitions are organized into groups that
correspond to system headers. This convention is used as a convenience for the
reader, and does not imply the existence of these headers, or their content.
Where an interface is defined as requiring a particular system header file all of
the data definitions for that system header file presented here shall be in effect.

This section gives data definitions to promote binary application portability, not
to repeat source interface definitions available elsewhere. System providers and
application developers should use this ABI to supplement - not to replace -
source interface definition specifications.

This specification uses the ISO C (1999) C Language as the reference
programming language, and data definitions are specified in ISO C format. The
C language is used here as a convenient notation. Using a C language
description of these data objects does not preclude their use by other
programming languages.

14.3.1 zlib.h
In addition to the values below, the zlib.h header shall define the
ZLIB_VERSION macro. This macro may be used to check that the version of the
library at run time matches that at compile time.

See also the zlibVersion() function, which returns the library version at run
time. The first character of the version at compile time should always match the
first character at run time.

#define Z_NULL 0
#define MAX_WBITS 15
#define MAX_MEM_LEVEL 9
#define
deflateInit2(strm,level,method,windowBits,memLevel,strategy) \

deflateInit2_((strm),(level),(method),(windowBits),(memLevel),(st
rategy),ZLIB_VERSION,sizeof(z_stream))
#define deflateInit(strm,level) \
 deflateInit_((strm), (level), ZLIB_VERSION,
sizeof(z_stream))
#define inflateInit2(strm,windowBits) \
 inflateInit2_((strm), (windowBits), ZLIB_VERSION,
sizeof(z_stream))
#define inflateInit(strm) \
 inflateInit_((strm), ZLIB_VERSION,
sizeof(z_stream))

typedef char charf;
typedef int intf;

308 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 14 Utility Libraries

typedef void *voidpf;
typedef unsigned int uInt;
typedef unsigned long int uLong;
typedef uLong uLongf;
typedef void *voidp;
typedef unsigned char Byte;
typedef off_t z_off_t;
typedef void *const voidpc;

typedef voidpf(*alloc_func) (voidpf opaque, uInt items, uInt
size);
typedef void (*free_func) (voidpf opaque, voidpf address);
struct internal_state {
 int dummy;
};
typedef Byte Bytef;
typedef uInt uIntf;

typedef struct z_stream_s {
 Bytef *next_in;
 uInt avail_in;
 uLong total_in;
 Bytef *next_out;
 uInt avail_out;
 uLong total_out;
 char *msg;
 struct internal_state *state;
 alloc_func zalloc;
 free_func zfree;
 voidpf opaque;
 int data_type;
 uLong adler;
 uLong reserved;
} z_stream;

typedef z_stream *z_streamp;
typedef voidp gzFile;

#define Z_NO_FLUSH 0
#define Z_PARTIAL_FLUSH 1
#define Z_SYNC_FLUSH 2
#define Z_FULL_FLUSH 3
#define Z_FINISH 4
#define Z_BLOCK 5

#define Z_ERRNO (-1)
#define Z_STREAM_ERROR (-2)
#define Z_DATA_ERROR (-3)
#define Z_MEM_ERROR (-4)
#define Z_BUF_ERROR (-5)
#define Z_VERSION_ERROR (-6)
#define Z_OK 0
#define Z_STREAM_END 1
#define Z_NEED_DICT 2

#define Z_DEFAULT_COMPRESSION (-1)
#define Z_NO_COMPRESSION 0
#define Z_BEST_SPEED 1
#define Z_BEST_COMPRESSION 9

#define Z_DEFAULT_STRATEGY 0
#define Z_FILTERED 1
#define Z_HUFFMAN_ONLY 2

#define Z_BINARY 0

 © 2007 Linux Foundation 309

14 Utility Libraries ISO/IEC 23360 Part 1:2007(E)

#define Z_ASCII 1
#define Z_UNKNOWN 2

#define Z_DEFLATED 8

extern int gzread(gzFile, voidp, unsigned int);
extern int gzclose(gzFile);
extern gzFile gzopen(const char *, const char *);
extern gzFile gzdopen(int, const char *);
extern int gzwrite(gzFile, voidpc, unsigned int);
extern int gzflush(gzFile, int);
extern const char *gzerror(gzFile, int *);
extern uLong adler32(uLong, const Bytef *, uInt);
extern int compress(Bytef *, uLongf *, const Bytef *, uLong);
extern int compress2(Bytef *, uLongf *, const Bytef *, uLong,
int);
extern uLong crc32(uLong, const Bytef *, uInt);
extern int deflate(z_streamp, int);
extern int deflateCopy(z_streamp, z_streamp);
extern int deflateEnd(z_streamp);
extern int deflateInit2_(z_streamp, int, int, int, int, int,
const char *,
 int);
extern int deflateInit_(z_streamp, int, const char *, int);
extern int deflateParams(z_streamp, int, int);
extern int deflateReset(z_streamp);
extern int deflateSetDictionary(z_streamp, const Bytef *, uInt);
extern const uLongf *get_crc_table(void);
extern int gzeof(gzFile);
extern int gzgetc(gzFile);
extern char *gzgets(gzFile, char *, int);
extern int gzprintf(gzFile, const char *, ...);
extern int gzputc(gzFile, int);
extern int gzputs(gzFile, const char *);
extern int gzrewind(gzFile);
extern z_off_t gzseek(gzFile, z_off_t, int);
extern int gzsetparams(gzFile, int, int);
extern z_off_t gztell(gzFile);
extern int inflate(z_streamp, int);
extern int inflateEnd(z_streamp);
extern int inflateInit2_(z_streamp, int, const char *, int);
extern int inflateInit_(z_streamp, const char *, int);
extern int inflateReset(z_streamp);
extern int inflateSetDictionary(z_streamp, const Bytef *, uInt);
extern int inflateSync(z_streamp);
extern int inflateSyncPoint(z_streamp);
extern int uncompress(Bytef *, uLongf *, const Bytef *, uLong);
extern const char *zError(int);
extern const char *zlibVersion(void);
extern uLong deflateBound(z_streamp, uLong);
extern uLong compressBound(uLong);

14.4 Interface Definitions for libz
The interfaces defined on the following pages are included in libz and are
defined by this specification. Unless otherwise noted, these interfaces shall be
included in the source standard.

Other interfaces listed in Section 14.2 shall behave as described in the referenced
base document.

310 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 14 Utility Libraries

adler32

Name
adler32 — compute Adler 32 Checksum

Synopsis
#include <zlib.h>
uLong adler32(uLong adler, const Bytef * buf, uInt len);

Description
The adler32() function shall compute a running Adler-32 checksum (as
described in RFC 1950: ZLIB Compressed Data Format Specication). On entry,
adler is the previous value for the checksum, and buf shall point to an array of
len bytes of data to be added to this checksum. The adler32() function shall
return the new checksum.

If buf is NULL (or Z_NULL), adler32() shall return the initial checksum.

Return Value
The adler32() function shall return the new checksum value.

Errors
None defined.

Application Usage (informative)
The following code fragment demonstrates typical usage of the adler32()
function:

 uLong adler = adler32(0L, Z_NULL, 0);

 while (read_buffer(buffer, length) != EOF) {
 adler = adler32(adler, buffer, length);
 }
 if (adler != original_adler) error();

 © 2007 Linux Foundation 311

14 Utility Libraries ISO/IEC 23360 Part 1:2007(E)

compress

Name
compress — compress data

Synopsis
#include <zlib.h>
int compress(Bytef * dest, uLongf * destLen, const Bytef * source,
uLong sourceLen);

Description
The compress() function shall attempt to compress sourceLen bytes of data in
the buffer source, placing the result in the buffer dest.

On entry, destLen should point to a value describing the size of the dest
buffer. The application should ensure that this value be at least (sourceLen ×
1.001) + 12. On successful exit, the variable referenced by destLen shall be
updated to hold the length of compressed data in dest.

The compress() function is equivalent to compress2() with a level of
Z_DEFAULT_COMPRESSION.

Return Value
On success, compress() shall return Z_OK. Otherwise, compress() shall return
a value to indicate the error.

Errors
On error, compress() shall return a value as described below:

Z_BUF_ERROR

 The buffer dest was not large enough to hold the compressed data.

Z_MEM_ERROR

 Insufficient memory.

312 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 14 Utility Libraries

compress2

Name
compress2 — compress data at a specified level

Synopsis
#include <zlib.h>
int compress2(Bytef * dest, uLongf * destLen, const Bytef * source,
uLong sourceLen, int level);

Description
The compress2() function shall attempt to compress sourceLen bytes of data
in the buffer source, placing the result in the buffer dest, at the level described
by level. The level supplied shall be a value between 0 and 9, or the value
Z_DEFAULT_COMPRESSION. A level of 1 requests the highest speed, while a
level of 9 requests the highest compression. A level of 0 indicates that no
compression should be used, and the output shall be the same as the input.

On entry, destLen should point to a value describing the size of the dest
buffer. The application should ensure that this value be at least (sourceLen ×
1.001) + 12. On successful exit, the variable referenced by destLen shall be
updated to hold the length of compressed data in dest.

The compress() function is equivalent to compress2() with a level of
Z_DEFAULT_COMPRESSION.

Return Value
On success, compress2() shall return Z_OK. Otherwise, compress2() shall
return a value to indicate the error.

Errors
On error, compress2() shall return a value as described below:

Z_BUF_ERROR

 The buffer dest was not large enough to hold the compressed data.

Z_MEM_ERROR

 Insufficient memory.

Z_STREAM_ERROR

 The level was not Z_DEFAULT_COMPRESSION, or was not between 0 and 9.

 © 2007 Linux Foundation 313

14 Utility Libraries ISO/IEC 23360 Part 1:2007(E)

compressBound

Name
compressBound — compute compressed data size

Synopsis
#include <zlib.h>
int compressBound(uLong sourceLen);

Description
The compressBound() function shall estimate the size of buffer required to
compress sourceLen bytes of data using the compress() or compress2()
functions. If successful, the value returned shall be an upper bound for the size
of buffer required to compress sourceLen bytes of data, using the parameters
stored in stream, in a single call to compress() or compress2().

Return Value
The compressBound() shall return a value representing the upper bound of an
array to allocate to hold the compressed data in a single call to compress() or
compress2(). This function may return a conservative value that may be larger
than sourceLen.

Errors
None defined.

314 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 14 Utility Libraries

crc32

Name
crc32 — compute CRC-32 Checksum

Synopsis
#include <zlib.h>
uLong crc32(uLong crc, const Bytef * buf, uInt len);

Description
The crc32() function shall compute a running Cyclic Redundancy Check
checksum, as defined in ITU-T V.42. On entry, crc is the previous value for the
checksum, and buf shall point to an array of len bytes of data to be added to
this checksum. The crc32() function shall return the new checksum.

If buf is NULL (or Z_NULL), crc32() shall return the initial checksum.

Return Value
The crc32() function shall return the new checksum value.

Errors
None defined.

Application Usage (informative)
The following code fragment demonstrates typical usage of the crc32()
function:

 uLong crc = crc32(0L, Z_NULL, 0);

 while (read_buffer(buffer, length) != EOF) {
 crc = crc32(crc, buffer, length);
 }
 if (crc != original_crc) error();

 © 2007 Linux Foundation 315

14 Utility Libraries ISO/IEC 23360 Part 1:2007(E)

deflate

Name
deflate — compress data

Synopsis
#include <zlib.h>
int deflate(z_streamp stream, int flush);

Description
The deflate() function shall attempt to compress data until either the input
buffer is empty or the output buffer is full. The stream references a z_stream
structure. Before the first call to deflate(), this structure should have been
initialized by a call to deflateInit2_().

Note: deflateInit2_() is only in the binary standard; source level applications
should initialize stream via a call to deflateInit() or deflateInit2().

In addition, the stream input and output buffers should have been initialized as
follows:

next_in

 should point to the data to be compressed.

avail_in

 should contain the number of bytes of data in the buffer referenced by
next_in.

next_out

 should point to a buffer where compressed data may be placed.

avail_out

 should contain the size in bytes of the buffer referenced by next_out

The deflate() function shall perform one or both of the following actions:

 1. Compress input data from next_in and update next_in, avail_in and
total_in to reflect the data that has been compressed.

 2. Fill the output buffer referenced by next_out, and update next_out,
avail_out and total_out to reflect the compressed data that has been
placed there. If flush is not Z_NO_FLUSH, and avail_out indicates that
there is still space in output buffer, this action shall always occur (see
below for further details).

The deflate() function shall return when either avail_in reaches zero
(indicating that all the input data has been compressed), or avail_out reaches
zero (indicating that the output buffer is full).

On success, the deflate() function shall set the adler field of the stream to the
adler32() checksum of all the input data compressed so far (represented by
total_in).

316 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 14 Utility Libraries

If the deflate() function shall attempt to determine the type of input data, and
set field data_type in stream to Z_ASCII if the majority of the data bytes fall
within the ASCII (ISO 646) printable character range. Otherwise, it shall set
data_type to Z_BINARY. This data type is informational only, and does not
affect the compression algorithm.

Note: Future versions of the LSB may remove this requirement, since it is based on
an outdated character set that does not support Internationalization, and does not
affect the algorithm. It is included for information only at this release. Applications
should not depend on this field.

Flush Operation
The parameter flush determines when compressed bits are added to the output
buffer in next_out. If flush is Z_NO_FLUSH, deflate() may return with some
data pending output, and not yet added to the output buffer.

If flush is Z_SYNC_FLUSH, deflate() shall flush all pending output to
next_out and align the output to a byte boundary. A synchronization point is
generated in the output.

If flush is Z_FULL_FLUSH, all output shall be flushed, as for Z_SYNC_FLUSH, and
the compression state shall be reset. A synchronization point is generated in the
output.

Rationale: Z_SYNC_FLUSH is intended to ensure that the compressed data contains
all the data compressed so far, and allows a decompressor to reconstruct all of the
input data. Z_FULL_FLUSH allows decompression to restart from this point if the
previous compressed data has been lost or damaged. Flushing is likely to degrade
the performance of the compression system, and should only be used where
necessary.

If flush is set to Z_FINISH, all pending input shall be processed and deflate()
shall return with Z_STREAM_END if there is sufficient space in the output
buffer at next_out, as indicated by avail_out. If deflate() is called with
flush set to Z_FINISH and there is insufficient space to store the compressed
data, and no other error has occurred during compression, deflate() shall
return Z_OK, and the application should call deflate() again with flush
unchanged, and having updated next_out and avail_out.

If all the compression is to be done in a single step, deflate() may be called
with flush set to Z_FINISH immediately after the stream has been initialized if
avail_out is set to at least the value returned by deflateBound().

Return Value
On success, deflate() shall return Z_OK, unless flush was set to Z_FINISH
and there was sufficient space in the output buffer to compress all of the input
data. In this case, deflate() shall return Z_STREAM_END. On error,
deflate() shall return a value to indicate the error.

Note: If deflate() returns Z_OK and has set avail_out to zero, the function
should be called again with the same value for flush, and with updated next_out
and avail_out until deflate() returns with Z_OK (or Z_STREAM_END if flush
is set to Z_FINISH) and a non-zero avail_out.

Errors
On error, deflate() shall return a value as described below, and set the msg
field of stream to point to a string describing the error:

 © 2007 Linux Foundation 317

14 Utility Libraries ISO/IEC 23360 Part 1:2007(E)

Z_BUF_ERROR

 No progress is possible; either avail_in or avail_out was zero.

Z_MEM_ERROR

 Insufficient memory.

Z_STREAM_ERROR

 The state (as represented in stream) is inconsistent, or stream was NULL.

deflateBound

Name
deflateBound — compute compressed data size

Synopsis
#include <zlib.h>
int deflateBound(z_streamp stream, uLong sourceLen);

Description
The deflateBound() function shall estimate the size of buffer required to
compress sourceLen bytes of data. If successful, the value returned shall be an
upper bound for the size of buffer required to compress sourceLen bytes of
data, using the parameters stored in stream, in a single call to deflate() with
flush set to Z_FINISH.

On entry, stream should have been initialized via a call to deflateInit_() or
deflateInit2_().

Return Value
The deflateBound() shall return a value representing the upper bound of an
array to allocate to hold the compressed data in a single call to deflate(). If the
stream is not correctly initialized, or is NULL, then deflateBound() may return
a conservative value that may be larger than sourceLen.

Errors
None defined.

318 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 14 Utility Libraries

deflateCopy

Name
deflateCopy — copy compression stream

Synopsis
#include <zlib.h>
int deflateCopy(z_streamp dest, z_streamp source);

Description
The deflateCopy() function shall copy the compression state information in
source to the uninitialized z_stream structure referenced by dest.

On successful return, dest will be an exact copy of the stream referenced by
source. The input and output buffer pointers in next_in and next_out will
reference the same data.

Return Value
On success, deflateCopy() shall return Z_OK. Otherwise it shall return a value
less than zero to indicate the error.

Errors
On error, deflateCopy() shall return a value as described below:

Z_STREAM_ERROR

 The state in source is inconsistent, or either source or dest was NULL.

Z_MEM_ERROR

 Insufficient memory available.

Application Usage (informative)
This function can be useful when several compression strategies will be tried,
for example when there are several ways of pre-processing the input data with a
filter. The streams that will be discarded should then be freed by calling
deflateEnd(). Note that deflateCopy() duplicates the internal compression
state which can be quite large, so this strategy may be slow and can consume
lots of memory.

 © 2007 Linux Foundation 319

14 Utility Libraries ISO/IEC 23360 Part 1:2007(E)

deflateEnd

Name
deflateEnd — free compression stream state

Synopsis
#include <zlib.h>
int deflateEnd(z_streamp stream);

Description
The deflateEnd() function shall free all allocated state information referenced
by stream. All pending output is discarded, and unprocessed input is ignored.

Return Value
On success, deflateEnd() shall return Z_OK, or Z_DATA_ERROR if there was
pending output discarded or input unprocessed. Otherwise it shall return
Z_STREAM_ERROR to indicate the error.

Errors
On error, deflateEnd() shall return Z_STREAM_ERROR. The following
conditions shall be treated as an error:

• The state in stream is inconsistent or inappropriate.

• stream is NULL.

320 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 14 Utility Libraries

deflateInit2_

Name
deflateInit2_ — initialize compression system

Synopsis
#include <zlib.h>
 int deflateInit2_ (z_streamp strm, int level, int method, int
windowBits, int memLevel, int strategy, char * version, int
stream_size);

Description
The deflateInit2_() function shall initialize the compression system. On
entry, strm shall refer to a user supplied z_stream object (a z_stream_s
structure). The following fields shall be set on entry:

zalloc

 a pointer to an alloc_func function, used to allocate state information. If this
is NULL, a default allocation function will be used.

zfree

 a pointer to a free_func function, used to free memory allocated by the
zalloc function. If this is NULL a default free function will be used.

opaque

 If alloc_func is not NULL, opaque is a user supplied pointer to data that
will be passed to the alloc_func and free_func functions.

If the version requested is not compatible with the version implemented, or if
the size of the z_stream_s structure provided in stream_size does not match
the size in the library implementation, deflateInit2_() shall fail, and return
Z_VERSION_ERROR.

The level supplied shall be a value between 0 and 9, or the value
Z_DEFAULT_COMPRESSION. A level of 1 requests the highest speed, while a
level of 9 requests the highest compression. A level of 0 indicates that no
compression should be used, and the output shall be the same as the input.

The method selects the compression algorithm to use. LSB conforming
implementation shall support the Z_DEFLATED method, and may support other
implementation defined methods.

The windowBits parameter shall be a base 2 logarithm of the window size to
use, and shall be a value between 8 and 15. A smaller value will use less
memory, but will result in a poorer compression ratio, while a higher value will
give better compression but utilize more memory.

The memLevel parameter specifies how much memory to use for the internal
state. The value of memLevel shall be between 1 and MAX_MEM_LEVEL. Smaller
values use less memory but are slower, while higher values use more memory
to gain compression speed.

The strategy parameter selects the compression strategy to use:

Z_DEFAULT_STRATEGY

 © 2007 Linux Foundation 321

14 Utility Libraries ISO/IEC 23360 Part 1:2007(E)

 use the system default compression strategy. Z_DEFAULT_STRATEGY is
particularly appropriate for text data.

Z_FILTERED

 use a compression strategy tuned for data consisting largely of small values
with a fairly random distribution. Z_FILTERED uses more Huffman
encoding and less string matching than Z_DEFAULT_STRATEGY.

Z_HUFFMAN_ONLY

 force Huffman encoding only, with no string match.

The deflateInit2_() function is not in the source standard; it is only in the
binary standard. Source applications should use the deflateInit2() macro.

Return Value
On success, the deflateInit2_() function shall return Z_OK. Otherwise,
deflateInit2_() shall return a value as described below to indicate the error.

Errors
On error, deflateInit2_() shall return one of the following error indicators:

Z_STREAM_ERROR

 Invalid parameter.

Z_MEM_ERROR

 Insufficient memory available.

Z_VERSION_ERROR

 The version requested is not compatible with the library version, or the
z_stream size differs from that used by the library.

In addition, the msg field of the strm may be set to an error message.

322 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 14 Utility Libraries

deflateInit_

Name
deflateInit_ — initialize compression system

Synopsis
#include <zlib.h>
int deflateInit_(z_streamp stream, int level, const char * version,
int stream_size);

Description
The deflateInit_() function shall initialize the compression system. On entry,
stream shall refer to a user supplied z_stream object (a z_stream_s structure).
The following fields shall be set on entry:

zalloc

 a pointer to an alloc_func function, used to allocate state information. If this
is NULL, a default allocation function will be used.

zfree

 a pointer to a free_func function, used to free memory allocated by the
zalloc function. If this is NULL a default free function will be used.

opaque

 If alloc_func is not NULL, opaque is a user supplied pointer to data that
will be passed to the alloc_func and free_func functions.

If the version requested is not compatible with the version implemented, or if
the size of the z_stream_s structure provided in stream_size does not match
the size in the library implementation, deflateInit_() shall fail, and return
Z_VERSION_ERROR.

The level supplied shall be a value between 0 and 9, or the value
Z_DEFAULT_COMPRESSION. A level of 1 requests the highest speed, while a
level of 9 requests the highest compression. A level of 0 indicates that no
compression should be used, and the output shall be the same as the input.

The deflateInit_() function is not in the source standard; it is only in the
binary standard. Source applications should use the deflateInit() macro.

The deflateInit_() function is equivalent to

 deflateInit2_(stream, level, Z_DEFLATED, MAX_WBITS,
MAX_MEM_LEVEL,

 © 2007 Linux Foundation 323

14 Utility Libraries ISO/IEC 23360 Part 1:2007(E)

 Z_DEFAULT_STRATEGY, version,
stream_size);

Return Value
On success, the deflateInit_() function shall return Z_OK. Otherwise,
deflateInit_() shall return a value as described below to indicate the error.

Errors
On error, deflateInit_() shall return one of the following error indicators:

Z_STREAM_ERROR

 Invalid parameter.

Z_MEM_ERROR

 Insufficient memory available.

Z_VERSION_ERROR

 The version requested is not compatible with the library version, or the
z_stream size differs from that used by the library.

In addition, the msg field of the stream may be set to an error message.

324 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 14 Utility Libraries

deflateParams

Name
deflateParams — set compression parameters

Synopsis
#include <zlib.h>
int deflateParams(z_streamp stream, int level, int strategy);

Description
The deflateParams() function shall dynamically alter the compression
parameters for the compression stream object stream. On entry, stream shall
refer to a user supplied z_stream object (a z_stream_s structure), already
initialized via a call to deflateInit_() or deflateInit2_().

The level supplied shall be a value between 0 and 9, or the value
Z_DEFAULT_COMPRESSION. A level of 1 requests the highest speed, while a
level of 9 requests the highest compression. A level of 0 indicates that no
compression should be used, and the output shall be the same as the input. If
the compression level is altered by deflateParams(), and some data has
already been compressed with this stream (i.e. total_in is not zero), and the
new level requires a different underlying compression method, then stream
shall be flushed by a call to deflate().

The strategy parameter selects the compression strategy to use:

Z_DEFAULT_STRATEGY

 use the system default compression strategy. Z_DEFAULT_STRATEGY is
particularly appropriate for text data.

Z_FILTERED

 use a compression strategy tuned for data consisting largely of small values
with a fairly random distribution. Z_FILTERED uses more Huffman
encoding and less string matching than Z_DEFAULT_STRATEGY.

Z_HUFFMAN_ONLY

 force Huffman encoding only, with no string match.

Return Value
On success, the deflateParams() function shall return Z_OK. Otherwise,
deflateParams() shall return a value as described below to indicate the error.

Errors
On error, deflateParams() shall return one of the following error indicators:

Z_STREAM_ERROR

 Invalid parameter.

Z_MEM_ERROR

 Insufficient memory available.

Z_BUF_ERROR

 Insufficient space in stream to flush the current output.

 © 2007 Linux Foundation 325

14 Utility Libraries ISO/IEC 23360 Part 1:2007(E)

In addition, the msg field of the strm may be set to an error message.

Application Usage (Informative)
Applications should ensure that the stream is flushed, e.g. by a call to
deflate(stream, Z_SYNC_FLUSH) before calling deflateParams(), or ensure
that there is sufficient space in next_out (as identified by avail_out) to ensure
that all pending output and all uncompressed input can be flushed in a single
call to deflate().

Rationale: Although the deflateParams() function should flush pending output
and compress all pending input, the result is unspecified if there is insufficient
space in the output buffer. Applications should only call deflateParams() when
the stream is effectively empty (flushed).

The deflateParams() can be used to switch between compression and straight
copy of the input data, or to switch to a different kind of input data requiring a
different strategy.

deflateReset

Name
deflateReset — reset compression stream state

Synopsis
#include <zlib.h>
int deflateReset(z_streamp stream);

Description
The deflateReset() function shall reset all state associated with stream. All
pending output shall be discarded, and the counts of processed bytes (total_in
and total_out) shall be reset to zero.

Return Value
On success, deflateReset() shall return Z_OK. Otherwise it shall return
Z_STREAM_ERROR to indicate the error.

Errors
On error, deflateReset() shall return Z_STREAM_ERROR. The following
conditions shall be treated as an error:

• The state in stream is inconsistent or inappropriate.

• stream is NULL.

326 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 14 Utility Libraries

deflateSetDictionary

Name
deflateSetDictionary — initialize compression dictionary

Synopsis
#include <zlib.h>
int deflateSetDictionary(z_streamp stream, const Bytef * dictionary,
uInt dictlen);

Description
The deflateSetDictionary() function shall initialize the compression
dictionary associated with stream using the dictlen bytes referenced by
dictionary.

The implementation may silently use a subset of the provided dictionary if the
dictionary cannot fit in the current window associated with stream (see
deflateInit2_()). The application should ensure that the dictionary is sorted
such that the most commonly used strings occur at the end of the dictionary.

If the dictionary is successfully set, the Adler32 checksum of the entire provided
dictionary shall be stored in the adler member of stream. This value may be
used by the decompression system to select the correct dictionary. The
compression and decompression systems must use the same dictionary.

stream shall reference an initialized compression stream, with total_in zero
(i.e. no data has been compressed since the stream was initialized).

Return Value
On success, deflateSetDictionary() shall return Z_OK. Otherwise it shall
return Z_STREAM_ERROR to indicate an error.

Errors
On error, deflateSetDictionary() shall return a value as described below:

Z_STREAM_ERROR

 The state in stream is inconsistent, or stream was NULL.

Application Usage (informative)
The application should provide a dictionary consisting of strings {{{ed note: do
we really mean "strings"? Null terminated?}}} that are likely to be encountered
in the data to be compressed. The application should ensure that the dictionary
is sorted such that the most commonly used strings occur at the end of the
dictionary.

The use of a dictionary is optional; however if the data to be compressed is
relatively short and has a predictable structure, the use of a dictionary can
substantially improve the compression ratio.

 © 2007 Linux Foundation 327

14 Utility Libraries ISO/IEC 23360 Part 1:2007(E)

get_crc_table

Name
get_crc_table — generate a table for crc calculations

Synopsis
#include <zlib.h>
const uLongf * get_crc_table(void);

Description
Generate tables for a byte-wise 32-bit CRC calculation based on the polynomial:
x32+x26+x23+x22+x16+x12+x11+x10+x8+x7+x5+x4+x2+x+1

In a multi-threaded application, get_crc_table() should be called by one
thread to initialize the tables before any other thread calls any libz function.

Return Value
The get_crc_table() function shall return a pointer to the first of a set of
tables used internally to calculate CRC-32 values (see crc32()).

Errors
None defined.

328 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 14 Utility Libraries

gzclose

Name
gzclose — close a compressed file stream

Synopsis
#include <zlib.h>
 int gzclose (gzFile file);

Description
The gzclose() function shall close the compressed file stream file. If file
was open for writing, gzclose() shall first flush any pending output. Any state
information allocated shall be freed.

Return Value
On success, gzclose() shall return Z_OK. Otherwise, gzclose() shall return
an error value as described below.

Errors
On error, gzclose() may set the global variable errno to indicate the error. The
gzclose() shall return a value other than Z_OK on error.

Z_STREAM_ERROR

 file was NULL (or Z_NULL), or did not refer to an open compressed file
stream.

Z_ERRNO

 An error occurred in the underlying base libraries, and the application
should check errno for further information.

Z_BUF_ERROR

 no compression progress is possible during buffer flush (see deflate()).

 © 2007 Linux Foundation 329

14 Utility Libraries ISO/IEC 23360 Part 1:2007(E)

gzdopen

Name
gzdopen — open a compressed file

Synopsis
#include <zlib.h>
 gzFile gzdopen (int fd, const char *mode);

Description
The gzdopen() function shall attempt to associate the open file referenced by fd
with a gzFile object. The mode argument is based on that of fopen(), but the
mode parameter may also contain the following characters:

digit

 set the compression level to digit. A low value (e.g. 1) means high speed,
while a high value (e.g. 9) means high compression. A compression level of
0 (zero) means no compression. See deflateInit2_() for further details.

[fhR]

 set the compression strategy to [fhR]. The letter f corresponds to filtered
data, the letter h corresponds to Huffman only compression, and the letter
R corresponds to Run Length Encoding. See deflateInit2_() for further
details.

If fd refers to an uncompressed file, and mode refers to a read mode, gzdopen()
shall attempt to open the file and return a gzFile object suitable for reading
directly from the file without any decompression.

If mode is NULL, or if mode does not contain one of r, w, or a, gzdopen() shall
return Z_NULL, and need not set any other error condition.

Example
gzdopen(fileno(stdin), "r");

Attempt to associate the standard input with a gzFile object.

Return Value
On success, gzdopen() shall return a gzFile object. On failure, gzdopen() shall
return Z_NULL and may set errno accordingly.

Note: At version 1.2.2, zlib does not set errno for several error conditions.
Applications may not be able to determine the cause of an error.

Errors
On error, gzdopen() may set the global variable errno to indicate the error.

330 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 14 Utility Libraries

gzeof

Name
gzeof — check for end-of-file on a compressed file stream

Synopsis
#include <zlib.h>
 int gzeof (gzFile file);

Description
The gzeof() function shall test the compressed file stream file for end of file.

Return Value
If file was open for reading and end of file has been reached, gzeof() shall
return 1. Otherwise, gzeof() shall return 0.

Errors
None defined.

gzerror

Name
gzerror — decode an error on a compressed file stream

Synopsis
#include <zlib.h>
 const char * gzerror (gzFile file, int * errnum);

Description
The gzerror() function shall return a string describing the last error to have
occurred associated with the open compressed file stream referred to by file. It
shall also set the location referenced by errnum to an integer value that further
identifies the error.

Return Value
The gzerror() function shall return a string that describes the last error
associated with the given file compressed file stream. This string shall have
the format "%s: %s", with the name of the file, followed by a colon, a space,
and the description of the error. If the compressed file stream was opened by a
call to gzdopen(), the format of the filename is unspecified.

Rationale: Although in all current implementations of libz file descriptors are
named "<fd:%d>", the code suggests that this is for debugging purposes only, and
may change in a future release.

It is unspecified if the string returned is determined by the setting of the
LC_MESSAGES category in the current locale.

Errors
None defined.

 © 2007 Linux Foundation 331

14 Utility Libraries ISO/IEC 23360 Part 1:2007(E)

gzflush

Name
gzflush — flush a compressed file stream

Synopsis
#include <zlib.h>
int gzflush(gzFile file, int flush);

Description
The gzflush() function shall flush pending output to the compressed file
stream identified by file, which must be open for writing.

Flush Operation
The parameter flush determines which compressed bits are added to the
output file. If flush is Z_NO_FLUSH, gzflush() may return with some data
pending output, and not yet written to the file.

If flush is Z_SYNC_FLUSH, gzflush() shall flush all pending output to file and
align the output to a byte boundary. There may still be data pending
compression that is not flushed.

If flush is Z_FULL_FLUSH, all output shall be flushed, as for Z_SYNC_FLUSH, and
the compression state shall be reset. There may still be data pending
compression that is not flushed.

Rationale: Z_SYNC_FLUSH is intended to ensure that the compressed data contains
all the data compressed so far, and allows a decompressor to reconstruct all of the
input data. Z_FULL_FLUSH allows decompression to restart from this point if the
previous compressed data has been lost or damaged. Flushing is likely to degrade
the performance of the compression system, and should only be used where
necessary.

If flush is set to Z_FINISH, all pending uncompressed data shall be compressed
and all output shall be flushed.

Return Value
On success, gzflush() shall return the value Z_OK. Otherwise gzflush() shall
return a value to indicate the error, and may set the error number associated
with the compressed file stream file.

Note: If flush is set to Z_FINISH and the flush operation is successful, gzflush()
will return Z_OK, but the compressed file stream error value may be set to
Z_STREAM_END.

Errors
On error, gzflush() shall return an error value, and may set the error number
associated with the stream identified by file to indicate the error. Applications
may use gzerror() to access this error value.

Z_ERRNO

 An underlying base library function has indicated an error. The global
variable errno may be examined for further information.

Z_STREAM_ERROR

332 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 14 Utility Libraries

 The stream is invalid, is not open for writing, or is in an invalid state.

Z_BUF_ERROR

 no compression progress is possible (see deflate()).

Z_MEM_ERROR

 Insufficient memory available to compress.

gzgetc

Name
gzgetc — read a character from a compressed file

Synopsis
#include <zlib.h>
 int gzgetc (gzFile file);

Description
The gzgetc() function shall read the next single character from the compressed
file stream referenced by file, which shall have been opened in a read mode
(see gzopen() and gzdopen()).

Return Value
On success, gzgetc() shall return the uncompressed character read, otherwise,
on end of file or error, gzgetc() shall return -1.

Errors
On end of file or error, gzgetc() shall return -1. Further information can be
found by calling gzerror() with a pointer to the compressed file stream.

 © 2007 Linux Foundation 333

14 Utility Libraries ISO/IEC 23360 Part 1:2007(E)

gzgets

Name
gzgets — read a string from a compressed file

Synopsis
#include <zlib.h>
 char * gzgets (gzFile file, char * buf, int len);

Description
The gzgets() function shall attempt to read data from the compressed file
stream file, uncompressing it into buf until either len-1 bytes have been
inserted into buf, or until a newline character has been uncompressed into buf.
A null byte shall be appended to the uncompressed data. The file shall have
been opened in for reading (see gzopen() and gzdopen()).

Return Value
On success, gzgets() shall return a pointer to buf. Otherwise, gzgets() shall
return Z_NULL. Applications may examine the cause using gzerror().

Errors
On error, gzgets() shall return Z_NULL. The following conditions shall al-
ways be treated as an error:

file is NULL, or does not refer to a file open for reading;
buf is NULL;
len is less than or equal to zero.

334 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 14 Utility Libraries

gzopen

Name
gzopen — open a compressed file

Synopsis
#include <zlib.h>
 gzFile gzopen (const char *path , const char *mode);

Description
The gzopen() function shall open the compressed file named by path. The mode
argument is based on that of fopen(), but the mode parameter may also contain
the following characters:

digit

 set the compression level to digit. A low value (e.g. 1) means high speed,
while a high value (e.g. 9) means high compression. A compression level of
0 (zero) means no compression. See deflateInit2_() for further details.

[fhR]

 set the compression strategy to [fhR]. The letter f corresponds to filtered
data, the letter h corresponds to Huffman only compression, and the letter
R corresponds to Run Length Encoding. See deflateInit2_() for further
details.

If path refers to an uncompressed file, and mode refers to a read mode,
gzopen() shall attempt to open the file and return a gzFile object suitable for
reading directly from the file without any decompression.

If path or mode is NULL, or if mode does not contain one of r, w, or a, gzopen()
shall return Z_NULL, and need not set any other error condition.

The gzFile object is also referred to as a compressed file stream.

Example
gzopen("file.gz", "w6h");

Attempt to create a new compressed file, file.gz, at compression level 6 using
Huffman only compression.

Return Value
On success, gzopen() shall return a gzFile object (also known as a compressed file
stream). On failure, gzopen() shall return Z_NULL and may set errno
accordingly.

Note: At version 1.2.2, zlib does not set errno for several error conditions.
Applications may not be able to determine the cause of an error.

Errors
On error, gzopen() may set the global variable errno to indicate the error.

 © 2007 Linux Foundation 335

14 Utility Libraries ISO/IEC 23360 Part 1:2007(E)

gzprintf

Name
gzprintf — format data and compress

Synopsis
#include <zlib.h>
 int gzprintf (gzFile file, const char * fmt, ...);

Description
The gzprintf() function shall format data as for fprintf(), and write the
resulting string to the compressed file stream file.

Return Value
The gzprintf() function shall return the number of uncompressed bytes
actually written, or a value less than or equal to 0 in the event of an error.

Errors
If file is NULL, or refers to a compressed file stream that has not been opened
for writing, gzprintf() shall return Z_STREAM_ERROR. Otherwise, errors are as
for gzwrite().

gzputc

Name
gzputc — write character to a compressed file

Synopsis
#include <zlib.h>
 int gzputc (gzFile file, int c);

Description
The gzputc() function shall write the single character c, converted from integer
to unsigned character, to the compressed file referenced by file, which shall
have been opened in a write mode (see gzopen() and gzdopen()).

Return Value
On success, gzputc() shall return the value written, otherwise gzputc() shall
return -1.

Errors
On error, gzputc() shall return -1.

336 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 14 Utility Libraries

gzputs

Name
gzputs — string write to a compressed file

Synopsis
#include <zlib.h>
 int gzputs (gzFile file, const char * s);

Description
The gzputs() function shall write the null terminated string s to the
compressed file referenced by file, which shall have been opened in a write
mode (see gzopen() and gzdopen()). The terminating null character shall not
be written. The gzputs() function shall return the number of uncompressed
bytes actually written.

Return Value
On success, gzputs() shall return the number of uncompressed bytes actually
written to file. On error gzputs() shall return a value less than or equal to 0.
Applications may examine the cause using gzerror().

Errors
On error, gzputs() shall set the error number associated with the stream
identified by file to indicate the error. Applications should use gzerror() to
access this error value. If file is NULL, gzputs() shall return Z_STREAM_ERR.

Z_ERRNO

 An underlying base library function has indicated an error. The global
variable errno may be examined for further information.

Z_STREAM_ERROR

 The stream is invalid, is not open for writing, or is in an invalid state.

Z_BUF_ERROR

 no compression progress is possible (see deflate()).

Z_MEM_ERROR

 Insufficient memory available to compress.

 © 2007 Linux Foundation 337

14 Utility Libraries ISO/IEC 23360 Part 1:2007(E)

gzread

Name
gzread — read from a compressed file

Synopsis
#include <zlib.h>
 int gzread (gzFile file, voidp buf, unsigned int len);

Description
The gzread() function shall read data from the compressed file referenced by
file, which shall have been opened in a read mode (see gzopen() and
gzdopen()). The gzread() function shall read data from file, and uncompress
it into buf. At most, len bytes of uncompressed data shall be copied to buf. If
the file is not compressed, gzread() shall simply copy data from file to buf
without alteration.

Return Value
On success, gzread() shall return the number of bytes decompressed into buf.
If gzread() returns 0, either the end-of-file has been reached or an underlying
read error has occurred. Applications should use gzerror() or gzeof() to
determine which occurred. On other errors, gzread() shall return a value less
than 0 and applications may examine the cause using gzerror().

Errors
On error, gzread() shall set the error number associated with the stream
identified by file to indicate the error. Applications should use gzerror() to
access this error value.

Z_ERRNO

 An underlying base library function has indicated an error. The global
variable errno may be examined for further information.

Z_STREAM_END

 End of file has been reached on input.

Z_DATA_ERROR

 A CRC error occurred when reading data; the file is corrupt.

Z_STREAM_ERROR

 The stream is invalid, or is in an invalid state.

Z_NEED_DICT

 A dictionary is needed (see inflateSetDictionary()).

Z_MEM_ERROR

 Insufficient memory available to decompress.

338 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 14 Utility Libraries

gzrewind

Name
gzrewind — reset the file-position indicator on a compressed file stream

Synopsis
#include <zlib.h>
int gzrewind(gzFile file);

Description
The gzrewind() function shall set the starting position for the next read on
compressed file stream file to the beginning of file. file must be open for
reading.

gzrewind() is equivalent to

(int)gzseek(file, 0L, SEEK_SET)

.

Return Value
On success, gzrewind() shall return 0. On error, gzrewind() shall return -1,
and may set the error value for file accordingly.

Errors
On error, gzrewind() shall return -1, indicating that file is NULL, or does not
represent an open compressed file stream, or represents a compressed file
stream that is open for writing and is not currently at the beginning of file.

 © 2007 Linux Foundation 339

14 Utility Libraries ISO/IEC 23360 Part 1:2007(E)

gzseek

Name
gzseek — reposition a file-position indicator in a compressed file stream

Synopsis
#include <zlib.h>
z_off_t gzseek(gzFile file, z_off_t offset, int whence);

Description
The gzseek() function shall set the file-position indicator for the compressed
file stream file. The file-position indicator controls where the next read or
write operation on the compressed file stream shall take place. The offset
indicates a byte offset in the uncompressed data. The whence parameter may be
one of:

SEEK_SET

 the offset is relative to the start of the uncompressed data.

SEEK_CUR

 the offset is relative to the current positition in the uncompressed data.

Note: The value SEEK_END need not be supported.

If the file is open for writing, the new offset must be greater than or equal to
the current offset. In this case, gzseek() shall compress a sequence of null bytes
to fill the gap from the previous offset to the new offset.

Return Value
On success, gzseek() shall return the resulting offset in the file expressed as a
byte position in the uncompressed data stream. On error, gzseek() shall return -
1, and may set the error value for file accordingly.

Errors
On error, gzseek() shall return -1. The following conditions shall always result
in an error:

• file is NULL

• file does not represent an open compressed file stream.

• file refers to a compressed file stream that is open for writing, and the newly
computed offset is less than the current offset.

• The newly computed offset is less than zero.

• whence is not one of the supported values.

Application Usage (informative)
If file is open for reading, the implementation may still need to uncompress all
of the data up to the new offset. As a result, gzseek() may be extremely slow in
some circumstances.

340 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 14 Utility Libraries

gzsetparams

Name
gzsetparams — dynamically set compression parameters

Synopsis
#include <zlib.h>
 int gzsetparams (gzFile file, int level, int strategy);

Description
The gzsetparams() function shall set the compression level and compression
strategy on the compressed file stream referenced by file. The compressed file
stream shall have been opened in a write mode. The level and strategy are as
defined in deflateInit2.. If there is any data pending writing, it shall be flushed
before the parameters are updated.

Return Value
On success, the gzsetparams() function shall return Z_OK.

Errors
On error, gzsetparams() shall return one of the following error indications:

Z_STREAM_ERROR

 Invalid parameter, or file not open for writing.

Z_BUF_ERROR

 An internal inconsistency was detected while flushing the previous buffer.

 © 2007 Linux Foundation 341

14 Utility Libraries ISO/IEC 23360 Part 1:2007(E)

gztell

Name
gztell — find position on a compressed file stream

Synopsis
#include <zlib.h>
 z_off_t gztell (gzFile file);

Description
The gztell() function shall return the starting position for the next read or
write operation on compressed file stream file. This position represents the
number of bytes from the beginning of file in the uncompressed data.

gztell() is equivalent to

gzseek(file, 0L, SEEK_CUR)

.

Return Value
gztell() shall return the current offset in the file expressed as a byte position
in the uncompressed data stream. On error, gztell() shall return -1, and may set
the error value for file accordingly.

Errors
On error, gztell() shall return -1, indicating that file is NULL, or does not
represent an open compressed file stream.

342 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 14 Utility Libraries

gzwrite

Name
gzwrite — write to a compressed file

Synopsis
#include <zlib.h>
 int gzwrite (gzFile file, voidpc buf, unsigned int len);

Description
The gzwrite() function shall write data to the compressed file referenced by
file, which shall have been opened in a write mode (see gzopen() and
gzdopen()). On entry, buf shall point to a buffer containing len bytes of
uncompressed data. The gzwrite() function shall compress this data and write
it to file. The gzwrite() function shall return the number of uncompressed
bytes actually written.

Return Value
On success, gzwrite() shall return the number of uncompressed bytes actually
written to file. On error gzwrite() shall return a value less than or equal to 0.
Applications may examine the cause using gzerror().

Errors
On error, gzwrite() shall set the error number associated with the stream
identified by file to indicate the error. Applications should use gzerror() to
access this error value.

Z_ERRNO

 An underlying base library function has indicated an error. The global
variable errno may be examined for further information.

Z_STREAM_ERROR

 The stream is invalid, is not open for writing, or is in an invalid state.

Z_BUF_ERROR

 no compression progress is possible (see deflate()).

Z_MEM_ERROR

 Insufficient memory available to compress.

 © 2007 Linux Foundation 343

14 Utility Libraries ISO/IEC 23360 Part 1:2007(E)

inflate

Name
inflate — decompress data

Synopsis
#include <zlib.h>
int inflate(z_streamp stream, int flush);

Description
The inflate() function shall attempt to decompress data until either the input
buffer is empty or the output buffer is full. The stream references a z_stream
structure. Before the first call to inflate(), this structure should have been
initialized by a call to inflateInit2_().

Note: inflateInit2_() is only in the binary standard; source level applications
should initialize stream via a call to inflateInit() or inflateInit2().

In addition, the stream input and output buffers should have been initialized as
follows:

next_in

 should point to the data to be decompressed.

avail_in

 should contain the number of bytes of data in the buffer referenced by
next_in.

next_out

 should point to a buffer where decompressed data may be placed.

avail_out

 should contain the size in bytes of the buffer referenced by next_out

The inflate() function shall perform one or both of the following actions:

 1. Decompress input data from next_in and update next_in, avail_in and
total_in to reflect the data that has been decompressed.

 2. Fill the output buffer referenced by next_out, and update next_out,
avail_out, and total_out to reflect the decompressed data that has been
placed there. If flush is not Z_NO_FLUSH, and avail_out indicates that
there is still space in output buffer, this action shall always occur (see
below for further details).

The inflate() function shall return when either avail_in reaches zero
(indicating that all the input data has been compressed), or avail_out reaches
zero (indicating that the output buffer is full).

Flush Operation
The parameter flush determines when uncompressed bytes are added to the
output buffer in next_out. If flush is Z_NO_FLUSH, inflate() may return with
some data pending output, and not yet added to the output buffer.

If flush is Z_SYNC_FLUSH, inflate() shall flush all pending output to
next_out, and update next_out and avail_out accordingly.

344 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 14 Utility Libraries

If flush is set to Z_BLOCK, inflate() shall stop adding data to the output
buffer if and when the next compressed block boundary is reached (see RFC
1951: DEFLATE Compressed Data Format Specification).

Z_MEM_ERROR

 Insufficient memory.

Z_STREAM_ERROR

 The state (as represented in stream) is inconsistent, or stream was NULL.

Z_NEED_DICT

 A preset dictionary is required. The adler field shall be set to the Adler-32
checksum of the dictionary chosen by the compressor.

If flush is set to Z_FINISH, all of the compressed input shall be decompressed
and added to the output. If there is insufficient output space (i.e. the
compressed input data uncompresses to more than avail_out bytes), then
inflate() shall fail and return Z_BUF_ERROR.

Return Value
On success, inflate() shall return Z_OK if decompression progress has been
made, or Z_STREAM_END if all of the input data has been decompressed and
there was sufficient space in the output buffer to store the uncompressed result.
On error, inflate() shall return a value to indicate the error.

Note: If inflate() returns Z_OK and has set avail_out to zero, the function
should be called again with the same value for flush, and with updated next_out
and avail_out until inflate() returns with either Z_OK or Z_STREAM_END and
a non-zero avail_out.

On success, inflate() shall set the adler to the Adler-32 checksum of the
output produced so far (i.e. total_out bytes).

Errors
On error, inflate() shall return a value as described below, and may set the
msg field of stream to point to a string describing the error:

Z_BUF_ERROR

 No progress is possible; either avail_in or avail_out was zero.

 © 2007 Linux Foundation 345

14 Utility Libraries ISO/IEC 23360 Part 1:2007(E)

inflateEnd

Name
inflateEnd — free decompression stream state

Synopsis
#include <zlib.h>
int inflateEnd(z_streamp stream);

Description
The inflateEnd() function shall free all allocated state information referenced
by stream. All pending output is discarded, and unprocessed input is ignored.

Return Value
On success, inflateEnd() shall return Z_OK. Otherwise it shall return
Z_STREAM_ERROR to indicate the error.

Errors
On error, inflateEnd() shall return Z_STREAM_ERROR. The following
conditions shall be treated as an error:

• The state in stream is inconsistent.

• stream is NULL.

• The zfree function pointer is NULL.

346 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 14 Utility Libraries

inflateInit2_

Name
inflateInit2_ — initialize decompression system

Synopsis
#include <zlib.h>
 int inflateInit2_ (z_streamp strm, int windowBits, char * version,
int stream_size);

Description
The inflateInit2_() function shall initialize the decompression system. On
entry, strm shall refer to a user supplied z_stream object (a z_stream_s
structure). The following fields shall be set on entry:

zalloc

 a pointer to an alloc_func function, used to allocate state information. If this
is NULL, a default allocation function will be used.

zfree

 a pointer to a free_func function, used to free memory allocated by the
zalloc function. If this is NULL a default free function will be used.

opaque

 If alloc_func is not NULL, opaque is a user supplied pointer to data that
will be passed to the alloc_func and free_func functions.

If the version requested is not compatible with the version implemented, or if
the size of the z_stream_s structure provided in stream_size does not match
the size in the library implementation, inflateInit2_() shall fail, and return
Z_VERSION_ERROR.

The windowBits parameter shall be a base 2 logarithm of the maximum
window size to use, and shall be a value between 8 and 15. If the input data was
compressed with a larger window size, subsequent attempts to decompress this
data will fail with Z_DATA_ERROR, rather than try to allocate a larger window.

The inflateInit2_() function is not in the source standard; it is only in the
binary standard. Source applications should use the inflateInit2() macro.

Return Value
On success, the inflateInit2_() function shall return Z_OK. Otherwise,
inflateInit2_() shall return a value as described below to indicate the error.

Errors
On error, inflateInit2_() shall return one of the following error indicators:

Z_STREAM_ERROR

 Invalid parameter.

Z_MEM_ERROR

 Insufficient memory available.

Z_VERSION_ERROR

 © 2007 Linux Foundation 347

14 Utility Libraries ISO/IEC 23360 Part 1:2007(E)

 The version requested is not compatible with the library version, or the
z_stream size differs from that used by the library.

In addition, the msg field of the strm may be set to an error message.

348 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 14 Utility Libraries

inflateInit_

Name
inflateInit_ — initialize decompression system

Synopsis
#include <zlib.h>
int inflateInit_(z_streamp stream, const char * version, int
stream_size);

Description
The inflateInit_() function shall initialize the decompression system. On
entry, stream shall refer to a user supplied z_stream object (a z_stream_s
structure). The following fields shall be set on entry:

zalloc

 a pointer to an alloc_func function, used to allocate state information. If this
is NULL, a default allocation function will be used.

zfree

 a pointer to a free_func function, used to free memory allocated by the
zalloc function. If this is NULL a default free function will be used.

opaque

 If alloc_func is not NULL, opaque is a user supplied pointer to data that
will be passed to the alloc_func and free_func functions.

If the version requested is not compatible with the version implemented, or if
the size of the z_stream_s structure provided in stream_size does not match
the size in the library implementation, inflateInit_() shall fail, and return
Z_VERSION_ERROR.

The inflateInit_() function is not in the source standard; it is only in the
binary standard. Source applications should use the inflateInit() macro.

The inflateInit_() shall be equivalent to

inflateInit2_(strm, MAX_WBITS, version, stream_size);

Return Value
On success, the inflateInit_() function shall return Z_OK. Otherwise,
inflateInit_() shall return a value as described below to indicate the error.

Errors
On error, inflateInit_() shall return one of the following error indicators:

Z_STREAM_ERROR

 Invalid parameter.

Z_MEM_ERROR

 Insufficient memory available.

Z_VERSION_ERROR

 © 2007 Linux Foundation 349

14 Utility Libraries ISO/IEC 23360 Part 1:2007(E)

 The version requested is not compatible with the library version, or the
z_stream size differs from that used by the library.

In addition, the msg field of the strm may be set to an error message.

inflateReset

Name
inflateReset — reset decompression stream state

Synopsis
#include <zlib.h>
int inflateReset(z_streamp stream);

Description
The inflateReset() function shall reset all state associated with stream. All
pending output shall be discarded, and the counts of processed bytes (total_in
and total_out) shall be reset to zero.

Return Value
On success, inflateReset() shall return Z_OK. Otherwise it shall return
Z_STREAM_ERROR to indicate the error.

Errors
On error, inflateReset() shall return Z_STREAM_ERROR. The following
conditions shall be treated as an error:

• The state in stream is inconsistent or inappropriate.

• stream is NULL.

350 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 14 Utility Libraries

inflateSetDictionary

Name
inflateSetDictionary — initialize decompression dictionary

Synopsis
#include <zlib.h>
int inflateSetDictionary(z_streamp stream, const Bytef * dictionary,
uInt dictlen);

Description
The inflateSetDictionary() function shall initialize the decompression
dictionary associated with stream using the dictlen bytes referenced by
dictionary.

The inflateSetDictionary() function should be called immediately after a
call to inflate() has failed with return value Z_NEED_DICT. The dictionary
must have the same Adler-32 checksum as the dictionary used for the
compression (see deflateSetDictionary()).

stream shall reference an initialized decompression stream, with total_in zero
(i.e. no data has been decompressed since the stream was initialized).

Return Value
On success, inflateSetDictionary() shall return Z_OK. Otherwise it shall
return a value as indicated below.

Errors
On error, inflateSetDictionary() shall return a value as described below:

Z_STREAM_ERROR

 The state in stream is inconsistent, or stream was NULL.

Z_DATA_ERROR

 The Adler-32 checksum of the supplied dictionary does not match that
used for the compression.

Application Usage (informative)
The application should provide a dictionary consisting of strings {{{ed note: do
we really mean "strings"? Null terminated?}}} that are likely to be encountered
in the data to be compressed. The application should ensure that the dictionary
is sorted such that the most commonly used strings occur at the end of the
dictionary.

The use of a dictionary is optional; however if the data to be compressed is
relatively short and has a predictable structure, the use of a dictionary can
substantially improve the compression ratio.

 © 2007 Linux Foundation 351

14 Utility Libraries ISO/IEC 23360 Part 1:2007(E)

inflateSync

Name
inflateSync — advance compression stream to next sync point

Synopsis
#include <zlib.h>
int inflateSync(z_streamp stream);

Description
The inflateSync() function shall advance through the compressed data in
stream, skipping any invalid compressed data, until the next full flush point is
reached, or all input is exhausted. See the description for deflate() with flush
level Z_FULL_FLUSH. No output is placed in next_out.

Return Value
On success, inflateSync() shall return Z_OK, and update the next_in,
avail_in, and total_in fields of stream to reflect the number of bytes of
compressed data that have been skipped. Otherwise, inflateSync() shall
return a value as described below to indicate the error.

Errors
On error, inflateSync() shall return a value as described below:

Z_STREAM_ERROR

 The state (as represented in stream) is inconsistent, or stream was NULL.

Z_BUF_ERROR

 There is no data available to skip over.

Z_DATA_ERROR

 No sync point was found.

352 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 14 Utility Libraries

inflateSyncPoint

Name
inflateSyncPoint — test for synchronization point

Synopsis
#include <zlib.h>
int inflateSyncPoint(z_streamp stream);

Description
The inflateSyncPoint() function shall return a non-zero value if the
compressed data stream referenced by stream is at a synchronization point.

Return Value
If the compressed data in stream is at a synchronization point (see deflate()
with a flush level of Z_SYNC_FLUSH or Z_FULL_FLUSH), inflateSyncPoint()
shall return a non-zero value, other than Z_STREAM_ERROR. Otherwise, if the
stream is valid, inflateSyncPoint() shall return 0. If stream is invalid, or in
an invalid state, inflateSyncPoint() shall return Z_STREAM_ERROR to
indicate the error.

Errors
On error, inflateSyncPoint() shall return a value as described below:

Z_STREAM_ERROR

 The state (as represented in stream) is inconsistent, or stream was NULL.

 © 2007 Linux Foundation 353

14 Utility Libraries ISO/IEC 23360 Part 1:2007(E)

uncompress

Name
uncompress — uncompress data

Synopsis
#include <zlib.h>
int uncompress(Bytef * dest, uLongf * destLen, const Bytef * source,
uLong sourceLen);

Description
The uncompress() function shall attempt to uncompress sourceLen bytes of
data in the buffer source, placing the result in the buffer dest.

On entry, destLen should point to a value describing the size of the dest
buffer. The application should ensure that this value is large enough to hold the
entire uncompressed data.

Note: The LSB does not describe any mechanism by which a compressor can
communicate the size required to the uncompressor.

On successful exit, the variable referenced by destLen shall be updated to hold
the length of uncompressed data in dest.

Return Value
On success, uncompress() shall return Z_OK. Otherwise, uncompress() shall
return a value to indicate the error.

Errors
On error, uncompress() shall return a value as described below:

Z_BUF_ERROR

 The buffer dest was not large enough to hold the uncompressed data.

Z_MEM_ERROR

 Insufficient memory.

Z_DATA_ERROR

 The compressed data (referenced by source) was corrupted.

354 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 14 Utility Libraries

zError

Name
zError — translate error number to string

Synopsis
#include <zlib.h>
const char * zError(int err);

Description
The zError() function shall return the string identifying the error associated
with err. This allows for conversion from error code to string for functions such
as compress() and uncompress(), that do not always set the string version of
an error.

Return Value
The zError() function shall return a the string identifying the error associated
with err, or NULL if err is not a valid error code.

It is unspecified if the string returned is determined by the setting of the
LC_MESSAGES category in the current locale.

Errors
None defined.

zlibVersion

Name
zlibVersion — discover library version at run time

Synopsis
#include <zlib.h>
 const char * zlibVersion (void);

Description
The zlibVersion() function shall return the string identifying the interface
version at the time the library was built.

Applications should compare the value returned from zlibVersion() with the
macro constant ZLIB_VERSION for compatibility.

Return Value
The zlibVersion() function shall return a the string identifying the version of
the library currently implemented.

Errors
None defined.

14.5 Interfaces for libncurses
Table 14-3 defines the library name and shared object name for the libncurses
library

 © 2007 Linux Foundation 355

14 Utility Libraries ISO/IEC 23360 Part 1:2007(E)

Table 14-3 libncurses Definition

Library: libncurses

SONAME: libncurses.so.5
The Parameters or return value of the following interface have had the const
qualifier added as shown here.

extern const char *keyname (int);
extern int mvscanw (int, int, const char *, ...);
extern int mvwscanw (WINDOW *, int, int, const char *, ...);
extern SCREEN *newterm (const char *, FILE *, FILE *);
extern int scanw (const char *, ...);
extern int vwscanw (WINDOW *, const char *, va_list);
extern int vw_scanw (WINDOW *, const char *, va_list);
extern int wscanw (WINDOW *, const char *, ...);

The behavior of the interfaces in this library is specified by the following speci-
fications:

[SUS-CURSES] X/Open Curses

14.5.1 Curses

14.5.1.1 Interfaces for Curses
An LSB conforming implementation shall provide the generic functions for
Curses specified in Table 14-4, with the full mandatory functionality as
described in the referenced underlying specification.

Table 14-4 libncurses - Curses Function Interfaces

addch [SUS-
CURSES]

addchnstr [SUS-
CURSES]

addchstr [SUS-
CURSES]

addnstr [SUS-
CURSES]

addstr [SUS-
CURSES]

attr_get [SUS-
CURSES]

attr_off [SUS-
CURSES]

attr_on [SUS-
CURSES]

attr_set [SUS-
CURSES]

attroff [SUS-
CURSES]

attron [SUS-
CURSES]

attrset [SUS-
CURSES]

baudrate [SUS-
CURSES]

beep [SUS-
CURSES]

bkgd [SUS-
CURSES]

bkgdset [SUS-
CURSES]

border [SUS-
CURSES]

box [SUS-
CURSES]

can_change_colo
r [SUS-CURSES]

cbreak [SUS-
CURSES]

chgat [SUS-
CURSES]

clear [SUS-
CURSES]

clearok [SUS-
CURSES]

clrtobot [SUS-
CURSES]

clrtoeol [SUS-
CURSES]

color_content
[SUS-CURSES]

color_set [SUS-
CURSES]

copywin [SUS-
CURSES]

curs_set [SUS-
CURSES]

def_prog_mode
[SUS-CURSES]

def_shell_mode
[SUS-CURSES]

del_curterm
[SUS-CURSES]

delay_output
[SUS-CURSES]

delch [SUS-
CURSES]

deleteln [SUS-
CURSES]

delscreen [SUS-
CURSES]

delwin [SUS-
CURSES]

derwin [SUS-
CURSES]

doupdate [SUS-
CURSES]

dupwin [SUS-
CURSES]

356 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 14 Utility Libraries

echo [SUS-
CURSES]

echochar [SUS-
CURSES]

endwin [SUS-
CURSES]

erase [SUS-
CURSES]

erasechar [SUS-
CURSES]

filter [SUS-
CURSES]

flash [SUS-
CURSES]

flushinp [SUS-
CURSES]

getbkgd [SUS-
CURSES]

getch [SUS-
CURSES]

getnstr [SUS-
CURSES]

getstr [SUS-
CURSES]

getwin [SUS-
CURSES]

halfdelay [SUS-
CURSES]

has_colors [SUS-
CURSES]

has_ic [SUS-
CURSES]

has_il [SUS-
CURSES]

hline [SUS-
CURSES]

idcok [SUS-
CURSES]

idlok [SUS-
CURSES]

immedok [SUS-
CURSES]

inch [SUS-
CURSES]

inchnstr [SUS-
CURSES]

inchstr [SUS-
CURSES]

init_color [SUS-
CURSES]

init_pair [SUS-
CURSES]

initscr [SUS-
CURSES]

innstr [SUS-
CURSES]

insch [SUS-
CURSES]

insdelln [SUS-
CURSES]

insertln [SUS-
CURSES]

insnstr [SUS-
CURSES]

insstr [SUS-
CURSES]

instr [SUS-
CURSES]

intrflush [SUS-
CURSES]

is_linetouched
[SUS-CURSES]

is_wintouched
[SUS-CURSES]

isendwin [SUS-
CURSES]

keyname [SUS-
CURSES]

keypad [SUS-
CURSES]

killchar [SUS-
CURSES]

leaveok [SUS-
CURSES]

longname [SUS-
CURSES]

meta [SUS-
CURSES]

move [SUS-
CURSES]

mvaddch [SUS-
CURSES]

mvaddchnstr
[SUS-CURSES]

mvaddchstr
[SUS-CURSES]

mvaddnstr [SUS-
CURSES]

mvaddstr [SUS-
CURSES]

mvchgat [SUS-
CURSES]

mvcur [SUS-
CURSES]

mvdelch [SUS-
CURSES]

mvderwin [SUS-
CURSES]

mvgetch [SUS-
CURSES]

mvgetnstr [SUS-
CURSES]

mvgetstr [SUS-
CURSES]

mvhline [SUS-
CURSES]

mvinch [SUS-
CURSES]

mvinchnstr
[SUS-CURSES]

mvinchstr [SUS-
CURSES]

mvinsch [SUS-
CURSES]

mvinnstr [SUS-
CURSES]

mvinsnstr [SUS-
CURSES]

mvinsstr [SUS-
CURSES]

mvinstr [SUS-
CURSES]

mvprintw [SUS-
CURSES]

mvscanw [SUS-
CURSES]

mvvline [SUS-
CURSES]

mvwaddch [SUS-
CURSES]

mvwaddchnstr
[SUS-CURSES]

mvwaddchstr
[SUS-CURSES]

mvwaddnstr
[SUS-CURSES]

mvwdelch [SUS-
CURSES]

mvwaddstr
[SUS-CURSES]

mvwchgat [SUS-
CURSES]

mvwgetch [SUS-
CURSES]

mvwgetstr [SUS-
CURSES]

mvwgetnstr
[SUS-CURSES]

mvwhline [SUS-
CURSES]

mvwin [SUS-
CURSES]

mvwinch [SUS-
CURSES]

mvwinchnstr
[SUS-CURSES]

mvwinchstr
[SUS-CURSES]

 © 2007 Linux Foundation 357

14 Utility Libraries ISO/IEC 23360 Part 1:2007(E)

mvwinnstr [SUS-
CURSES]

mvwinsch [SUS-
CURSES]

mvwinsnstr
[SUS-CURSES]

mvwinsstr [SUS-
CURSES]

mvwinstr [SUS-
CURSES]

mvwprintw
[SUS-CURSES]

mvwscanw
[SUS-CURSES]

mvwvline [SUS-
CURSES]

napms [SUS-
CURSES]

newterm [SUS-
CURSES]

newpad [SUS-
CURSES]

newwin [SUS-
CURSES]

nl [SUS-CURSES] nocbreak [SUS-
CURSES]

nodelay [SUS-
CURSES]

noecho [SUS-
CURSES]

nonl [SUS-
CURSES]

noqiflush [SUS-
CURSES]

noraw [SUS-
CURSES]

notimeout [SUS-
CURSES]

overlay [SUS-
CURSES]

pechochar [SUS-
CURSES]

overwrite [SUS-
CURSES]

pair_content
[SUS-CURSES]

pnoutrefresh
[SUS-CURSES]

printw [SUS-
CURSES]

prefresh [SUS-
CURSES]

putp [SUS-
CURSES]

putwin [SUS-
CURSES]

qiflush [SUS-
CURSES]

raw [SUS-
CURSES]

redrawwin [SUS-
CURSES]

refresh [SUS-
CURSES]

reset_prog_mode
[SUS-CURSES]

reset_shell_mode
[SUS-CURSES]

resetty [SUS-
CURSES]

restartterm [SUS-
CURSES]

scanw [SUS-
CURSES]

ripoffline [SUS-
CURSES]

savetty [SUS-
CURSES]

scr_dump [SUS-
CURSES]

scr_restore [SUS-
CURSES]

scr_init [SUS-
CURSES]

scr_set [SUS-
CURSES]

scrl [SUS-
CURSES]

scroll [SUS-
CURSES]

scrollok [SUS-
CURSES]

set_curterm
[SUS-CURSES]

set_term [SUS-
CURSES]

setscrreg [SUS-
CURSES]

setupterm [SUS-
CURSES]

slk_attr_set
[SUS-CURSES]

slk_attroff [SUS-
CURSES]

slk_clear [SUS-
CURSES]

slk_attron [SUS-
CURSES]

slk_attrset [SUS-
CURSES]

slk_color [SUS-
CURSES]

slk_label [SUS-
CURSES]

slk_init [SUS-
CURSES]

slk_noutrefresh
[SUS-CURSES]

slk_refresh [SUS-
CURSES]

slk_restore [SUS-
CURSES]

slk_set [SUS-
CURSES]

slk_touch [SUS-
CURSES]

standend [SUS-
CURSES]

standout [SUS-
CURSES]

start_color [SUS-
CURSES]

subpad [SUS-
CURSES]

subwin [SUS-
CURSES]

termname [SUS-
CURSES]

syncok [SUS-
CURSES]

termattrs [SUS-
CURSES]

tgetent [SUS-
CURSES]

tgetnum [SUS-
CURSES]

tgetflag [SUS-
CURSES]

tgetstr [SUS-
CURSES]

tgoto [SUS-
CURSES]

tigetflag [SUS-
CURSES]

tigetnum [SUS-
CURSES]

tigetstr [SUS-
CURSES]

timeout [SUS-
CURSES]

touchline [SUS-
CURSES]

touchwin [SUS-
CURSES]

tparm [SUS-
CURSES]

358 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 14 Utility Libraries

tputs [SUS-
CURSES]

ungetch [SUS-
CURSES]

typeahead [SUS-
CURSES]

unctrl [SUS-
CURSES]

untouchwin
[SUS-CURSES]

use_env [SUS-
CURSES]

vidattr [SUS-
CURSES]

vidputs [SUS-
CURSES]

vline [SUS-
CURSES]

vw_scanw [SUS-
CURSES]

vw_printw [SUS-
CURSES]

vwprintw [SUS-
CURSES]

vwscanw [SUS-
CURSES]

waddchstr [SUS-
CURSES]

waddch [SUS-
CURSES]

waddchnstr
[SUS-CURSES]

waddnstr [SUS-
CURSES]

waddstr [SUS-
CURSES]

wattr_get [SUS-
CURSES]

wattr_off [SUS-
CURSES]

wattr_on [SUS-
CURSES]

wattroff [SUS-
CURSES]

wattr_set [SUS-
CURSES]

wattron [SUS-
CURSES]

wattrset [SUS-
CURSES]

wbkgdset [SUS-
CURSES]

wbkgd [SUS-
CURSES]

wborder [SUS-
CURSES]

wchgat [SUS-
CURSES]

wclrtoeol [SUS-
CURSES]

wclear [SUS-
CURSES]

wclrtobot [SUS-
CURSES]

wcolor_set [SUS-
CURSES]

wcursyncup
[SUS-CURSES]

wdelch [SUS-
CURSES]

wdeleteln [SUS-
CURSES]

wechochar [SUS-
CURSES]

werase [SUS-
CURSES]

wgetch [SUS-
CURSES]

wgetnstr [SUS-
CURSES]

wgetstr [SUS-
CURSES]

whline [SUS-
CURSES]

winch [SUS-
CURSES]

winchnstr [SUS-
CURSES]

winchstr [SUS-
CURSES]

winnstr [SUS-
CURSES]

winsch [SUS-
CURSES]

winsdelln [SUS-
CURSES]

winsertln [SUS-
CURSES]

winsnstr [SUS-
CURSES]

winsstr [SUS-
CURSES]

winstr [SUS-
CURSES]

wmove [SUS-
CURSES]

wnoutrefresh
[SUS-CURSES]

wprintw [SUS-
CURSES]

wredrawln [SUS-
CURSES]

wrefresh [SUS-
CURSES]

wscanw [SUS-
CURSES]

wscrl [SUS-
CURSES]

wsetscrreg [SUS-
CURSES]

wstandend [SUS-
CURSES]

wstandout [SUS-
CURSES]

wsyncdown
[SUS-CURSES]

wsyncup [SUS-
CURSES]

wtouchln [SUS-
CURSES]

wvline [SUS-
CURSES]

 wtimeout [SUS-
CURSES]

An LSB conforming implementation shall provide the generic data interfaces for
Curses specified in Table 14-5, with the full mandatory functionality as
described in the referenced underlying specification.

Table 14-5 libncurses - Curses Data Interfaces

COLORS [SUS-
CURSES]

COLOR_PAIRS
[SUS-CURSES]

COLS [SUS-
CURSES]

LINES [SUS-
CURSES]

acs_map [SUS- cur_term [SUS- curscr [SUS- stdscr [SUS-

 © 2007 Linux Foundation 359

14 Utility Libraries ISO/IEC 23360 Part 1:2007(E)

CURSES] CURSES] CURSES] CURSES]

14.6 Data Definitions for libncurses
This section defines global identifiers and their values that are associated with
interfaces contained in libncurses. These definitions are organized into groups
that correspond to system headers. This convention is used as a convenience for
the reader, and does not imply the existence of these headers, or their content.
Where an interface is defined as requiring a particular system header file all of
the data definitions for that system header file presented here shall be in effect.

This section gives data definitions to promote binary application portability, not
to repeat source interface definitions available elsewhere. System providers and
application developers should use this ABI to supplement - not to replace -
source interface definition specifications.

This specification uses the ISO C (1999) C Language as the reference
programming language, and data definitions are specified in ISO C format. The
C language is used here as a convenient notation. Using a C language
description of these data objects does not preclude their use by other
programming languages.

14.6.1 curses.h

#define ERR (-1)
#define OK (0)
#define ACS_RARROW (acs_map['+'])
#define ACS_LARROW (acs_map[','])
#define ACS_UARROW (acs_map['-'])
#define ACS_DARROW (acs_map['.'])
#define ACS_BLOCK (acs_map['0'])
#define ACS_CKBOARD (acs_map['a'])
#define ACS_DEGREE (acs_map['f'])
#define ACS_PLMINUS (acs_map['g'])
#define ACS_BOARD (acs_map['h'])
#define ACS_LANTERN (acs_map['i'])
#define ACS_LRCORNER (acs_map['j'])
#define ACS_URCORNER (acs_map['k'])
#define ACS_ULCORNER (acs_map['l'])
#define ACS_LLCORNER (acs_map['m'])
#define ACS_PLUS (acs_map['n'])
#define ACS_S1 (acs_map['o'])
#define ACS_HLINE (acs_map['q'])
#define ACS_S9 (acs_map['s'])
#define ACS_LTEE (acs_map['t'])
#define ACS_RTEE (acs_map['u'])
#define ACS_BTEE (acs_map['v'])
#define ACS_TTEE (acs_map['w'])
#define ACS_VLINE (acs_map['x'])
#define ACS_DIAMOND (acs_map['`'])
#define ACS_BULLET (acs_map['~'])
#define getmaxyx(win,y,x) \
 (y=(win)?((win)->_maxy+1):ERR,x=(win)?((win)-
>_maxx+1):ERR)
#define getbegyx(win,y,x) \
 (y=(win)?(win)->_begy:ERR,x=(win)?(win)->_begx:ERR)
#define getyx(win,y,x) \
 (y=(win)?(win)->_cury:ERR,x=(win)?(win)->_curx:ERR)
#define getparyx(win,y,x) \
 (y=(win)?(win)->_pary:ERR,x=(win)?(win)->_parx:ERR)

#define WA_ALTCHARSET A_ALTCHARSET

360 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 14 Utility Libraries

#define WA_ATTRIBUTES A_ATTRIBUTES
#define WA_BLINK A_BLINK
#define WA_BOLD A_BOLD
#define WA_DIM A_DIM
#define WA_HORIZONTAL A_HORIZONTAL
#define WA_INVIS A_INVIS
#define WA_LEFT A_LEFT
#define WA_LOW A_LOW
#define WA_NORMAL A_NORMAL
#define WA_PROTECT A_PROTECT
#define WA_REVERSE A_REVERSE
#define WA_RIGHT A_RIGHT
#define WA_STANDOUT A_STANDOUT
#define WA_TOP A_TOP
#define WA_UNDERLINE A_UNDERLINE
#define WA_VERTICAL A_VERTICAL
#define A_REVERSE NCURSES_BITS(1UL,10)

#define COLOR_BLACK 0
#define COLOR_RED 1
#define COLOR_GREEN 2
#define COLOR_YELLOW 3
#define COLOR_BLUE 4
#define COLOR_MAGENTA 5
#define COLOR_CYAN 6
#define COLOR_WHITE 7

#define _SUBWIN 0x01
#define _ENDLINE 0x02
#define _FULLWIN 0x04
#define _SCROLLWIN 0x08
#define _ISPAD 0x10
#define _HASMOVED 0x20

typedef unsigned char bool;

typedef unsigned long int chtype;
typedef struct screen SCREEN;
typedef struct _win_st WINDOW;
typedef chtype attr_t;
typedef struct {
 attr_t attr;
 wchar_t chars[5];
} cchar_t;
struct pdat {
 short _pad_y;
 short _pad_x;
 short _pad_top;
 short _pad_left;
 short _pad_bottom;
 short _pad_right;
};

struct _win_st {
 short _cury;
 short _curx;
 short _maxy;
 short _maxx;
 short _begy;
 short _begx;
 short _flags;
 attr_t _attrs;
 chtype _bkgd;
 bool _notimeout;
 bool _clear;
 bool _leaveok;

 © 2007 Linux Foundation 361

14 Utility Libraries ISO/IEC 23360 Part 1:2007(E)

 bool _scroll;
 bool _idlok;
 bool _idcok;
 bool _immed;
 bool _sync;
 bool _use_keypad;
 int _delay;
 struct ldat *_line;
 short _regtop;
 short _regbottom;
 int _parx;
 int _pary;
 WINDOW *_parent;
 struct pdat _pad;
 short _yoffset;
 cchar_t _bkgrnd;
};

#define KEY_CODE_YES 0400
#define KEY_BREAK 0401
#define KEY_MIN 0401
#define KEY_DOWN 0402
#define KEY_UP 0403
#define KEY_LEFT 0404
#define KEY_RIGHT 0405
#define KEY_HOME 0406
#define KEY_BACKSPACE 0407
#define KEY_F0 0410
#define KEY_DL 0510
#define KEY_IL 0511
#define KEY_DC 0512
#define KEY_IC 0513
#define KEY_EIC 0514
#define KEY_CLEAR 0515
#define KEY_EOS 0516
#define KEY_EOL 0517
#define KEY_SF 0520
#define KEY_SR 0521
#define KEY_NPAGE 0522
#define KEY_PPAGE 0523
#define KEY_STAB 0524
#define KEY_CTAB 0525
#define KEY_CATAB 0526
#define KEY_ENTER 0527
#define KEY_SRESET 0530
#define KEY_RESET 0531
#define KEY_PRINT 0532
#define KEY_LL 0533
#define KEY_A1 0534
#define KEY_A3 0535
#define KEY_B2 0536
#define KEY_C1 0537
#define KEY_C3 0540
#define KEY_BTAB 0541
#define KEY_BEG 0542
#define KEY_CANCEL 0543
#define KEY_CLOSE 0544
#define KEY_COMMAND 0545
#define KEY_COPY 0546
#define KEY_CREATE 0547
#define KEY_END 0550
#define KEY_EXIT 0551
#define KEY_FIND 0552
#define KEY_HELP 0553
#define KEY_MARK 0554
#define KEY_MESSAGE 0555

362 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 14 Utility Libraries

#define KEY_MOVE 0556
#define KEY_NEXT 0557
#define KEY_OPEN 0560
#define KEY_OPTIONS 0561
#define KEY_PREVIOUS 0562
#define KEY_REDO 0563
#define KEY_REFERENCE 0564
#define KEY_REFRESH 0565
#define KEY_REPLACE 0566
#define KEY_RESTART 0567
#define KEY_RESUME 0570
#define KEY_SAVE 0571
#define KEY_SBEG 0572
#define KEY_SCANCEL 0573
#define KEY_SCOMMAND 0574
#define KEY_SCOPY 0575
#define KEY_SCREATE 0576
#define KEY_SDC 0577
#define KEY_SDL 0600
#define KEY_SELECT 0601
#define KEY_SEND 0602
#define KEY_SEOL 0603
#define KEY_SEXIT 0604
#define KEY_SFIND 0605
#define KEY_SHELP 0606
#define KEY_SHOME 0607
#define KEY_SIC 0610
#define KEY_SLEFT 0611
#define KEY_SMESSAGE 0612
#define KEY_SMOVE 0613
#define KEY_SNEXT 0614
#define KEY_SOPTIONS 0615
#define KEY_SPREVIOUS 0616
#define KEY_SPRINT 0617
#define KEY_SREDO 0620
#define KEY_SREPLACE 0621
#define KEY_SRIGHT 0622
#define KEY_SRSUME 0623
#define KEY_SSAVE 0624
#define KEY_SSUSPEND 0625
#define KEY_SUNDO 0626
#define KEY_SUSPEND 0627
#define KEY_UNDO 0630
#define KEY_MOUSE 0631
#define KEY_RESIZE 0632
#define KEY_MAX 0777

#define PAIR_NUMBER(a) (((a)&A_COLOR)>>8)
#define NCURSES_BITS(mask,shift) ((mask)<<((shift)+8))
#define A_CHARTEXT (NCURSES_BITS(1UL,0)-1UL)
#define A_NORMAL 0L
#define NCURSES_ATTR_SHIFT 8
#define A_COLOR NCURSES_BITS(((1UL)<<8)-1UL,0)
#define A_BLINK NCURSES_BITS(1UL,11)
#define A_DIM NCURSES_BITS(1UL,12)
#define A_BOLD NCURSES_BITS(1UL,13)
#define A_ALTCHARSET NCURSES_BITS(1UL,14)
#define A_INVIS NCURSES_BITS(1UL,15)
#define A_PROTECT NCURSES_BITS(1UL,16)
#define A_HORIZONTAL NCURSES_BITS(1UL,17)
#define A_LEFT NCURSES_BITS(1UL,18)
#define A_LOW NCURSES_BITS(1UL,19)
#define A_RIGHT NCURSES_BITS(1UL,20)
#define A_TOP NCURSES_BITS(1UL,21)
#define A_VERTICAL NCURSES_BITS(1UL,22)
#define A_STANDOUT NCURSES_BITS(1UL,8)

 © 2007 Linux Foundation 363

14 Utility Libraries ISO/IEC 23360 Part 1:2007(E)

#define A_UNDERLINE NCURSES_BITS(1UL,9)
#define COLOR_PAIR(n) NCURSES_BITS(n,0)
#define A_ATTRIBUTES NCURSES_BITS(~(1UL-1UL),0)

extern int addch(const chtype);
extern int addchnstr(const chtype *, int);
extern int addchstr(const chtype *);
extern int addnstr(const char *, int);
extern int addstr(const char *);
extern int attroff(int);
extern int attron(int);
extern int attrset(int);
extern int attr_get(attr_t *, short *, void *);
extern int attr_off(attr_t, void *);
extern int attr_on(attr_t, void *);
extern int attr_set(attr_t, short, void *);
extern int baudrate(void);
extern int beep(void);
extern int bkgd(chtype);
extern void bkgdset(chtype);
extern int border(chtype, chtype, chtype, chtype, chtype, chtype,
chtype,
 chtype);
extern int box(WINDOW *, chtype, chtype);
extern bool can_change_color(void);
extern int cbreak(void);
extern int chgat(int, attr_t, short, const void *);
extern int clear(void);
extern int clearok(WINDOW *, bool);
extern int clrtobot(void);
extern int clrtoeol(void);
extern int color_content(short, short *, short *, short *);
extern int color_set(short, void *);
extern int copywin(const WINDOW *, WINDOW *, int, int, int, int,
int, int,
 int);
extern int curs_set(int);
extern int def_prog_mode(void);
extern int def_shell_mode(void);
extern int delay_output(int);
extern int delch(void);
extern void delscreen(SCREEN *);
extern int delwin(WINDOW *);
extern int deleteln(void);
extern WINDOW *derwin(WINDOW *, int, int, int, int);
extern int doupdate(void);
extern WINDOW *dupwin(WINDOW *);
extern int echo(void);
extern int echochar(const chtype);
extern int erase(void);
extern int endwin(void);
extern char erasechar(void);
extern void filter(void);
extern int flash(void);
extern int flushinp(void);
extern chtype getbkgd(WINDOW *);
extern int getch(void);
extern int getnstr(char *, int);
extern int getstr(char *);
extern WINDOW *getwin(FILE *);
extern int halfdelay(int);
extern bool has_colors(void);
extern bool has_ic(void);
extern bool has_il(void);
extern int hline(chtype, int);
extern void idcok(WINDOW *, bool);

364 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 14 Utility Libraries

extern int idlok(WINDOW *, bool);
extern void immedok(WINDOW *, bool);
extern chtype inch(void);
extern int inchnstr(chtype *, int);
extern int inchstr(chtype *);
extern WINDOW *initscr(void);
extern int init_color(short, short, short, short);
extern int init_pair(short, short, short);
extern int innstr(char *, int);
extern int insch(chtype);
extern int insdelln(int);
extern int insertln(void);
extern int insnstr(const char *, int);
extern int insstr(const char *);
extern int instr(char *);
extern int intrflush(WINDOW *, bool);
extern bool isendwin(void);
extern bool is_linetouched(WINDOW *, int);
extern bool is_wintouched(WINDOW *);
extern const char *keyname(int);
extern int keypad(WINDOW *, bool);
extern char killchar(void);
extern int leaveok(WINDOW *, bool);
extern char *longname(void);
extern int meta(WINDOW *, bool);
extern int move(int, int);
extern int mvaddch(int, int, const chtype);
extern int mvaddchnstr(int, int, const chtype *, int);
extern int mvaddchstr(int, int, const chtype *);
extern int mvaddnstr(int, int, const char *, int);
extern int mvaddstr(int, int, const char *);
extern int mvchgat(int, int, int, attr_t, short, const void *);
extern int mvcur(int, int, int, int);
extern int mvdelch(int, int);
extern int mvderwin(WINDOW *, int, int);
extern int mvgetch(int, int);
extern int mvgetnstr(int, int, char *, int);
extern int mvgetstr(int, int, char *);
extern int mvhline(int, int, chtype, int);
extern chtype mvinch(int, int);
extern int mvinchnstr(int, int, chtype *, int);
extern int mvinchstr(int, int, chtype *);
extern int mvinnstr(int, int, char *, int);
extern int mvinsch(int, int, chtype);
extern int mvinsnstr(int, int, const char *, int);
extern int mvinsstr(int, int, const char *);
extern int mvinstr(int, int, char *);
extern int mvprintw(int, int, char *, ...);
extern int mvscanw(int, int, const char *, ...);
extern int mvvline(int, int, chtype, int);
extern int mvwaddch(WINDOW *, int, int, const chtype);
extern int mvwaddchnstr(WINDOW *, int, int, const chtype *, int);
extern int mvwaddchstr(WINDOW *, int, int, const chtype *);
extern int mvwaddnstr(WINDOW *, int, int, const char *, int);
extern int mvwaddstr(WINDOW *, int, int, const char *);
extern int mvwchgat(WINDOW *, int, int, int, attr_t, short, const
void *);
extern int mvwdelch(WINDOW *, int, int);
extern int mvwgetch(WINDOW *, int, int);
extern int mvwgetnstr(WINDOW *, int, int, char *, int);
extern int mvwgetstr(WINDOW *, int, int, char *);
extern int mvwhline(WINDOW *, int, int, chtype, int);
extern int mvwin(WINDOW *, int, int);
extern chtype mvwinch(WINDOW *, int, int);
extern int mvwinchnstr(WINDOW *, int, int, chtype *, int);
extern int mvwinchstr(WINDOW *, int, int, chtype *);

 © 2007 Linux Foundation 365

14 Utility Libraries ISO/IEC 23360 Part 1:2007(E)

extern int mvwinnstr(WINDOW *, int, int, char *, int);
extern int mvwinsch(WINDOW *, int, int, chtype);
extern int mvwinsnstr(WINDOW *, int, int, const char *, int);
extern int mvwinsstr(WINDOW *, int, int, const char *);
extern int mvwinstr(WINDOW *, int, int, char *);
extern int mvwprintw(WINDOW *, int, int, char *, ...);
extern int mvwscanw(WINDOW *, int, int, const char *, ...);
extern int mvwvline(WINDOW *, int, int, chtype, int);
extern int napms(int);
extern WINDOW *newpad(int, int);
extern SCREEN *newterm(const char *, FILE *, FILE *);
extern WINDOW *newwin(int, int, int, int);
extern int nl(void);
extern int nocbreak(void);
extern int nodelay(WINDOW *, bool);
extern int noecho(void);
extern int nonl(void);
extern void noqiflush(void);
extern int noraw(void);
extern int notimeout(WINDOW *, bool);
extern int overlay(const WINDOW *, WINDOW *);
extern int overwrite(const WINDOW *, WINDOW *);
extern int pair_content(short, short *, short *);
extern int pechochar(WINDOW *, chtype);
extern int pnoutrefresh(WINDOW *, int, int, int, int, int, int);
extern int prefresh(WINDOW *, int, int, int, int, int, int);
extern int printw(char *, ...);
extern int putwin(WINDOW *, FILE *);
extern void qiflush(void);
extern int raw(void);
extern int redrawwin(WINDOW *);
extern int refresh(void);
extern int resetty(void);
extern int reset_prog_mode(void);
extern int reset_shell_mode(void);
extern int ripoffline(int, int (*_bkgrnd) (WINDOW *, int)
);
extern int savetty(void);
extern int scanw(const char *, ...);
extern int scr_dump(const char *);
extern int scr_init(const char *);
extern int scrl(int);
extern int scroll(WINDOW *);
extern int scrollok(WINDOW *, bool);
extern int scr_restore(const char *);
extern int scr_set(const char *);
extern int setscrreg(int, int);
extern SCREEN *set_term(SCREEN *);
extern int slk_attroff(const chtype);
extern int slk_attron(const chtype);
extern int slk_attrset(const chtype);
extern int slk_attr_set(const attr_t, short, void *);
extern int slk_clear(void);
extern int slk_color(short);
extern int slk_init(int);
extern char *slk_label(int);
extern int slk_noutrefresh(void);
extern int slk_refresh(void);
extern int slk_restore(void);
extern int slk_set(int, const char *, int);
extern int slk_touch(void);
extern int standout(void);
extern int standend(void);
extern int start_color(void);
extern WINDOW *subpad(WINDOW *, int, int, int, int);
extern WINDOW *subwin(WINDOW *, int, int, int, int);

366 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 14 Utility Libraries

extern int syncok(WINDOW *, bool);
extern chtype termattrs(void);
extern char *termname(void);
extern void timeout(int);
extern int typeahead(int);
extern int ungetch(int);
extern int untouchwin(WINDOW *);
extern void use_env(bool);
extern int vidattr(chtype);
extern int vidputs(chtype, int (*_bkgrnd) (int)
);
extern int vline(chtype, int);
extern int vwprintw(WINDOW *, char *, va_list);
extern int vw_printw(WINDOW *, const char *, va_list);
extern int vwscanw(WINDOW *, const char *, va_list);
extern int vw_scanw(WINDOW *, const char *, va_list);
extern int waddch(WINDOW *, const chtype);
extern int waddchnstr(WINDOW *, const chtype *, int);
extern int waddchstr(WINDOW *, const chtype *);
extern int waddnstr(WINDOW *, const char *, int);
extern int waddstr(WINDOW *, const char *);
extern int wattron(WINDOW *, int);
extern int wattroff(WINDOW *, int);
extern int wattrset(WINDOW *, int);
extern int wattr_get(WINDOW *, attr_t *, short *, void *);
extern int wattr_on(WINDOW *, attr_t, void *);
extern int wattr_off(WINDOW *, attr_t, void *);
extern int wattr_set(WINDOW *, attr_t, short, void *);
extern int wbkgd(WINDOW *, chtype);
extern void wbkgdset(WINDOW *, chtype);
extern int wborder(WINDOW *, chtype, chtype, chtype, chtype,
chtype,
 chtype, chtype, chtype);
extern int wchgat(WINDOW *, int, attr_t, short, const void *);
extern int wclear(WINDOW *);
extern int wclrtobot(WINDOW *);
extern int wclrtoeol(WINDOW *);
extern int wcolor_set(WINDOW *, short, void *);
extern void wcursyncup(WINDOW *);
extern int wdelch(WINDOW *);
extern int wdeleteln(WINDOW *);
extern int wechochar(WINDOW *, const chtype);
extern int werase(WINDOW *);
extern int wgetch(WINDOW *);
extern int wgetnstr(WINDOW *, char *, int);
extern int wgetstr(WINDOW *, char *);
extern int whline(WINDOW *, chtype, int);
extern chtype winch(WINDOW *);
extern int winchnstr(WINDOW *, chtype *, int);
extern int winchstr(WINDOW *, chtype *);
extern int winnstr(WINDOW *, char *, int);
extern int winsch(WINDOW *, chtype);
extern int winsdelln(WINDOW *, int);
extern int winsertln(WINDOW *);
extern int winsnstr(WINDOW *, const char *, int);
extern int winsstr(WINDOW *, const char *);
extern int winstr(WINDOW *, char *);
extern int wmove(WINDOW *, int, int);
extern int wnoutrefresh(WINDOW *);
extern int wprintw(WINDOW *, char *, ...);
extern int wredrawln(WINDOW *, int, int);
extern int wrefresh(WINDOW *);
extern int wscanw(WINDOW *, const char *, ...);
extern int wscrl(WINDOW *, int);
extern int wsetscrreg(WINDOW *, int, int);
extern int wstandout(WINDOW *);

 © 2007 Linux Foundation 367

14 Utility Libraries ISO/IEC 23360 Part 1:2007(E)

extern int wstandend(WINDOW *);
extern void wsyncdown(WINDOW *);
extern void wsyncup(WINDOW *);
extern void wtimeout(WINDOW *, int);
extern int wtouchln(WINDOW *, int, int, int);
extern int wvline(WINDOW *, chtype, int);
extern char *unctrl(chtype);
extern int COLORS;
extern int COLOR_PAIRS;
extern chtype acs_map[];
extern WINDOW *curscr;
extern WINDOW *stdscr;
extern int COLS;
extern int LINES;
extern int touchline(WINDOW *, int, int);
extern int touchwin(WINDOW *);

14.6.2 term.h

extern int putp(const char *);
extern int tigetflag(const char *);
extern int tigetnum(const char *);
extern char *tigetstr(const char *);
extern char *tparm(const char *, ...);
extern TERMINAL *set_curterm(TERMINAL *);
extern int del_curterm(TERMINAL *);
extern int restartterm(char *, int, int *);
extern int setupterm(char *, int, int *);
extern char *tgetstr(char *, char **);
extern char *tgoto(const char *, int, int);
extern int tgetent(char *, const char *);
extern int tgetflag(char *);
extern int tgetnum(char *);
extern int tputs(const char *, int, int (*)(int)
);
extern TERMINAL *cur_term;

14.7 Interfaces for libutil
Table 14-6 defines the library name and shared object name for the libutil
library

Table 14-6 libutil Definition

Library: libutil

SONAME: libutil.so.1
The behavior of the interfaces in this library is specified by the following speci-
fications:

[LSB] This Specification

14.7.1 Utility Functions

14.7.1.1 Interfaces for Utility Functions
An LSB conforming implementation shall provide the generic functions for
Utility Functions specified in Table 14-7, with the full mandatory functionality
as described in the referenced underlying specification.

368 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 14 Utility Libraries

Table 14-7 libutil - Utility Functions Function Interfaces

forkpty [LSB] login [LSB] login_tty [LSB] logout [LSB]

openpty [LSB]
 logwtmp [LSB]

14.8 Interface Definitions for libutil
The interfaces defined on the following pages are included in libutil and are
defined by this specification. Unless otherwise noted, these interfaces shall be
included in the source standard.

Other interfaces listed in Section 14.7 shall behave as described in the referenced
base document.

forkpty

Name
forkpty — Create a new process attached to an available pseudo-terminal

Synopsis
#include <pty.h>
int forkpty(int * amaster, char * name, struct termios * termp, struct
winsize * winp);

Description
The forkpty() function shall find and open a pseudo-terminal device pair in
the same manner as the openpty() function. If a pseudo-terminal is available,
forkpty() shall create a new process in the same manner as the fork()
function, and prepares the new process for login in the same manner as
login_tty().

If termp is not null, it shall refer to a termios structure that shall be used to
initialize the characteristics of the slave device. If winp is not null, it shall refer
to a winsize structure used to initialize the window size of the slave device.

Return Value
On success, the parent process shall return the process id of the child, and the
child shall return 0. On error, no new process shall be created, -1 shall be
returned, and errno shall be set appropriately. On success, the parent process
shall receive the file descriptor of the master side of the pseudo-terminal in the
location referenced by amaster, and, if name is not NULL, the filename of the
slave device in name.

Errors

EAGAIN

 Unable to create a new process.

ENOENT

 There are no available pseudo-terminals.

ENOMEM

 Insufficient memory was available.

 © 2007 Linux Foundation 369

14 Utility Libraries ISO/IEC 23360 Part 1:2007(E)

login

Name
login — login utility function

Synopsis
#include <utmp.h>
void login (struct utmp * ut);

Description
The login() function shall update the user accounting databases. The ut
parameter shall reference a utmp structure for all fields except the following:

 1. The ut_type field shall be set to USER_PROCESS.

 2. The ut_pid field shall be set to the process identifier for the current
process.

 3. The ut_line field shall be set to the name of the controlling terminal
device. The name shall be found by examining the device associated with
the standard input, output and error streams in sequence, until one
associated with a terminal device is found. If none of these streams refers
to a terminal device, the ut_line field shall be set to "???". If the terminal
device is in the /dev directory hierarchy, the ut_line field shall not
contain the leading "/dev/", otherwise it shall be set to the final
component of the pathname of the device. If the user accounting database
imposes a limit on the size of the ut_line field, it shall truncate the name,
but any such limit shall not be smaller than UT_LINESIZE (including a
terminating null character).

Return Value
None

Errors
None

370 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 14 Utility Libraries

login_tty

Name
login_tty — Prepare a terminal for login

Synopsis
#include <utmp.h>
int login_tty (int fdr);

Description
The login_tty() function shall prepare the terminal device referenced by the
file descriptor fdr. This function shall create a new session, make the terminal
the controlling terminal for the current process, and set the standard input,
output, and error streams of the current process to the terminal. If fdr is not the
standard input, output or error stream, then login_tty() shall close fdr.

Return Value
On success, login_tty() shall return zero; otherwise -1 is returned, and errno
shall be set appropriately.

Errors

ENOTTY

 fdr does not refer to a terminal device.

logout

Name
logout — logout utility function

Synopsis
#include <utmp.h>
int logout (const char * line);

Description
Given the device line, the logout() function shall search the user accounting
database which is read by getutent() for an entry with the corresponding line,
and with the type of USER_PROCESS. If a corresponding entry is located, it shall
be updated as follows:

 1. The ut_name field shall be set to zeroes (UT_NAMESIZE NUL bytes).

 2. The ut_host field shall be set to zeroes (UT_HOSTSIZE NUL bytes).

 3. The ut_tv shall be set to the current time of day.

 4. The ut_type field shall be set to DEAD_PROCESS.

Return Value
On success, the logout() function shall return non-zero. Zero is returned if
there was no entry to remove, or if the utmp file could not be opened or
updated.

 © 2007 Linux Foundation 371

14 Utility Libraries ISO/IEC 23360 Part 1:2007(E)

logwtmp

Name
logwtmp — append an entry to the wtmp file

Synopsis
#include <utmp.h>
void logwtmp (const char * line , const char * name , const char *
host);

Description
If the process has permission to update the user accounting databases, the
logwtmp() function shall append a record to the user accounting database that
records all logins and logouts. The record to be appended shall be constructed
as follows:

 1. The ut_line field shall be initialized from line. If the user accounting
database imposes a limit on the size of the ut_line field, it shall truncate
the value, but any such limit shall not be smaller than UT_LINESIZE
(including a terminating null character).

 2. The ut_name field shall be initialized from name. If the user accounting
database imposes a limit on the size of the ut_name field, it shall truncate
the value, but any such limit shall not be smaller than UT_NAMESIZE
(including a terminating null character).

 3. The ut_host field shall be initialized from host. If the user accounting
database imposes a limit on the size of the ut_host field, it shall truncate
the value, but any such limit shall not be smaller than UT_HOSTSIZE
(including a terminating null character).

 4. If the name parameter does not refer to an empty string (i.e. ""), the
ut_type field shall be set to USER_PROCESS; otherwise the ut_type field
shall be set to DEAD_PROCESS.

 5. The ut_id field shall be set to the process identifier for the current process.

 6. The ut_tv field shall be set to the current time of day.

Note: If a process does not have write access to the the user accounting database,
the logwtmp() function will not update it. Since the function does not return any
value, an application has no way of knowing whether it succeeded or failed.

Return Value
None.

372 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 14 Utility Libraries

openpty

Name
openpty — find and open an available pseudo-terminal

Synopsis
#include <pty.h>
int openpty(int *amaster, int *aslave, char *name, struct termios
*termp, struct winsize *winp);

Description
The openpty() function shall find an available pseudo-terminal and return file
descriptors for the master and slave devices in the locations referenced by
amaster and aslave respectively. If name is not NULL, the filename of the slave
shall be placed in the user supplied buffer referenced by name. If termp is not
NULL, it shall point to a termios structure used to initialize the terminal
parameters of the slave pseudo-terminal device. If winp is not NULL, it shall
point to a winsize structure used to initialize the window size parameters of
the slave pseudo-terminal device.

Return Value
On success, zero is returned. On error, -1 is returned, and errno is set
appropriately.

Errors

ENOENT

 There are no available pseudo-terminals.

 © 2007 Linux Foundation 373

V Commands and Utilities

 ISO/IEC 23360 Part 1:2007(E)

15 Commands and Utilities

15.1 Commands and Utilities
An LSB conforming implementation shall provide the commands and utilities
as described in Table 15-1, with at least the behavior described as mandatory in
the referenced underlying specification, with the following exceptions:

Table 15-1 Commands And Utilities

[[1]

 1. If any operand (except one which follows --) starts with a hyphen, the
behavior is unspecified.

Rationale (Informative): Applications should place options before operands, or use
--, as needed. This text is needed because, by default, GNU option parsing
differs from POSIX, unless the environment variable POSIXLY_CORRECT is
set. For example, ls . -a in GNU ls means to list the current directory, showing
all files (that is, "." is an operand and -a is an option). In POSIX, "." and -a
are both operands, and the command means to list the current directory, and
also the file named -a. Suggesting that applications rely on the setting of the
POSIXLY_CORRECT environment variable, or try to set it, seems worse than
just asking the applications to invoke commands in ways which work with
either the POSIX or GNU behaviors.

dmesg [2] id [1] mount [2] sort [1]

ar [2] du [2] install [2] msgfmt [2] split [1]

at [2] echo [2] install_initd
[2]

mv [1] strip [1]

awk [2] ed [1] ipcrm [2] newgrp [2] stty [1]

basename [1] egrep [2] ipcs [2] nice [1] su [2]

batch [2] env [1] join [1] nl [1] sync [2]

bc [2] expand [1] kill [1] nohup [1] tail [1]

cat [1] expr [1] killall [2] od [2] tar [2]

chfn [2] false [1] ln [1] passwd [2] tee [1]

chgrp [1] fgrep [2] locale [1] paste [1] test [1]

chmod [1] file [2] localedef [1] patch [2] time [1]

chown [1] find [2] logger [1] pathchk [1] touch [1]

chsh [2] fold [1] logname [1] pax [1] tr [1]

cksum [1] fuser [2] lp [1] pidof [2] true [1]

cmp [1] gencat [1] lpr [2] pr [1] tsort [1]

col [2] getconf [1] ls [2] printf [1] tty [1]

comm [1] gettext [2] lsb_release
[2]

ps [1] umount [2]

cp [1] grep [2] m4 [2] pwd [1] uname [1]

cpio [2] groupadd [2] mailx [1] remove_initd unexpand [1]

 © 2007 Linux Foundation 375

15 Commands and Utilities ISO/IEC 23360 Part 1:2007(E)

[2]

crontab [2] groupdel [2] make [1] renice [2] uniq [1]

csplit [1] groupmod
[2]

man [1] rm [1] useradd [2]

cut [2] groups [2] md5sum [2] rmdir [1] userdel [2]

date [1] gunzip [2] mkdir [1] sed [2] usermod [2]

dd [1] gzip [2] mkfifo [1] sendmail [2] wc [1]

df [2] head [1] mknod [2] sh [2] xargs [2]

diff [1] hostname [2] mktemp [2] shutdown [2] zcat [2]

iconv [1] more [2] sleep [1]
 dirname [1]

Referenced Specification(s)

[1]. ISO POSIX (2003)

An LSB conforming implementation shall provide the shell built in utilities as
described in Table 15-2, with at least the behavior described as mandatory in the
referenced underlying specification, with the following exceptions:

 1. The built in commands and utilities shall be provided by the sh utility
itself, and need not be implemented in a manner so that they can be
accessed via the exec family of functions as defined in ISO POSIX (2003)
and should not be invoked directly by those standard utilities that execute
other utilities (env, find, nice, nohup, time, xargs).

Table 15-2 Built In Utilities

cd [1]

[2]. This Specification

Rationale (Informative): Since the built in utilities must affect the environment of
the calling process, they have no effect when executed as a file.

getopts [1] read [1] umask [1] wait [1]
Referenced Specification(s)

[1]. ISO POSIX (2003)

15.2 Command Behavior
This section contains descriptions for commands and utilities whose specified
behavior in the LSB contradicts or extends the standards referenced. It also
contains commands and utilities only required by the LSB and not specified by
other standards.

376 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 15 Commands and Utilities

ar

Name
ar — create and maintain library archives (DEPRECATED)

Description
ar is deprecated from the LSB and is expected to disappear from a future
version of the LSB.

Rationale: The LSB generally does not include software development utilities nor
does it specify .o and .a file formats.

ar is as specified in ISO POSIX (2003) but with differences as listed below.

Description
at is as specified in ISO POSIX (2003) but with differences as listed below.

-d

 is functionally equivalent to the -r option specified in ISO POSIX (2003).

Differences

-T
-C

 need not be accepted.

-l

 has unspecified behavior.

-q

 has unspecified behavior; using -r is suggested.

at

Name
at — examine or delete jobs for later execution

Differences

Options

-r

 need not be supported, but the '-d' option is equivalent.

-t time

 need not be supported.

Optional Control Files
The implementation shall support the XSI optional behavior for access control;
however the files at.allow and at.deny may reside in /etc rather than
/usr/lib/cron.

 © 2007 Linux Foundation 377

15 Commands and Utilities ISO/IEC 23360 Part 1:2007(E)

awk

Name
awk — pattern scanning and processing language

Description
awk is as specified in ISO POSIX (2003) but with differences as listed below.

Differences
Certain aspects of internationalized regular expressions are optional; see
Regular Expressions.

Description
The specification for batch is as specified in ISO POSIX (2003), but with
differences as listed below.

Description
bc is as specified in ISO POSIX (2003) but with extensions as listed below.

batch

Name
batch — schedule commands to be executed in a batch queue

Optional Control Files
The implementation shall support the XSI optional behavior for access control;
however the files at.allow and at.deny may reside in /etc rather than
/usr/lib/cron.

bc

Name
bc — an arbitrary precision calculator language

Extensions
The bc language may be extended in an implementation defined manner. If an
implementation supports extensions, it shall also support the additional
options:

-s|--standard

 processes exactly the POSIX bc language.

-w|--warn

 gives warnings for extensions to POSIX bc.

378 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 15 Commands and Utilities

chfn

Name
chfn — change user name and information

Synopsis
chfn [-f full_name] [-h home_phone] [user]

Description
chfn shall update the user database. An unprivileged user may only change the
fields for their own account, a user with appropriate privileges may change the
fields for any account.

The fields full_name and home_phone may contain any character except:

 © 2007 Linux Foundation 379

15 Commands and Utilities ISO/IEC 23360 Part 1:2007(E)

any control character
comma
colon
equal sign

If none of the options are selected, chfn operates in an interactive fashion. The
prompts and expected input in interactive mode are unspecified and should not
be relied upon.

As it is possible for the system to be configured to restrict which fields a non-
privileged user is permitted to change, applications should be written to
gracefully handle these situations.

Standard Options

-f full_name

 sets the user's full name.

-h home_phone

 sets the user's home phone number.

Future Directions
The following two options are expected to be added in a future version of the
LSB:

-o office

 sets the user's office room number.

-p office_phone

 sets the user's office phone number.

Note that some implementations contain a "-o other" option which specifies an
additional field called "other". Traditionally, this field is not subject to the
constraints about legitimate characters in fields. Also, one traditionally shall
have appropriate privileges to change the other field. At this point there is no
consensus about whether it is desirable to specify the other field; applications
may wish to avoid using it.

The "-w work_phone" field found in some implementations should be replaced
by the "-p office_phone" field. The "-r room_number" field found in some
implementations is the equivalent of the "-o office" option mentioned above;
which one of these two options to specify will depend on implementation
experience and the decision regarding the other field.

380 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 15 Commands and Utilities

chsh

Name
chsh — change login shell

Synopsis
chsh [-s login_shell] [user]

Description
chsh changes the user login shell. This determines the name of the user's initial
login command. An unprivileged user may only change the login shell for their
own account, a user with appropriate privilege may change the login shell for
any account specified by user.

Unless the user has appropriate privilege, the initial login command name shall
be one of those listed in /etc/shells. The login_shell shall be the absolute
path (i.e. it must start with '/') to an executable file. Accounts which are
restricted (in an implementation-defined manner) may not change their login
shell.

If the -s option is not selected, chsh operates in an interactive mode. The
prompts and expected input in this mode are unspecified.

Standard Options

-s login_shell

 sets the login shell.

col

Name
col — filter reverse line feeds from input

Description
col is as specified in SUSv2 but with differences as listed below.

The -p option has unspecified behavior.

Note: Although col is shown as legacy in SUSv2, it is not (yet) deprecated in the
LSB.

Differences

 © 2007 Linux Foundation 381

15 Commands and Utilities ISO/IEC 23360 Part 1:2007(E)

cpio

Name
cpio — copy file archives in and out

Description
cpio is as specified in SUSv2, but with differences as listed below.

Differences
Some elements of the Pattern Matching Notation are optional; see Pattern
Matching Notation.

Description
crontab is as specified in ISO POSIX (2003), but with differences as listed below.

Description
cut is as specified in ISO POSIX (2003), but with differences as listed below.

crontab

Name
crontab — maintain crontab files for individual users

Synopsis
crontab [-u user] file crontab [-u user] {-l | -r | -e}

Optional Control Files
The implementation shall support the XSI optional behavior for access control;
however the files cron.allow and cron.deny may reside in /etc rather than
/usr/lib/cron.

cut

Name
cut — split a file into sections determined by context lines

Differences

-n

 has unspecified behavior.

382 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 15 Commands and Utilities

df

Name
df — report file system disk space usage

Description
The df command shall behave as specified in ISO POSIX (2003), but with
differences as listed below.

If an argument is the absolute file name of a special file containing a mounted
file system, df shall show the space available on that file system rather than on
the file system containing the special file (which is typically the root file
system).

Note: In ISO POSIX (2003) the XSI optional behavior permits an operand to name a
special file, but appears to require the operation be performed on the file system
containing the special file. A defect report has been submitted for this case.

Differences

Options
If the -k option is not specified, disk space is shown in unspecified units. If the -
P option is specified, the size of the unit shall be printed on the header line in
the format "%4s-blocks". Applications should specify -k.

The XSI option -t has unspecified behavior. Applications should not specify -t.

Rationale: The most common implementation of df uses the -t option for a
different purpose (restricting output to a particular file system type), and use of -t
is therefore non-portable.

Operand May Identify Special File

 © 2007 Linux Foundation 383

15 Commands and Utilities ISO/IEC 23360 Part 1:2007(E)

dmesg

Name
dmesg — print or control the system message buffer

Synopsis
dmesg [-c | -n level | -s bufsize]

Description
dmesg examines or controls the system message buffer. Only a user with
appropriate privileges may modify the system message buffer parameters or
contents.

Standard Options

-c

 If the user has appropriate privilege, clears the system message buffer
contents after printing.

-n level

 If the user has appropriate privilege, sets the level at which logging of
messages is done to the console.

-s bufsize

 uses a buffer of bufsize to query the system message buffer. This is 16392
by default.

du

Name
du — estimate file space usage

Description
du is as specified in ISO POSIX (2003), but with differences as listed below.

Differences
If the -k option is not specified, disk space is shown in unspecified units.
Applications should specify -k.

384 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 15 Commands and Utilities

echo

Name
echo — write arguments to standard output

Synopsis
echo [string...]

Description
The echo command is as specified in ISO POSIX (2003), but with the following
differences.

Conforming applications should not run echo with a first argument starting
with a hyphen, or with any arguments containing backslashes; they should use
printf in those cases.

Note: The behavior specified here is similar to that specified by ISO POSIX (2003)
without the XSI option. However, the LSB strongly recommends conforming
applications not use any options (even if the implementation provides them) while
ISO POSIX (2003) specifies behavior if the first operand is the string -n.

Implementations may support implementation-defined options to echo. The
behavior of echo if any arguments contain backslashes is also implementation
defined.

Application Usage

egrep

Name
egrep — search a file with an Extended Regular Expression pattern

Description
egrep is equivalent to grep -E. For further details, see the specification for grep.

fgrep

Name
fgrep — search a file with a fixed pattern

Description
fgrep is equivalent to grep -F. For further details, see the specification for grep.

 © 2007 Linux Foundation 385

15 Commands and Utilities ISO/IEC 23360 Part 1:2007(E)

file

Name
file — determine file type

Description
file is as specified in ISO POSIX (2003), but with differences as listed below.

Description
find shall behave as specified in ISO POSIX (2003), except as described below.

Pattern Matching
Some elements of the Pattern Matching Notation are optional; see Pattern
Matching Notation.

Option and Operand Handling
Options and operands to find shall behave as described in ISO POSIX (2003),
except as follows:

Differences
The -M, -h, -d, and -i options need not be supported.

find

Name
find — search for files in a directory hierarchy

Differences

-H

 need not be supported

-L

 need not be supported

-exec ... +

 argument aggregation need not be supported

Rationale: The -H and -L options are not yet widely available in implementations
of the find command, nor is argument aggregation. A future version of this
specification will require these features be supported.

386 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 15 Commands and Utilities

fuser

Name
fuser — identify processes using files or sockets

Description
fuser is as specified in ISO POSIX (2003), but with differences as listed below.

Differences
The fuser command is a system administration utility, see Path For System
Administration Utilities.

Option Differences

-c

 has unspecified behavior.

-f

 has unspecified behavior.

 © 2007 Linux Foundation 387

15 Commands and Utilities ISO/IEC 23360 Part 1:2007(E)

gettext

Name
gettext — retrieve text string from message catalog

Synopsis
gettext [options] [textdomain] msgid gettext -s [options] msgid...

Description
The gettext utility retrieves a translated text string corresponding to string
msgid from a message object generated with msgfmt utility.

The message object name is derived from the optional argument textdomain if
present, otherwise from the TEXTDOMAIN environment variable. If no domain is
specified, or if a corresponding string cannot be found, gettext prints msgid.

Ordinarily gettext looks for its message object in dirname/lang/LC_MESSAGES
where dirname is the implementation-defined default directory and lang is the
locale name. If present, the TEXTDOMAINDIR environment variable replaces the
dirname.

This utility interprets C escape sequences such as \t for tab. Use \\ to print a
backslash. To produce a message on a line of its own, either put a \n at the end
of msgid, or use this command in conjunction with the printf utility.

When used with the -s option the gettext utility behaves like the echo utility,
except that the message corresponding to msgid in the selected catalog provides
the arguments.

Options

-d domainname
--domain=domainname

 PARAMETER translated messages from domainname.

-e

 Enable expansion of some escape sequences.

-n

 Suppress trailing newline.

Operands
The following operands are supported:

textdomain

 A domain name used to retrieve the messages.

msgid

 A key to retrieve the localized message.

Environment Variables

LANGUAGE

 Specifies one or more locale names.

388 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 15 Commands and Utilities

LANG

 Specifies locale name.

LC_MESSAGES

 Specifies messaging locale, and if present overrides LANG for messages.

TEXTDOMAIN

 Specifies the text domain name, which is identical to the message object
filename without .mo suffix.

TEXTDOMAINDIR

 Specifies the pathname to the message catalog, and if present replaces the
implementation-defined default directory.

Exit Status
The following exit values are returned:

0

 Successful completion.

>0

 An error occurred.

grep

Name
grep — print lines matching a pattern

Description
grep is as specified in ISO POSIX (2003), but with differences as listed below.

LSB Differences
Certain aspects of regular expression matching are optional; see Regular
Expressions.

 © 2007 Linux Foundation 389

15 Commands and Utilities ISO/IEC 23360 Part 1:2007(E)

groupadd

Name
groupadd — create a new group

Synopsis
groupadd [-g gid [-o]] group

Description
If the caller has appropriate privilege, the groupadd command shall create a
new group named group. The group name shall be unique in the group
database. If no gid is specified, groupadd shall create the new group with a
unique group ID.

The groupadd command is a system administration utility, see Path For System
Administration Utilities.

If the caller has sufficient privilege, the groupdel command shall modify the
system group database, deleting the group named group. If the group named
group does not exist, groupdel shall issue a diagnostic message and exit with a
non-zero exit status.

The groupdel command is a system administration utility, see Path For System
Administration Utilities.

Options

-g gid [-o]

 The new group shall have group ID gid. If the -o option is not used, no
other group shall have this group ID. The value of gid shall be non-
negative.

groupdel

Name
groupdel — delete a group

Synopsis
groupdel group

Description

390 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 15 Commands and Utilities

groupmod

Name
groupmod — modify a group

Synopsis
groupmod [-g gid [-o]] [-n group_name] group

Description
If the caller has appropriate privilege, the groupmod command shall modify the
entry in the system group database corresponding to a group named group.

The groupmod command is a system administration utility, see Path For System
Administration Utilities.

Description
The groups command shall behave as id -Gn [user], as specified in ISO POSIX
(2003). The optional user parameter will display the groups for the named user.

gunzip is equivalent to gzip -d. See the specification for gzip for further details.

Filesystem Hierarchy Standard requires that if gunzip exists, it must be a
symbolic or hard link to /bin/gzip. This specification additionally allows
gunzip to be a wrapper script which calls gzip -d.

Options

-g gid [-o]

 Modify the group's group ID, setting it to gid. If the -o option is not used,
no other group shall have this group ID. The value of gidshall be non-
negative.

Note: Only the group ID in the database is altered; any files with group ownership
set to the original group ID are unchanged by this modification.

-n group_name

 changes the name of the group from group to group_name.

groups

Name
groups — display a group

Synopsis
groups [user]

gunzip

Name
gunzip — uncompress files

Description

 © 2007 Linux Foundation 391

15 Commands and Utilities ISO/IEC 23360 Part 1:2007(E)

gzip

Name
gzip — compress or expand files

Synopsis
gzip [-cdfhlLnNrtvV19] [-S suffix] [name...]

Description
The gzip command shall attempt to reduce the size of the named files.
Whenever possible, each file is replaced by one with the extension .gz, while
keeping the same ownership, modes, access and modification times. If no files
are specified, or if a file name is -, the standard input is compressed to the
standard output. gzip shall only attempt to compress regular files. In particular,
it will ignore symbolic links.

When compressing, gzip uses the deflate algorithm specified in RFC 1951:
DEFLATE Compressed Data Format Specification and stores the result in a file
using the gzip file format specified in RFC 1952: GZIP File Format Specification.

For decompression, gzip shall support at least the following compression
methods:

• deflate (RFC 1951: DEFLATE Compressed Data Format Specification)

• compress (ISO POSIX (2003))

Options

-c, --stdout, --to-stdout

 writes output on standard output, leaving the original files unchanged. If
there are several input files, the output consists of a sequence of
independently compressed members. To obtain better compression,
concatenate all input files before compressing them.

-d, --decompress, --uncompress

 the name operands are compressed files, and gzip shall decompress them.

-f, --force

 forces compression or decompression even if the file has multiple links or
the corresponding file already exists, or if the compressed data is read from
or written to a terminal. If the input data is not in a format recognized by
gzip, and if the option --stdout is also given, copy the input data without
change to the standard ouput: let gzip behave as cat. If -f is not given, and
when not running in the background, gzip prompts to verify whether an
existing file should be overwritten.

-l, --list

 lists the compressed size, uncompressed size, ratio and uncompressed
name for each compressed file. For files that are not in gzip format, the
uncompressed size shall be given as -1. If the --verbose or -v option is
also specified, the crc and timestamp for the uncompressed file shall also be
displayed.

The crc shall be given as ffffffff for a file not in gzip format.

392 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 15 Commands and Utilities

If the --name or -N option is also specified, the uncompressed name, date
and time are those stored within the compressed file, if present.

If the --quiet or -q option is also specified, the title and totals lines are not
displayed.

-L, --license

 displays the gzip license and quit.

-n, --no-name

 does not save the original file name and time stamp by default when
compressing. (The original name is always saved if the name had to be
truncated.) When decompressing, do not restore the original file name if
present (remove only the gzip suffix from the compressed file name) and
do not restore the original time stamp if present (copy it from the
compressed file). This option is the default when decompressing.

-N, --name

 always saves the original file name and time stamp when compressing; this
is the default. When decompressing, restore the original file name and time
stamp if present. This option is useful on systems which have a limit on file
name length or when the time stamp has been lost after a file transfer.

-q, --quiet

 suppresses all warnings.

-r, --recursive

 travels the directory structure recursively. If any of the file names specified
on the command line are directories, gzip will descend into the directory
and compress all the files it finds there (or decompress them in the case of
gunzip).

-S .suf, --sufix .suf

 uses suffix .suf instead of .gz.

-t, --test

 checks the compressed file integrity.

-v, --verbose

 displays the name and percentage reduction for each file compressed or
decompressed.

-#, --fast, --best

 regulates the speed of compression using the specified digit #, where -1 or
--fast indicates the fastest compression method (less compression) and -9
or --best indicates the slowest compression method (best compression).
The default compression level is -6 (that is, biased towards high
compression at expense of speed).

LSB Deprecated Options
The behaviors specified in this section are expected to disappear from a future
version of the LSB; applications should only use the non-LSB-deprecated
behaviors.

 © 2007 Linux Foundation 393

15 Commands and Utilities ISO/IEC 23360 Part 1:2007(E)

-V, --version

 displays the version number and compilation options, then quits.

hostname

Name
hostname — show or set the system's host name

Synopsis
hostname [name]

Description
hostname is used to either display or, with appropriate privileges, set the
current host name of the system. The host name is used by many applications to
identify the machine.

When called without any arguments, the program displays the name of the
system as returned by the gethostname() function.

When called with a name argument, and the user has appropriate privilege, the
command sets the host name.

Note: It is not specified if the hostname displayed will be a fully qualified domain
name. Applications requiring a particular format of hostname should check the
output and take appropriate action.

394 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 15 Commands and Utilities

install

Name
install — copy files and set attributes

Synopsis
install [option...] SOURCE DEST install [option...] SOURCE... DEST install
[-d | --directory] [option...] DIRECTORY...

Description
In the first two formats, copy SOURCE to DEST or multiple SOURCE(s) to the
existing DEST directory, optionally setting permission modes and file
ownership. In the third format, each DIRECTORY and any missing parent
directories shall be created.

Standard Options

--backup[=METHOD]

 makes a backup of each existing destination file. METHOD may be one of the
following:

none or off

 never make backups.

numbered or t

 make numbered backups. A numbered backup has the form
"%s.~%d~", target_name, version_number. Each backup shall
increment the version number by 1.

existing or nil

 behave as numbered if numbered backups exist, or simple otherwise.

simple or never

 append a suffix to the name. The default suffix is '~', but can be
overriden by setting SIMPLE_BACKUP_SUFFIX in the environment,
or via the -S or --suffix option.

If no METHOD is specified, the environment variable VERSION_CONTROL
shall be examined for one of the above. Unambiguous abbreviations of
METHOD shall be accepted. If no METHOD is specified, or if METHOD is empty,
the backup method shall default to existing.

If METHOD is invalid or ambiguous, install shall fail and issue a diagnostic
message.

-b

 is equivalent to --backup=existing.

-d, --directory

 treats all arguments as directory names; creates all components of the
specified directories.

-D

 © 2007 Linux Foundation 395

15 Commands and Utilities ISO/IEC 23360 Part 1:2007(E)

 creates all leading components of DEST except the last, then copies
SOURCE to DEST; useful in the 1st format.

-g GROUP, --group=GROUP

 if the user has appropriate privilege, sets group ownership, instead of
process' current group. GROUP is either a name in the user group database,
or a positive integer, which shall be used as a group-id.

-m MODE, --mode=MODE

 sets permission mode (specified as in chmod), instead of the default rwxr-
xr-x.

-o OWNER, --owner=OWNER

 if the user has appropriate privilege, sets ownership. OWNER is either a name
in the user login database, or a positive integer, which shall be used as a
user-id.

-p, --preserve-timestamps

 copies the access and modification times of SOURCE files to corresponding
destination files.

-s, --strip

 strips symbol tables, only for 1st and 2nd formats.

-S SUFFIX, --suffix=SUFFIX

 equivalent to --backup=existing, except if a simple suffix is required, use
SUFFIX.

--verbose

 prints the name of each directory as it is created.

-v, --verbose

 print the name of each file before copying it to stdout.

install_initd

Name
install_initd — activate an init script

Synopsis
/usr/lib/lsb/install_initd initd_file

Description
install_initd shall activate a system initialization file that has been copied to an
implementation defined location such that this file shall be run at the
appropriate point during system initialization. The install_initd command is
typically called in the postinstall script of a package, after the script has been
copied to /etc/init.d. See also Installation and Removal of Init Scripts.

396 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 15 Commands and Utilities

ipcrm

Name
ipcrm — remove IPC Resources

Synopsis
ipcrm [-q msgid | -Q msgkey | -s semid | -S semkey | -m shmid | -M
shmkey]...ipcrm [shm | msg | msg] id...

Description
If any of the -q, -Q, -s, -S, -m, or -M arguments are given, the ipcrm shall
behave as described in ISO POSIX (2003).

Otherwise, ipcrm shall remove the resource of the specified type identified by
id.

Future Directions
A future revision of this specification may deprecate the second synopsis form.

Rationale: In its first Linux implementation, ipcrm used the second syntax shown
in the SYNOPSIS. Functionality present in other implementations of ipcrm has since
been added, namely the ability to delete resources by key (not just identifier), and to
respect the same command line syntax. The previous syntax is still supported for
backwards compatibility only.

 © 2007 Linux Foundation 397

15 Commands and Utilities ISO/IEC 23360 Part 1:2007(E)

ipcs

Name
ipcs — provide information on ipc facilities

Synopsis
ipcs [-smq] [-tcp]

Description
ipcs provides information on the ipc facilities for which the calling process has
read access.

Note: Although this command has many similarities with the optional ipcs utility
described in ISO POSIX (2003), it has substantial differences and is therefore
described separately. The options specified here have similar meaning to those in
ISO POSIX (2003); other options specified there have unspecified behavior on an
LSB conforming implementation. See Application Usage below. The output format
is not specified.

Resource display options

-m

 shared memory segments.

-q

 message queues.

-s

 semaphore arrays.

Output format options

-t

 time.

-p

 pid.

-c

 creator.

Application Usage
In some implementations of ipcs the -a option will print all information
available. In other implementations the -a option will print all resource types.
Therefore, applications shall not use the -a option.

Some implementations of ipcs provide more output formats than are specified
here. These options are not consistent between differing implementations of
ipcs. Therefore, only the -t, -c and -p option formatting flags may be used. At
least one of the -t, -c and -p options and at least one of -m, -q and -s options
shall be specified. If no options are specified, the output is unspecified.

398 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 15 Commands and Utilities

killall

Name
killall — kill processes by name

Synopsis
killall [-egiqvw] [-signal] name... killall -l killall -V

Description
killall sends a signal to all processes running any of the specified commands. If
no signal name is specified, SIGTERM is sent.

Signals can be specified either by name (e.g. -HUP) or by number (e.g. -1). Signal
0 (check if a process exists) can only be specified by number.

If the command name contains a slash (/), processes executing that particular
file will be selected for killing, independent of their name.

killall returns a non-zero return code if no process has been killed for any of the
listed commands. If at least one process has been killed for each command,
killall returns zero.

A killall process never kills itself (but may kill other killall processes).

Standard Options

-e

 requires an exact match for very long names. If a command name is longer
than 15 characters, the full name may be unavailable (i.e. it is swapped out).
In this case, killall will kill everything that matches within the first 15
characters. With -e, such entries are skipped. killall prints a message for
each skipped entry if -v is specified in addition to -e.

-g

 kills the process group to which the process belongs. The kill signal is only
sent once per group, even if multiple processes belonging to the same
process group were found.

-i

 asks interactively for confirmation before killing.

-l

 lists all known signal names.

-q

 does not complain if no processes were killed.

-v

 reports if the signal was successfully sent.

LSB Deprecated Options
The behaviors specified in this section are expected to disappear from a future
version of the LSB; applications should only use the non-LSB-deprecated
behaviors.

 © 2007 Linux Foundation 399

15 Commands and Utilities ISO/IEC 23360 Part 1:2007(E)

-V

 displays version information.

lpr

Name
lpr — off line print

Synopsis
lpr [-l] [-p] [-Pprinter] [-h] [-s] [-#copies] [-J name] [-T title] [name
......]

Description
lpr uses a spooling daemon to print the named files when facilities become
available. If no names appear, the standard input is assumed.

Standard Options

-l

 identifies binary data that is not to be filtered but sent as raw input to
printer.

-p

 formats with "pr" before sending to printer.

-Pprinter

 sends output to the printer named printer instead of the default printer.

-h

 suppresses header page.

-s

 uses symbolic links.

-#copies

 specifies copies as the number of copies to print.

-J name

 specifies name as the job name for the header page.

-T title

 specifies title as the title used for "pr".

400 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 15 Commands and Utilities

ls

Name
ls — list directory contents

Description
ls shall behave as specified in ISO POSIX (2003), but with extensions listed
below.

-p

 in addition to ISO POSIX (2003) XSI optional behavior of printing a slash
for a directory, ls -p may display other characters for other file types.

Extensions

-l

 If the file is a character special or block special file, the size of the file shall
be replaced with two unsigned numbers in the format "%u, %u",
representing the major and minor device numbers associated with the
special file.

Note: The LSB does not specify the meaning of the major and minor devices
numbers.

 © 2007 Linux Foundation 401

15 Commands and Utilities ISO/IEC 23360 Part 1:2007(E)

lsb_release

Name
lsb_release — print distribution specific information

Synopsis
lsb_release [OPTION...]

Description
The lsb_release command prints certain LSB (Linux Standard Base) and
Distribution information.

If no options are given, the -v option is assumed.

Options

-v, --version

 displays version of LSB against which distribution is compliant. The
version is expressed as a colon separated list of LSB module descriptions.
LSB module descriptions are dash separated tuples containing the module
name, version, and architecture name. The output is a single line of text of
the following format:
LSB Version:\tListAsDescribedAbove

Note: An implementation may support multiple releases of the same module.
Version specific library interfaces, if any, will be selected by the program
interpreter, which changes from release to release. Version specific commands
and utilities, if any, will be described in the relevant specification.

-i, --id

 displays string id of distributor. The output is a single line of text of the
following format:
Distributor ID:\tDistributorID

-d, --description

 displays single line text description of distribution. The output is of the
following format:
Description:\tDescription

-r, --release

 displays release number of distribution. The output is a single line of text of
the following format:
Release:\tRelease

-c, --codename

 displays codename according to distribution release. The output is a single
line of text of the following format.
Codename:\tCodename

-a, --all

 displays all of the above information.

402 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 15 Commands and Utilities

-s, --short

 displays all of the above information in short output format.

-h, --help

 displays a human-readable help message.

Example
The following command will list the LSB Profiles which are currently supported
on this platform.

example% lsb_release -v
LSB Version: core-3.0-ia32:core-3.0-noarch:graphics-3.0-
ia32:graphics-3.0-noarch

m4

Name
m4 — macro processor

Description
m4 is as specified in ISO POSIX (2003), but with extensions as listed below.

Extensions

-P

 forces all builtins to be prefixed with m4_. For example, define becomes
m4_define.

-I directory

 Add directory to the end of the search path for includes.

 © 2007 Linux Foundation 403

15 Commands and Utilities ISO/IEC 23360 Part 1:2007(E)

md5sum

Name
md5sum — generate or check MD5 message digests

Synopsis
md5sum [-c [file] | file]

Description
For each file, write to standard output a line containing the MD5 message digest
of that file, followed by one or more blank characters, followed by the name of
the file. The MD5 message digest shall be calculated according to RFC 1321: The
MD5 Message-Digest Algorithm and output as 32 hexadecimal digits.

If no file names are specified as operands, read from standard input and use "-"
as the file name in the output.

Options

-c [file]

 checks the MD5 message digest of all files named in file against the
message digest listed in the same file. The actual format of file is the same
as the output of md5sum. That is, each line in the file describes a file. If
file is not specified, read message digests from stdin.

Exit Status
md5sum shall exit with status 0 if the sum was generated successfully, or, in
check mode, if the check matched. Otherwise, md5sum shall exit with a non-
zero status.

404 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 15 Commands and Utilities

mknod

Name
mknod — make special files

Synopsis
mknod [-m mode | --mode=mode] name type [major minor]mknod [--version]

Description
The mknod command shall create a special file named name of the given type.

The type shall be one of the following:

b

 creates a block (buffered) special file with the specified major and minor
device numbers.

c, u

 creates a character (unbuffered) special file with the specified major and
minor device numbers.

p

 creates a FIFO.

Options

-m mode, --mode=mode

 create the special file with file access permissions set as described in mode.
The permissions may be any absolute value (i.e. one not containing '+' or
'-') acceptable to the chmod command.

--version

 output version information and exit.

Note: This option may be deprecated in a future release of this specification.

If type is p, major and minor shall not be specified. Otherwise, these
parameters are mandatory.

Future Directions
This command may be deprecated in a future version of this specification. The
major and minor operands are insufficently portable to be specified usefully
here. Only a FIFO can be portably created by this command, and the mkfifo
command is a simpler interface for that purpose.

 © 2007 Linux Foundation 405

15 Commands and Utilities ISO/IEC 23360 Part 1:2007(E)

mktemp

Name
mktemp — make temporary file name (unique)

Synopsis
mktemp [-q] [-u] template

Description
The mktemp command takes the given file name template and overwrites a
portion of it to create a file name. This file name shall be unique and suitable for
use by the application.

The template should have at least six trailing 'X' characters. These characters
are replaced with characters from the portable filename character set in order to
generate a unique name.

If mktemp can successfully generate a unique file name, and the -u option is
not present, the file shall be created with read and write permission only for the
current user. The mktemp command shall write the filename generated to the
standard output.

Options

-q

 fail silently if an error occurs. Diagnostic messages to stderr are
suppressed, but the command shall still exit with a non-zero exit status if
an error occurs.

-u

 operates in `unsafe' mode. A unique name is generated, but the temporary
file shall be unlinked before mktemp exits. Use of this option is not
encouraged.

406 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 15 Commands and Utilities

more

Name
more — display files on a page-by-page basis

Description
more is as specified in ISO POSIX (2003), but with differences as listed below.

 Start at the first line matching the pattern, equivalent to executing the
search forward (/) command with the given pattern immediately after
opening each file.

The following options from ISO POSIX (2003) may behave differently:

-p

 Either clear the whole screen before displaying any text (instead of the
usual scrolling behavior), or provide the behavior specified by ISO POSIX
(2003). In the latter case, the syntax is "-p command".

Differences
The more command need not respect the LINES and COLUMNS environment
variables.

The following additional options may be supported:

-num

 specifies an integer which is the screen size (in lines).

+num

 starts at line number num.

+/pattern

-e

 has unspecified behavior.

-i

 has unspecified behavior.

-n

 has unspecified behavior.

-t

 has unspecified behavior.

The more command need not support the following interactive commands:

 © 2007 Linux Foundation 407

15 Commands and Utilities ISO/IEC 23360 Part 1:2007(E)

g
G
u
control u
control f
newline
j
k
r
R
m
' (return to mark)
/!
?
N
:e
:t
control g
ZZ

Rationale
The +num and +/string options are deprecated in SUSv2, and have been
removed in ISO POSIX (2003); however this specification continues to specify
them because the publicly available util-linux package does not support the
replacement (-p command). The +command option as found in SUSv2 is more
general than is specified here, but the util-linux package appears to only
support the more specific +num and +/string forms.

408 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 15 Commands and Utilities

mount

Name
mount — mount a file system

Synopsis
mount [-hV]mount [-a] [-fFnrsvw] [-t vfstype]mount [-fnrsvw] [-o options
[,...]] [device | dir]mount [-fnrsvw] [-t vfstype] [-o options] device dir

Description
As described in ISO POSIX (2003), all files in the system are organized in a
directed graph, known as the file hierarchy, rooted at /. These files can be
spread out over several underlying devices. The mount command shall attach
the file system found on some underlying device to the file hierarchy.

Options

-v

 invoke verbose mode. The mount command shall provide diagnostic
messages on stdout.

-a

 mount all file systems (of the given types) mentioned in /etc/fstab.

-F

 If the -a option is also present, fork a new incarnation of mount for each
device to be mounted. This will do the mounts on different devices or
different NFS servers in parallel.

-f

 cause everything to be done except for the actual system call; if it's not
obvious, this `fakes' mounting the file system.

-n

 mount without writing in /etc/mtab. This is necessary for example when
/etc is on a read-only file system.

-s

 ignore mount options not supported by a file system type. Not all file
systems support this option.

-r

 mount the file system read-only. A synonym is -o ro.

-w

 mount the file system read/write. (default) A synonym is -o rw.

-L label

 If the file /proc/partitions is supported, mount the partition that has the
specified label.

 © 2007 Linux Foundation 409

15 Commands and Utilities ISO/IEC 23360 Part 1:2007(E)

-U uuid

 If the file /proc/partitions is supported, mount the partition that has the
specified uuid.

-t vfstype

 indicate a file system type of vfstype.

More than one type may be specified in a comma separated list. The list of
file system types can be prefixed with no to specify the file system types on
which no action should be taken.

-o

 options are specified with a -o flag followed by a comma-separated string
of options. Some of these options are only useful when they appear in the
/etc/fstab file. The following options apply to any file system that is
being mounted:

async

 perform all I/O to the file system asynchronously.

atime

 update inode access time for each access. (default)

auto

 in /etc/fstab, indicate the device is mountable with -a.

defaults

 use default options: rw, suid, dev, exec, auto, nouser, async.

dev

 interpret character or block special devices on the file system.

exec

 permit execution of binaries.

noatime

 do not update file access times on this file system.

noauto

 in /etc/fstab, indicates the device is only explicitly mountable.

nodev

 do not interpret character or block special devices on the file system.

noexec

 do not allow execution of any binaries on the mounted file system.

nosuid

 do not allow set-user-identifier or set-group-identifier bits to take
effect.

nouser

410 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 15 Commands and Utilities

 forbid an unprivileged user to mount the file system. (default)

remount

 remount an already-mounted file system. This is commonly used to
change the mount options for a file system, especially to make a read-
only file system writable.

ro

 mount the file system read-only.

rw

 mount the file system read-write.

suid

 allow set-user-identifier or set-group-identifier bits to take effect.

sync

 do all I/O to the file system synchronously.

user

 allow an unprivilieged user to mount the file system. This option
implies the options noexec, nosuid, nodev unless overridden by
subsequent options.

LSB Deprecated Options
The behaviors specified in this section are expected to disappear from a future
version of the LSB; applications should only use the non-LSB-deprecated
behaviors.

-V

 output version and exit.

 © 2007 Linux Foundation 411

15 Commands and Utilities ISO/IEC 23360 Part 1:2007(E)

msgfmt

Name
msgfmt — create a message object from a message file

Synopsis
msgfmt [options...] filename...

Description
The msgfmt command generates a binary message catalog from a textual
translation description. Message catalogs, or message object files, are stored in
files with a .mo extension.

Note: The format of message object files is not guaranteed to be portable. Message
catalogs should always be generated on the target architecture using the msgfmt
command.

The source message files, otherwise known as portable object files, have a .po
extension.

The filename operands shall be portable object files. The .po file contains
messages to be displayed to users by system utilities or by application
programs. The portable object files are text files, and the messages in them can
be rewritten in any language supported by the system.

If any filename is -, a portable object file shall be read from the standard input.

The msgfmt command interprets data as characters according to the current
setting of the LC_CTYPE locale category.

Options

-c
--check

 Detect and diagnose input file anomalies which might represent translation
errors. The msgid and msgstr strings are studied and compared. It is
considered abnormal that one string starts or ends with a newline while the
other does not.

If the message is flagged as c-format (see Comment Handling), check that
the msgid string and the msgstr translation have the same number of %
format specifiers, with matching types.

--use-fuzzy

 Use entries marked as fuzzy in output. If this option is not specified, such
entries are not included into the output. See Comment Handling below.

-D directory
--directory=directory

 Add directory to list for input files search. If filename is not an absolute
pathname and filename cannot be opened, search for it in directory. This
option may be repeated. Directories shall be searched in order, with the
leftmost directory searched first.

-f

-o output-file

412 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 15 Commands and Utilities

--output-file=output-file

 Specify the output file name as output-file. If multiple domains or
duplicate msgids in the .po file are present, the behavior is unspecified. If
output-file is -, output is written to standard output.

--strict

 Ensure that all output files have a .mo extension. Output files are named
either by the -o (or --output-file) option, or by domains found in the
input files.

-v
--verbose

 Print additional information to the standard error, including the number of
translated strings processed.

Operands
The filename operands are treated as portable object files. The format of
portable object files is defined in EXTENDED DESCRIPTION.

Standard Input
The standard input is not used unless a filename operand is specified as "-".

Environment Variables

LANGUAGE

 Specifies one or more locale names.

LANG

 Specifies locale name.

LC_ALL

 Specifies locale name for all categories. If defined, overrides LANG,
LC_CTYPE and LC_MESSAGES.

LC_CTYPE

 Determine the locale for the interpretation of sequences of bytes of text data
as characters (for example, single-byte as opposed to multi-byte characters
in arguments and input files).

LC_MESSAGES

 Specifies messaging locale, and if present overrides LANG for messages.

Standard Output
The standard output is not used unless the option-argument of the -o option is
specified as -.

Extended Description

 © 2007 Linux Foundation 413

15 Commands and Utilities ISO/IEC 23360 Part 1:2007(E)

The format of portable object files (.po files) is defined as follows. Each .po file
contains one or more lines, with each line containing either a comment or a
statement. Comments start the line with a hash mark (#) and end with the
newline character. Empty lines, or lines containing only white-space, shall be
ignored. Comments can in certain circumstances alter the behavior of msgfmt.
See Comment Handling below for details on comment processing. The format
of a statement is:
directive value

Each directive starts at the beginning of the line and is separated from value
by white space (such as one or more space or tab characters). The value consists
of one or more quoted strings separated by white space. If two or more strings
are specified as value, they are normalized into single string using the string
normalization syntax specified in ISO C (1999). The following directives are
supported:
domain domainname

msgid message_identifier

msgid_plural untranslated_string_plural

msgstr message_string

msgstr[n] message_string

The behavior of the domain directive is affected by the options used. See
OPTIONS for the behavior when the -o option is specified. If the -o option is
not specified, the behavior of the domain directive is as follows:

 1. All msgids from the beginning of each .po file to the first domain directive
are put into a default message object file, messages (or messages.mo if the
--strict option is specified).

 2. When msgfmt encounters a domain domainname directive in the .po file,
all following msgids until the next domain directive are put into the
message object file domainname (or domainname.mo if --strict option is
specified).

 3. Duplicate msgids are defined in the scope of each domain. That is, a msgid
is considered a duplicate only if the identical msgid exists in the same
domain.

 4. All duplicate msgids are ignored.

The msgid directive specifies the value of a message identifier associated with
the directive that follows it. The msgid_plural directive specifies the plural
form message specified to the plural message handling functions ngettext(),
dngettext() or dcngettext(). The message_identifier string identifies a target
string to be used at retrieval time. Each statement containing a msgid directive
shall be followed by a statement containing a msgstr directive or msgstr[n]
directives.

The msgstr directive specifies the target string associated with the
message_identifier string declared in the immediately preceding msgid
directive.

The msgstr[n] (where n = 0, 1, 2, ...) directive specifies the target string to be
used with plural form handling functions ngettext(), dngettext() and
dcngettext().

Message strings can contain the following escape sequences:

Table 15-1 Escape Sequences

414 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 15 Commands and Utilities

\n newline

\t tab

\v vertical tab

\b backspace

\r carriage return

\f formfeed

\\ backslash

\" double quote

\ddd octal bit pattern

\xHH hexadecimal bit pattern

Comment Handling
Comments are introduced by a #, and continue to the end of the line. The
second character (i.e. the character following the #) has special meaning.
Regular comments should follow a space character. Other comment types
include:
normal-comments

#. automatic-comments

#: reference...

#, flag

Automatic and reference comments are typically generated by external utilities,
and are not specified by the LSB. The msgfmt command shall ignore such
comments.

Note: Portable object files may be produced by unspecified tools. Some of the
comment types described here may arise from the use of such tools. It is beyond the
scope of this specification to describe these tools.

The #, comments require one or more flags separated by the comma (,)
character. The following flags can be specified:

fuzzy

 This flag shows that the following msgstr string might not be a correct
translation. Only the translator (i.e. the individual undertaking the
translation) can judge if the translation requires further modification, or is
acceptable as is. Once satisfied with the translation, the translator then
removes this fuzzy flag.

If this flag is specified, the msgfmt utility will not generate the entry for the
immediately following msgid in the output message catalog, unless the --
use-fuzzy is specified.

c-format
no-c-format

 The c-format flag indicates that the msgid string is used as format string
by printf()-like functions. If the c-format flag is given for a string the
msgfmt utility may perform additional tests to check the validity of the
translation.

 © 2007 Linux Foundation 415

15 Commands and Utilities ISO/IEC 23360 Part 1:2007(E)

Plurals
The msgid entry with empty string ("") is called the header entry and is treated
specially. If the message string for the header entry contains nplurals=value,
the value indicates the number of plural forms. For example, if nplurals=4,
there are 4 plural forms. If nplurals is defined, there should be a
plural=expression on the same line, separated by a semicolon (;) character.
The expression is a C language expression to determine which version of
msgstr[n] to be used based on the value of n, the last argument of ngettext(),
dngettext() or dcngettext(). For example:

nplurals=2; plural=n == 1 ? 0 : 1

indicates that there are 2 plural forms in the language; msgstr[0] is used if n
== 1, otherwise msgstr[1] is used. Another example:

nplurals=3; plural=n==1 ? 0 : n==2 ? 1 : 2

indicates that there are 3 plural forms in the language; msgstr[0] is used if n
== 1, msgstr[1] is used if n == 2, otherwise msgstr[2] is used.

If the header entry contains charset=codeset string, the codeset is used to
indicate the codeset to be used to encode the message strings. If the output
string's codeset is different from the message string's codeset, codeset
conversion from the message strings's codeset to the output string's codeset will
be performed upon the call of gettext(), dgettext(), dcgettext(),
ngettext(), dngettext(), and dcngettext(). The output string's codeset is
determined by the current locale's codeset (the return value of
nl_langinfo(CODESET)) by default, and can be changed by the call of
bind_textdomain_codeset().

Exit Status
The following exit values are returned:

0

 Successful completion.

>0

 An error occurred.

Application Usage
Neither msgfmt nor any gettext() function imposes a limit on the total length
of a message. Installing message catalogs under the C locale is pointless, since
they are ignored for the sake of efficiency.

Examples
Example 1: Examples of creating message objects from message files.

In this example module1.po, module2.po and module3.po are portable message
object files.

example% cat module1.po

default domain "messages"

msgid "message one"

416 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 15 Commands and Utilities

msgstr "mensaje número uno"

domain "help_domain"

msgid "help two"

msgstr "ayuda número dos"

domain "error_domain"

msgid "error three"

msgstr "error número tres"

example% cat module2.po

default domain "messages"

msgid "message four"

msgstr "mensaje número cuatro"

domain "error_domain"

msgid "error five"

msgstr "error número cinco"

domain "window_domain"

msgid "window six"

msgstr "ventana número seises"

example% cat module3.po

default domain "messages"

msgid "message seven"

msgstr "mensaje número siete"

The following command will produce the output files messages, help_domain,
and error_domain.

example% msgfmt module1.po

The following command will produce the output files messages.mo,
help_domain.mo, error_domain.mo, and window_domain.mo.

example% msgfmt module1.po module2.po

The following example will produce the output file hello.mo.

example% msgfmt -o hello.mo module3.po

 © 2007 Linux Foundation 417

15 Commands and Utilities ISO/IEC 23360 Part 1:2007(E)

newgrp

Name
newgrp — change group ID

Synopsis
newgrp [group]

Description
The newgrp command is as specified in ISO POSIX (2003), but with differences
as listed below.

Differences
The -l option specified in ISO POSIX (2003) need not be supported.

418 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 15 Commands and Utilities

od

Name
od — dump files in octal and other formats

Synopsis
od [-abcdfilox] [-w width | --width-width] [-v] [-A address_base] [-j skip]
[-n count] [-t type_string] [file...]od --traditional [options] [file]
[[+]offset [.] [b]] [[+]label [.] [b]]

Description
The od command shall provide all of the madatory functionality specified in
ISO POSIX (2003), but with extensions and differences to the XSI optional
behavior as listed below.

 unspecified behavior.

Note: Applications wishing to achieve the ISO POSIX (2003) behavior for -s should
instead use -t d2.

--traditional

 accepts arguments in traditional form, see Traditional Usage below.

Note: The XSI optional behavior for offset handling described in ISO POSIX (2003)
is not supported unless the --traditional option is also specified.

Pre-POSIX and XSI Specifications
The LSB supports mixing options between the mandatory and XSI optional
synopsis forms in ISO POSIX (2003). The LSB shall support the following
options:

Extensions and Differences

-s

-wwidth, --width[=width]

 each output line is limited to width bytes from the input.

-a

 is equivalent to -t a, selects named characters.

-b

 is equivalent to -t o1, selects octal bytes.

-c

 is equivalent to -t c, selects characters.

-d

 is equivalent to -t u2, selects unsigned decimal two byte units.

-f

 is equivalent to -t fF, selects floats.

 © 2007 Linux Foundation 419

15 Commands and Utilities ISO/IEC 23360 Part 1:2007(E)

-i

 is equivalent to -t d2, selects decimal two byte units.

Note: This usage may change in future releases; portable applications should use -t
d2.

-l

 is equivalent to -t d4, selects decimal longs.

-o

 is equivalent to -t o2, selects octal two byte units.

-x

 is equivalent to -t x2, selects hexadecimal two byte units.

Note that the XSI option -s need not be supported.

Traditional Usage
If the --traditional option is specified, there may be between zero and three
operands specified.

If no operands are specified, then od shall read the standard input.

If there is exactly one operand, and it is an offset of the form [+]offset[.][b],
then it shall be interpreted as specified in ISO POSIX (2003). The file to be
dumped shall be the standard input.

If there are three operands, then the first shall be the file to dump, the second
the offset, and the third the label.

Note: Recent versions of coreutils contain an od utility that conforms to ISO POSIX
(2003). However, in April 2005, this version was not in widespread use. A future
version of this specification may remove the differences.

If there are exactly two operands, and they are both of the form
[+]offset[.][b], then the first shall be treated as an offset (as above), and the
second shall be a label, in the same format as the offset. If a label is specified,
then the first output line produced for each input block shall be preceded by the
input offset, cumulative across input files, of the next byte to be written,
followed by the label, in parentheses. The label shall increment in the same
manner as the offset.

420 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 15 Commands and Utilities

passwd

Name
passwd — change user password

Synopsis
passwd [-x max] [-n min] [-w warn] [-i inact] name passwd {-l | -u} name

Description
passwd changes authentication information for user and group accounts,
including passwords and password expiry details, and may be used to enable
and disable accounts. Only a user with appropriate privilege may change the
password for other users or modify the expiry information.

Options

-x max

 sets the maximum number of days a password remains valid.

-n min

 sets the minimum number of days before a password may be changed.

-w warn

 sets the number of days warning the user will receive before their
password will expire.

-i inactive

 disables an account after the password has been expired for the given
number of days.

-l

 disables an account by changing the password to a value which matches no
possible encrypted value.

-u

 re-enables an account by changing the password back to its previous value.

 © 2007 Linux Foundation 421

15 Commands and Utilities ISO/IEC 23360 Part 1:2007(E)

patch

Name
patch — apply a diff file to an original

Description
patch is as specified in ISO POSIX (2003), but with extensions as listed below.

Return the process ID of a process which is running the program named on the
command line.

The pidof command is a system administration utility, see Path For System
Administration Utilities.

Extensions

--binary

 reads and write all files in binary mode, except for standard output and
/dev/tty. This option has no effect on POSIX-compliant systems.

-u, --unified

 interprets the patch file as a unified context diff.

pidof

Name
pidof — find the process ID of a running program

Synopsis
pidof [-s] [-x] [-o omitpid...] program...

Description

Options

-s

 instructs the program to only return one pid.

-x

 causes the program to also return process id's of shells running the named
scripts.

-o

 omits processes with specified process id.

422 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 15 Commands and Utilities

remove_initd

Name
remove_initd — clean up init script system modifications introduced by
install_initd

Synopsis
/usr/lib/lsb/remove_initd initd_file

Description
remove_initd processes the removal of the modifications made to a
distribution's init script system by the install_initd program. This cleanup is
performed in the preuninstall script of a package; however, the package
manager is still responsible for removing the script from the repository. See also
Installation and Removal of Init Scripts.

Description
renice is as specified in ISO POSIX (2003), but with differences as listed below.

Description
sed is as specified in ISO POSIX (2003), but with differences as listed below.

LSB Differences
Certain aspects of internationalized regular expressions are optional; see
Regular Expressions.

renice

Name
renice — alter priority of running processes

Differences

-n increment

 has unspecified behavior.

sed

Name
sed — stream editor

 © 2007 Linux Foundation 423

15 Commands and Utilities ISO/IEC 23360 Part 1:2007(E)

sendmail

Name
sendmail — an electronic mail transport agent

Synopsis
/usr/sbin/sendmail [options] [address...]

Description
To deliver electronic mail (email), applications shall support the interface
provided by sendmail (described here). This interface shall be the default
delivery method for applications.

This program sends an email message to one or more recipients, routing the
message as necessary. This program is not intended as a user interface routine.

With no options, sendmail reads its standard input up to an end-of-file or a line
consisting only of a single dot and sends a copy of the message found there to
all of the addresses listed. It determines the network(s) to use based on the
syntax and contents of the addresses.

If an address is preceded by a backslash, '\', it is unspecified if the address is
subject to local alias expansion.

The format of messages shall be as defined in RFC 2822:Internet Message
Format.

Note: The name sendmail was chosen for historical reasons, but the sendmail
command specified here is intended to reflect functionality provided by smail, exim
and other implementations, not just the sendmail implementation.

Options

-bm

 read mail from standard input and deliver it to the recipient addresses.
This is the default mode of operation.

-bp

 If the user has sufficient privilege, list information about messages
currently in the mail queue.

-bs

 use the SMTP protocol as described in RFC 2821:Simple Mail Transfer
Protocol; read SMTP commands on standard input and write SMTP
responses on standard output.

In this mode, sendmail shall accept \r\n (CR-LF), as required by RFC
2821:Simple Mail Transfer Protocol, and \n (LF) line terminators.

-F fullname

 explicitly set the full name of the sender for incoming mail unless the
message already contains a From: message header.

If the user running sendmail is not sufficiently trusted, then the actual
sender may be indicated in the message, depending on the configuration of
the agent.

424 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 15 Commands and Utilities

-f name

 explicitly set the envelope sender address for incoming mail. If there is no
From: header, the address specified in the From: header will also be set.

If the user running sendmail is not sufficiently trusted, then the actual
sender shall be indicated in the message.

-i

 ignore dots alone on lines by themselves in incoming messages. If this
options is not specified, a line consisting of a single dot shall terminate the
input. If -bs is also used, the behavior is unspecified.

-odb

 deliver any mail in background, if supported; otherwise ignored.

-odf

 deliver any mail in foreground, if supported; otherwise ignored.

-oem or -em

 mail errors back to the sender. (default)

-oep or -ep

 write errors to the standard error output.

-oeq or -eq

 do not send notification of errors to the sender. This only works for mail
delivered locally.

-oi

 is equivalent to -i.

-om

 indicate that the sender of a message should receive a copy of the message
if the sender appears in an alias expansion. Ignored if aliases are not
supported.

-t

 read the message to obtain recipients from the To:, Cc:, and Bcc: headers
in the message instead of from the command arguments. If a Bcc: header is
present, it is removed from the message unless there is no To: or Cc:
header, in which case a Bcc: header with no data is created, in accordance
with RFC 2822:Internet Message Format.

If there are any operands, the recipients list is unspecified.

This option may be ignored when not in -bm mode (the default).

Note: It is recommended that applications use as few options as necessary, none if
possible.

Exit status

0

 © 2007 Linux Foundation 425

15 Commands and Utilities ISO/IEC 23360 Part 1:2007(E)

 successful completion on all addresses. This does not indicate successful
delivery.

>0

 there was an error.

sh

Name
sh — shell, the standard command language interpreter

Description
The sh utility shall behave as specified in ISO POSIX (2003), but with extensions
listed below.

Shell Invocation
The shell shall support an additional option, -l (the letter ell). If the -l option is
specified, or if the first character of argument zero (the command name) is a '-
', this invokation of the shell is a login shell.

An interactive shell, as specified in ISO POSIX (2003), that is also a login shell,
or any shell if invoked with the -l option, shall, prior to reading from the input
file, first read and execute commands from the file /etc/profile, if that file
exists, and then from a file called ~/.profile, if such a file exists.

Note: This specification requires that the sh utility shall also read and execute
commands in its current execution environment from all the shell scripts in the
directory /etc/profile.d. Such scripts are read and executed as a part of reading
and executing /etc/profile.

426 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 15 Commands and Utilities

shutdown

Name
shutdown — shut the system down

Synopsis
/sbin/shutdown [-t sec] [-h | -r] [-akfF] time [warning-
message]/sbin/shutdown -c [warning-message]

Description
The shutdown command shall shut the system down in a secure way (first
synopsis), or cancel a pending shutdown (second synopsis). When the
shutdown is initiated, all logged-in users shall be notified immediately that the
system is going down, and users shall be prevented from logging in to the
system. The time specifies when the actual shutdown shall commence. See
below for details. At the specified time all processes are first notified that the
system is going down by the signal SIGTERM. After an interval (see -t) all
processes shall be sent the signal SIGKILL. If neither the -h or the -r argument
is specified, then the default behavior shall be to take the system to a runlevel
where administrative tasks can be run. See also Run Levels.

Note: This is sometimes referred to as "single user mode".

The -h and -r options are mutually exclusive. If either the -h or -r options are
specified, the system shall be halted or rebooted respectively.

Standard Options

-a

 use access control. See below.

-t sec

 tell the system to wait sec seconds between sending processes the warning
and the kill signal, before changing to another runlevel. The default period
is unspecified.

-k

 do not really shutdown; only send the warning messages to everybody.

-r

 reboot after shutdown.

-h

 halt after shutdown. Actions after halting are unspecified (e.g. power off).

-f

 advise the system to skip file system consistency checks on reboot.

-F

 advise the system to force file system consistency checks on reboot.

-c

 © 2007 Linux Foundation 427

15 Commands and Utilities ISO/IEC 23360 Part 1:2007(E)

 cancel an already running shutdown.

time

 specify when to shut down.

The time argument shall have the following format: [now | [+]mins |
hh:mm] If the format is hh:mm, hh shall specify the hour (1 or 2 digits) and
mm is the minute of the hour (exactly two digits), and the shutdown shall
commence at the next occurence of the specified time. If the format is mins
(or +mins), where mins is a decimal number, shutdown shall commence in
the specified number of minutes. The word now is an alias for +0.

warning-message

 specify a message to send to all users.

Access Control
If the shutdown utility is invoked with the -a option, it shall check that an
authorized user is currently logged in on the system console. Authorized users
are listed, one per line, in the file /etc/shutdown.allow. Lines in this file that
begin with a '#' or are blank shall be ignored.

Note: The intent of this scheme is to allow a keyboard sequence entered on the
system console (e.g. CTRL-ALT-DEL, or STOP-A) to automatically invoke shutdown -
a, and can be used to prevent unauthorized users from shutting the system down in
this fashion.

428 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 15 Commands and Utilities

su

Name
su — change user ID

Synopsis
su [options] [-] [username [ARGS]]

Description
The su command shall start a shell running with the real and effective user and
group IDs of the user username. If username is not specified, su shall default to
an unspecified user with all appropriate privileges. If the -s or --shell is not
specified, the shell to be invoked shall be that specified for username in the user
database (see getpwnam()), or /bin/sh if there is no shell specified in the user
database.

If the - option is specified, or if the first operand is -, the environment for the
shell shall be initialized as if the new shell was a login shell (see Shell
Invocation).

If the invoking user does not have appropriate privileges, the su command shall
prompt for a password and validate this before continuing. Invalid passwords
shall produce an error message. The su command shall log in an unspecified
manner all invokations, whether successful or unsuccessful.

Any operands specified after the username shall be passed to the invoked shell.

If the option - is not specified, and if the first operand is not -, the environemnt
for the new shell shall be intialized from the current environment. If none of the
-m, -p, or --preserve-environment options are specified, the environment
may be modified in unspecified ways before invoking the shell. If any of the -m,
-p, or --preserve-environment options are specified, the environment shall
not be altered.

Note: Although the su command shall not alter the environment, the invoked shell
may still alter it before it is ready to intepret any commands.

Standard Options

-

 the invoked shell shall be a login shell.

-c command, --command=command

 Invoke the shell with the option -c command.

-m, -p, --preserve-environment

 The current environment shall be passed to the invoked shell. If the
environment variable SHELL is set, it shall specify the shell to invoke, if it
matches an entry in /etc/shells. If there is no matching entry in
/etc/shells, this option shall be ignored if the - option is also specified,
or if the first operand is -.

-s shell, --shell=shell

 Invoke shell as the comamnd interpreter. The shell specified shall be
present in /etc/shells.

 © 2007 Linux Foundation 429

15 Commands and Utilities ISO/IEC 23360 Part 1:2007(E)

sync

Name
sync — flush file system buffers

Synopsis
sync

Description
Force changed blocks to disk, update the super block.

tar

Name
tar — file archiver

Description
tar is as specified in SUSv2, but with differences as listed below.

Differences
Some elements of the Pattern Matching Notation are optional; see Pattern
Matching Notation.

-h

 doesn't dump symlinks; dumps the files they point to.

-z

 filters the archive through gzip.

430 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 15 Commands and Utilities

umount

Name
umount — unmount file systems

Synopsis
umount [-hV]umount -a [-nrv] [-t vfstype]umount [-nrv] device | dir

Description
umount detaches the file system(s) mentioned from the file hierarchy. A file
system is specified by giving the directory where it has been mounted.

Standard Options

-v

 invokes verbose mode.

-n

 unmounts without writing in /etc/mtab.

-r

 tries to remount read-only if unmounting fails.

-a

 unmounts all of the file systems described in /etc/mtab except for the proc
file system.

-t vfstype

 indicates that the actions should only be taken on file systems of the
specified type. More than one type may be specified in a comma separated
list. The list of file system types can be prefixed with no to specify the file
system types on which no action should be taken.

-f

 forces unmount (in case of an unreachable NFS system).

LSB Deprecated Options
The behaviors specified in this section are expected to disappear from a future
version of the LSB; applications should only use the non-LSB-deprecated
behaviors.

-V

 print version and exits.

 © 2007 Linux Foundation 431

15 Commands and Utilities ISO/IEC 23360 Part 1:2007(E)

useradd

Name
useradd — create a new user or update default new user information

Synopsis
useradd [-c comment] [-d home_dir] [-g initial_group] [-G group...] [-m [-
k skeleton_dir]] [-p passwd] [-r] [-s shell] [-u uid [-o]] login useradd -
D [-g default_group] [-b default_home] [-s default_shell]

Description
When invoked without the -D option, and with appropriate privilege, useradd
creates a new user account using the values specified on the command line and
the default values from the system. The new user account will be entered into
the system files as needed, the home directory will be created, and initial files
copied, depending on the command line options.

When invoked with the -D option, useradd will either display the current
default values, or, with appropriate privilege, update the default values from
the command line. If no options are specified, useradd displays the current
default values.

The useradd command is a system administration utility, see Path For System
Administration Utilities.

Standard Options

-c comment

 specifies the new user's password file comment field value.

-d home_dir

 creates the new user using home_dir as the value for the user's login
directory. The default is to append the login name to default_home and use
that as the login directory name.

-g initial_group

 specifies the group name or number of the user's initial login group. The
group name shall exist. A group number shall refer to an already existing
group. If -g is not specified, the implementation will follow the normal
user default for that system. This may create a new group or choose a
default group that normal users are placed in. Applications which require
control of the groups into which a user is placed should specify -g.

-G group[,...]

 specifies a list of supplementary groups which the user is also a member of.
Each group is separated from the next by a comma, with no intervening
whitespace. The groups are subject to the same restrictions as the group
given with the -g option. The default is for the user to belong only to the
initial group.

-m [-k skeleton_dir]

432 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 15 Commands and Utilities

 specifies the user's home directory will be created if it does not exist. The
files contained in skeleton_dir will be copied to the home directory if the
-k option is used, otherwise the files contained in /etc/skel will be used
instead. Any directories contained in skeleton_dir or /etc/skel will be
created in the user's home directory as well. The -k option is only valid in
conjunction with the -m option. The default is to not create the directory
and to not copy any files.

-p passwd

 is the encrypted password, as returned by crypt(). The default is to
disable the account.

-r

 creates a system account, that is, a user with a User ID in the range reserved
for system account users. If there is not a User ID free in the reserved range
the command will fail.

-s shell

 specifies the name of the user's login shell. The default is to leave this field
blank, which causes the system to select the default login shell.

-u uid [-o]

 specifies the numerical value of the user's ID. This value shall be unique,
unless the -o option is used. The value shall be non-negative. The default is
the smallest ID value greater than 499 which is not yet used.

Change Default Options

-b default_home

 specifies the initial path prefix for a new user's home directory. The user's
name will be affixed to the end of default_home to create the new directory
name if the -d option is not used when creating a new account.

-g default_group

 specifies the group name or ID for a new user's initial group. The named
group shall exist, and a numerical group ID shall have an existing entry.

-s default_shell

 specifies the name of the new user's login shell. The named program will be
used for all future new user accounts.

-c comment

 specifies the new user's password file comment field value.

Application Usage
The -D option will typically be used by system administration packages. Most
applications should not change defaults which will affect other applications and
users.

 © 2007 Linux Foundation 433

15 Commands and Utilities ISO/IEC 23360 Part 1:2007(E)

userdel

Name
userdel — delete a user account and related files

Synopsis
userdel [-r] login

Description
Delete the user account named login. If there is also a group named login, this
command may delete the group as well, or may leave it alone.

The userdel command is a system administration utility, see Path For System
Administration Utilities.

Options

-r

 removes files in the user's home directory along with the home directory
itself. Files located in other file system will have to be searched for and
deleted manually.

434 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 15 Commands and Utilities

usermod

Name
usermod — modify a user account

Synopsis
usermod [-c comment] [-d home_dir [-m]] [-g initial_group] [-G group
[,...]] [-l login_name] [-p passwd] [-s shell] [-u uid [-o]] login

Description
The usermod command shall modify an entry in the user account database.

The usermod command is a system administration utility, see Path For System
Administration Utilities.

Options

-c comment

 specifies the new value of the user's password file comment field.

-d home_dir

 specifies the user's new login directory. If the -m option is given the
contents of the current home directory will be moved to the new home
directory, which is created if it does not already exist.

-g initial_group

 specifies the group name or number of the user's new initial login group.
The group name shall exist. A group number shall refer to an already
existing group.

-G group,[...]

 specifies a list of supplementary groups which the user is also a member of.
Each group is separated from the next by a comma, with no intervening
whitespace. The groups are subject to the same restrictions as the group
given with the -g option. If the user is currently a member of a group which
is not listed, the user will be removed from the group.

-l login_name

 changes the name of the user from login to login_name. Nothing else is
changed. In particular, the user's home directory name should probably be
changed to reflect the new login name.

-p passwd

 is the encrypted password, as returned by crypt(3).

-s shell

 specifies the name of the user's new login shell. Setting this field to blank
causes the system to select the default login shell.

-u uid [-o]

 © 2007 Linux Foundation 435

15 Commands and Utilities ISO/IEC 23360 Part 1:2007(E)

 specifies the numerical value of the user's ID. This value shall be unique,
unless the -o option is used. The value shall be non-negative. Any files
which the user owns and which are located in the directory tree rooted at
the user's home directory will have the file user ID changed automatically.
Files outside of the user's home directory shall be altered manually.

xargs

Name
xargs — build and execute command lines from standard input

Description
xargs is as specified in ISO POSIX (2003), but with differences as listed below.

Description
The zcat utility shall behave as described in ISO POSIX (2003), with differences
listed below.

The Filesystem Hierarchy Standard requires that if zcat exists, it must be a
symbolic or hard link to /bin/gzip. This specification additionally allows zcat
to be a wrapper script which calls gzip -c -d.

Differences

-E

 has unspecified behavior.

-I

 has unspecified behavior.

-L

 has unspecified behavior.

Note: These options have been implemented in findutils-4.2.9, but this version of
the utilities is not in widespread use as of April 2005. However, future versions of
this specification will require support for these arguments.

zcat

Name
zcat — uncompress files to standard output

Differences
The zcat utility shall write to standard output the uncompressed form of files
that have been compressed using any of the compression methods supported by
the gzip utility. It is the equivalent of gzip -c -d. Input files are not affected.

436 © 2007 Linux Foundation

VI Execution Environment

 ISO/IEC 23360 Part 1:2007(E)

16 File System Hierarchy
An LSB conforming implementation shall provide the mandatory portions of
the file system hierarchy specified in the Filesystem Hierarchy Standard (FHS),
together with any additional requirements made in this specification.

An LSB conforming application shall conform to the Filesystem Hierarchy
Standard.

16.1 /dev: Device Files
The devices described in Chapter 6. "Operating System Specific Annex", Section
6.1. "Linux", subsection 6.1.3. "/dev: Devices and special files" in the Filesystem
Hierarchy Standard are required on an LSB conforming system. Other devices
may also exist in /dev. Device names may exist as symbolic links to other device
nodes located in /dev or subdirectories of /dev. There is no requirement
concerning major/minor number values.

16.2 /etc: Host-specific system configuration
In addition to the requirements for /etc in the Filesystem Hierarchy Standard,
an LSB conforming system shall also provide the following directories or
symbolic links to directories:

/etc/cron.d

 A directory containing extended crontab files; see Cron Jobs.

/etc/cron.daily

 A directory containing shell scripts to be executed once a day; see Cron
Jobs.

/etc/cron.hourly

 A directory containing shell scripts to be executed once per hour; see Cron
Jobs.

/etc/cron.monthly

 A directory containing shell scripts to be executed once per month; see
Cron Jobs.

The FHS allows many components or subsystems to be optional. An application
shall check for the existence of an optional component before using it, and
should behave in a reasonable manner if the optional component is not present.

The FHS requirement to locate the operating system kernel in either / or /boot
does not apply if the operating system kernel does not exist as a file in the file
system.

The FHS specifies certain behaviors for a variety of commands if they are
present (for example, ping or python). However, LSB conforming applications
shall not rely on any commands beyond those specified by the LSB. The mere
existence of a command may not be used as an indication that the command
behaves in any particular way.

The following directories or links need not be present: /etc/X11 /usr/bin/X11
/usr/lib/X11 /proc

 © 2007 Linux Foundation 438

 ISO/IEC 23360 Part 1:2007(E) 16 File System Hierarchy

/etc/cron.weekly

 A directory containing shell scripts to be executed once a week; see Cron
Jobs.

/etc/init.d

 A directory containing system initialization scripts; see Installation and
Removal of Init Scripts.

/etc/profile.d

 A directory containing shell scripts. Script names should follow the same
conventions as specified for cron jobs (see Cron Jobs, but should have the
suffix .sh. The behavior is unspecified if a script is installed in this
directory that does not have the suffix .sh.

The sh utility shall read and execute commands in its current execution
environment from all the shell scripts in this directory that have the suffix
.sh when invoked as an interactive login shell, or if the -l (the letter ell) is
specified (see Shell Invocation).

Future Directions: These directories are required at this version of the LSB since
there is not yet an agreed method for abstracting the implementation so that
applications need not be aware of these locations during installation. However,
Future Directions describes a tool, lsbinstall, that will make these directories
implementation specific and no longer required.

16.2.1 File Naming Conventions
Conforming implemetnations and applications installing files into any of the
above locations under /etc may only use filenames from the following
managed namespaces:

• Assigned names. Such names must be chosen from the character set [a-z0-
9]. In order to avoid conflicts these names shall be reserved through the
Linux Assigned Names and Numbers Authority (LANANA). Information
about the LANANA may be found at www.lanana.org
(http://www.lanana.org).

Note: Commonly used names should be reserved in advance; developers for
projects are encouraged to reserve names from LANANA, so that each
distribution can use the same name, and to avoid conflicts with other projects.

• Hierarchical names. Script names in this category take the form: <hier1>-
<hier2>-...-<name>, where name is taken from the character set [a-z0-9],
and where there may be one or more <hier-n> components. <hier1> may
either be an LSB provider name assigned by the LANANA, or it may be
owners' DNS name in lower case, with at least one '.'. e.g. "debian.org",
"staroffice.sun.com", etc. The LSB provider name assigned by LANANA
shall only consist of the ASCII characters [a-z0-9].

• Reserved names. Names that begin with the character '_' are reserved for
distribution use only. These names should be used for essential system
packages only.

Note: A non-conforming application may still have polluted these managed
namespaces with unregistered filenames; a conforming application should check for
namespace collisions and take appropriate steps if they occur.

In general, if a package or some system function is likely to be used on multiple
systems, the package developers or the distribution should get a registered name

 © 2007 Linux Foundation 439

16 File System Hierarchy ISO/IEC 23360 Part 1:2007(E)

through LANANA, and distributions should strive to use the same name whenever
possible. For applications which may not be essential or may not be commonly
installed, the hierarchical namespace may be more appropriate. An advantage to
the hierarchical namespace is that there is no need to consult with the LANANA
before obtaining an assigned name.

Short names are highly desirable, since system administrators may need to
manually start and stop services. Given this, they should be standardized on a per-
package basis. This is the rationale behind having the LANANA organization
assign these names. The LANANA may be called upon to handle other namespace
issues, such as package/prerequisites naming.

16.3 User Accounting Databases
The Filesystem Hierarchy Standard specifies two optional locations for user
accounting databases used by the getutent(), getutent_r(), getutxent(),
getutxid(), getutxline(), and pututxline() functions. These are
/var/run/utmp and /var/run/wtmp.

16.4 Path For System Administration Utilities
Certain utilities used for system administration (and other privileged
commands) may be stored in /sbin, /usr/sbin, and /usr/local/sbin.
Applications requiring to use commands identified as system administration
utilities should add these directories to their PATH. By default, as described in
ISO POSIX (2003), standard utilities shall be found on the PATH returned by
getconf PATH (or command -p getconf PATH to be guaranteed to invoke the
correct version of getconf).

The LSB does not specify the format or structure of these files, or even if they
are files at all. They should be used only as "magic cookies" to the utmpname()
function.

440 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E)

17 Additional Recommendations

17.1 Recommendations for applications on ownership and
permissions

17.1.1 Directory Write Permissions
The application should not depend on having directory write permission in any
directory except /tmp, /var/tmp, and the invoking user's home directory.

In addition, the application may store variable data in /var/opt/package,
(where package is the name of the application package), if such a directory is
created with appropriate permissions during the package installation.

For these directories the application should be able to work with directory write
permissions restricted by the S_ISVTXT bit, implementing the restricted deletion
mode as described for the XSI option for ISO POSIX (2003)..

17.1.2 File Write Permissions
The application should not depend on file write permission to any file that it
does not itself create.

17.1.3 File Read and execute Permissions
The application should not depend on having read permission to every file and
directory.

17.1.4 SUID and SGID Permissions
The application should not depend on the set user ID or set group ID (the
S_ISUID or S_ISGID permission bits) permissions of a file not packaged with
the application. Instead, the distribution is responsible for assuming that all
system commands have the required permissions and work correctly.

Rationale: In order to implement common security policies it is strongly advisable
for applications to use the minimum set of security attributes necessary for correct
operation. Applications that require substantial appropriate privilege are likely to
cause problems with such security policies.

17.1.5 Privileged users
In general, applications should not depend on running as a privileged user. This
specification uses the term "appropriate privilege" throughout to identify
operations that cannot be achieved without some special granting of additional
privilege.

Applications that have a reason to run with appropriate privilege should
outline this reason clearly in their documentation. Users of the application
should be informed, that "this application demands security privileges, which
could interfere with system security".

The application should not contain binary-only software that requires being run
with appropriate privilege, as this makes security auditing harder or even
impossible.

 © 2007 Linux Foundation 441

17 Additional Recommendations ISO/IEC 23360 Part 1:2007(E)

17.1.6 Changing permissions
The application shall not change permissions of files and directories that do not
belong to its own package. Should an application require that certain files and
directories not directly belonging to the package have a particular ownership,
the application shall document this requirement, and may fail during
installation if the permissions on these files is inappropriate.

17.1.7 Removable Media (Cdrom, Floppy, etc.)
Applications that expect to be runnable from removable media should not
depend on logging in as a privileged user, and should be prepared to deal with
a restrictive environment. Examples of such restrictions could be default mount
options that disable set-user/group-ID attributes, disabling block or character-
special files on the medium, or remapping the user and group IDs of files away
from any privileged value.

Rationale: System vendors and local system administrators want to run
applications from removable media, but want the possibility to control what the
application can do.

17.1.8 Installable applications
Where the installation of an application needs additional privileges, it must
clearly document all files and system databases that are modified outside of
those in /opt/pkg-name and /var/opt/pkg-name, other than those that may be
updated by system logging or auditing activities.

Without this, the local system administrator would have to blindly trust a piece
of software, particularly with respect to its security.

442 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E)

18 Additional Behaviors

18.1 Mandatory Optional Behaviors
This section specifies behaviors in which there is optional behavior in one of the
standards on which the LSB relies, and where the LSB requires a specific
behavior.

Note: The LSB does not require the kernel to be Linux; the set of mandated options
reflects current existing practice, but may be modified in future releases.

LSB conforming implementations shall support the following options defined
within the ISO POSIX (2003):

_POSIX_FSYNC
_POSIX_MAPPED_FILES
_POSIX_MEMLOCK
_POSIX_MEMLOCK_RANGE
_POSIX_MEMORY_PROTECTION
_POSIX_PRIORITY_SCHEDULING
_POSIX_REALTIME_SIGNALS
_POSIX_THREAD_ATTR_STACKADDR
_POSIX_THREAD_ATTR_STACKSIZE
_POSIX_THREAD_PROCESS_SHARED
_POSIX_THREAD_SAFE_FUNCTIONS
_POSIX_THREADS

The opendir() function shall consume a file descriptor in the same fashion as
open(), and therefore may fail with EMFILE or ENFILE.

The START and STOP termios characters shall be changeable, as described as
optional behavior in the "General Terminal Interface" section of the ISO POSIX
(2003).

The access() function function shall fail with errno set to EINVAL if the amode
argument contains bits other than those set by the bitwise inclusive OR of R_OK,
W_OK, X_OK and F_OK.

The link() function shall require access to the existing file in order to succeed,
as described as optional behavior in the ISO POSIX (2003).

Calling unlink() on a directory shall fail. Calling link() specifying a directory
as the first argument shall fail. See also unlink.

18.1.1 Special Requirements
LSB conforming systems shall enforce certain special additional restrictions
above and beyond those required by ISO POSIX (2003).

Note: Linux allows rename() on a directory without having write access, but the
LSB does not require this.

Note: These additional restrictions are required in order to support the testing and
certification programs associated with the LSB. In each case, these are values that
defined macros must not have; conforming applications that use these values shall
trigger a failure in the interface that is otherwise described as a "may fail".

The fcntl() function shall treat the "cmd" value -1 as invalid.

 © 2007 Linux Foundation 443

18 Additional Behaviors ISO/IEC 23360 Part 1:2007(E)

The whence value -1 shall be an invalid value for the lseek(), fseek() and
fcntl() functions.

The value -5 shall be an invalid signal number.

If the sigaddset() or sigdelset() functions are passed an invalid signal
number, they shall return with EINVAL. Implementations are only required to
enforce this requirement for signal numbers which are specified to be invalid by
this specification (such as the -5 mentioned above).

The mode value -1 to the access() function shall be treated as invalid.

A value of -1 shall be an invalid "_PC_..." value for pathconf().

A value of -1 shall be an invalid "_SC..." value for sysconf().

The nl_item value -1 shall be invalid for nl_langinfo().

The value -1 shall be an invalid "_CS_..." value for confstr().

The value "a" shall be an invalid mode argument to popen().

The fcntl() function shall fail and set errno to EDEADLK if the cmd argument
is F_SETLKW, and the lock is blocked by a lock from another process already
blocked by the current process.

The opendir() function shall consume a file descriptor; the readdir() function
shall fail and set errno to EBADF if the underlying file descriptor is closed.

The link() function shall not work across file systems, and shall fail and set
errno to EXDEV as described as optional behavior in ISO POSIX (2003).

444 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E)

19 Localization

19.1 Introduction
In order to install a message catalog, the installation procedure shall supply the
message catalog in a format readable by the msgfmt utility, which shall be
invoked to compile the message catalog into an appropriate binary format on
the target system.

Rationale: The original intent was to allow an application to contain the binary
GNU MO format files. However, the format of these files is not officially stable,
hence it is necessary to compile these catalogs on the target system. These binary
catalogs may differ from architecture to architecture as well.

The resulting binary message catalog shall be located in the package's private
area under /opt, and the application may use bindtextdomain() to specify this
location.

Implementations shall support the POSIX and C locales as specified in ISO
POSIX (2003). Other locales may be supported.

Implementations may define additional locale categories not defined by that
standard.

Note: Implementations choosing additional locale categories should be aware of
ISO/IEC TR14652 and are advised not to choose names that conflict with that
specification. If implementations provide locale categories whose names are part of
the FDCC set of ISO/IEC TR14652, they should behave as defined by that
specification.

19.2 Regular Expressions
Utilities that process regular expressions shall support Basic Regular
Expressions and Extended Regular Expressions as specified in ISO POSIX
(2003), with the following exceptions:

Handling of a multi-character collating element is optional.

This affects at least the following utilities:

• awk (see awk)

• grep (see grep) (including egrep, see egrep)

• sed (see sed)

It also affects the behavior of interfaces in the base libraries, including at least

• regexec() (see regexec)

19.3 Pattern Matching Notation
Utilities that perform filename pattern matching (also known as Filename
Globbing) shall do it as specified in ISO POSIX (2003), Pattern Matching
Notation, with the following exceptions:

Range expression (such as [a-z]) can be based on code point order instead of
collating element order.

Equivalence class expression (such as [=a=]) and multi-character collating
element expression (such as [.ch.]) are optional.

 © 2007 Linux Foundation 445

19 Localization ISO/IEC 23360 Part 1:2007(E)

Pattern bracket expressions (such as [a-z]) can be based on code point order
instead of collating element order.

Equivalence class expression (such as [=a=]) and multi-character collating
element expression (such as [.ch.]) are optional.

Handling of a multi-character collating element is optional.

This affects at least the following utilities: cpio (cpio), find (find) and tar (tar).

446 © 2007 Linux Foundation

VII System Initialization

 ISO/IEC 23360 Part 1:2007(E)

20 System Initialization

20.1 Cron Jobs
In addition to the individual user crontab files specified by ISO POSIX (2003),
which are located in /var/spool/cron as specified by the Filesystem Hierarchy
Standard (FHS), the process that executes scheduled commands shall also
process the following additional crontab files, which are in a different format
(see below). /etc/crontab, /etc/cron.d/*. The installation of a package shall
not modify the crontab file /etc/crontab, and shall not directly modify the
user crontab files in /var/spool/cron/crontabs. but may use the crontab
command to modify the latter.

If a package wishes to install a job that has to be executed periodically, it shall
place an executable cron script in one of the following directories:
/etc/cron.hourly
/etc/cron.daily
/etc/cron.weekly
/etc/cron.monthly

As these directory names suggest, the files within them are executed on a
hourly, daily, weekly, or monthly basis, respectively, under the control of an
entry in one of the system crontab files, at an unspecified time of day. See
below for the rules concerning the names of cron scripts.

Note: It is recommended that cron scripts installed in any of these directories be
script files rather than compiled binaries so that they may be modified by the local
system administrator. Conforming applications may only install cron scripts which
use an interpreter required by this specification or provided by this or another
conforming application.

This specification does not define the concept of a package upgrade.
Implementations may do different things when packages are upgraded, including
not replacing a cron script if it marked as a configuration file, particularly if the cron
script appears to have been modified since installation. In some circumstances, the
cron script may not be removed when the package is uninstalled. Applications
should design their installation procedure and cron scripts to be robust in the face
of such behavior. In particular, cron scripts should not fail obscurely if run in
unexpected circumstances. Testing for the existence of application binaries before
executing them is suggested.

Future versions of this specification may remove the need to install file directly into
these directories, and instead abstract the interface to the cron utility in such a way
as to hide the implementation. Please see Future Directions.

If a certain task has to be executed at other than the predefined frequencies, the
package shall install a file /etc/cron.d/cron-name. The file shall have the same
format as that described for the crontab command in ISO POSIX (2003), except
that there shall be an additional field, username, before the name of the
command to execute. For completeness, the seven fields shall be:

 2. Hour [0,23]

 3. Day of the month [1,31]

 4. Month of the year [1,12]

 5. Day of the week [0,6] (with 0=Sunday)

 6. Username

 1. Minute [0,59]

 © 2007 Linux Foundation 448

 ISO/IEC 23360 Part 1:2007(E) 20 System Initialization

 7. command [args ...]

This file shall be processed by the system automatically, with the named
command being run at the specified time, as the specified username.

Applications installing files in these directories shall use the LSB naming
conventions (see File Naming Conventions).

20.2 Init Script Actions
Conforming applications which need to execute commands on changes to the
system run level (including boot and shutdown), may install one or more init
scripts. Init scripts provided by conforming applications shall accept a single ar-
gument which selects the action:

start start the service
stop stop the service
restart stop and restart the service if the

service is already running, otherwise
start the service

try-restart restart the service if the service is
already running

reload cause the configuration of the service
to be reloaded without actually
stopping and restarting the service

force-reload cause the configuration to be reloaded
if the service supports this, otherwise
restart the service if it is running

status print the current status of the service
The start, stop, restart, force-reload, and status actions shall be supported by all
init scripts; the reload and the try-restart actions are optional. Other init-script
actions may be defined by the init script.

Init scripts shall ensure that they will behave sensibly if invoked with start
when the service is already running, or with stop when not running, and that
they do not kill similarly-named user processes. The best way to achieve this is
to use the init-script functions provided by /lib/lsb/init-functions (see Init
Script Functions)

If the status action is requested, the init script will return the following exit
status codes.

0 program is running or service is OK

If a service reloads its configuration automatically (as in the case of cron, for
example), the reload action of the init script shall behave as if the configuration
was reloaded successfully. The restart, try-restart, reload and force-reload
actions may be atomic; that is if a service is known not to be operational after a
restart or reload, the script may return an error without any further action.

Note: This specification does not define the concept of a package upgrade.
Implementations may do different things when packages are upgraded, including
not replacing an init script if it is marked as a configuration file, particularly if the
file appears to have been modified since installation. In some circumstances, the init
script may not be removed when the package is uninstalled. Applications should
design their installation procedure and init scripts to be robust in the face of such
behavior. In particular, init scripts should not fail obscurely if run in unexpected
circumstances. Testing for the existence of application binaries before executing
them is suggested.

 © 2007 Linux Foundation 449

20 System Initialization ISO/IEC 23360 Part 1:2007(E)

1 program is dead and /var/run pid file
exists

2 program is dead and /var/lock lock
file exists

3 program is not running
4 program or service status is unknown
5-99 reserved for future LSB use
100-149 reserved for distribution use
150-199 reserved for application use
200-254 reserved

For all other init-script actions, the init script shall return an exit status of zero if
the action was successful. Otherwise, the exit status shall be non-zero, as
defined below. In addition to straightforward success, the following situations
are also to be considered successful:

• restarting a service (instead of reloading it) with the force-reload argument

• running start on a service already running

• running stop on a service already stopped or not running

• running restart on a service already stopped or not running

• running try-restart on a service already stopped or not running

In case of an error while processing any init-script action except for status, the
init script shall print an error message and exit with a non-zero status code:

1 generic or unspecified error (current
practice)

2 invalid or excess argument(s)
3 unimplemented feature (for example,

"reload")
4 user had insufficient privilege
5 program is not installed
6 program is not configured
7 program is not running
8-99 reserved for future LSB use
100-149 reserved for distribution use
150-199 reserved for application use
200-254 reserved

Error and status messages should be printed with the logging functions (see Init
Script Functions) log_success_msg(), log_failure_msg() and
log_warning_msg(). Scripts may write to standard error or standard output,
but implementations need not present text written to standard error/output to
the user or do anything else with it.

20.3 Comment Conventions for Init Scripts
Conforming applications may install one or more init scripts. These init scripts
must be activated by invoking the install_initd command. Prior to package
removal, the changes applied by install_initd must be undone by invoking
remove_initd. See Installation and Removal of Init Scripts for more details.

Note: Since init scripts may be run manually by a system administrator with non-
standard environment variable values for PATH, USER, LOGNAME, etc., init
scripts should not depend on the values of these environment variables. They
should set them to some known/default values if they are needed.

450 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 20 System Initialization

install_initd and remove_initd determine actions to take by decoding a
specially formatted block of lines in the script. This block shall be delimited by
the lines

BEGIN INIT INFO
END INIT INFO

The delimiter lines may contain trailing whitespace, which shall be ignored. All
lines inside the block shall begin with a hash character '#' in the first column,
so the shell interprets them as comment lines which do not affect operation of
the script. The lines shall be of the form:

{keyword}: arg1 [arg2...]

with exactly one space character between the '#' and the keyword, with a
single exception. In lines following a line containing the Description keyword,
and until the next keyword or block ending delimiter is seen, a line where the
'#' is followed by more than one space or a tab character shall be treated as a
continuation of the previous line.

The information extracted from the block is used by the installation tool or the
init-script system to assure that init scripts are run in the correct order. It is
unspecified whether the information is evaluated only when install_initd runs,
when the init scripts are executed, or both. The information extracted includes
run levels, defined in Run Levels, and boot facilities, defined in Facility Names.

The following keywords, with their arguments, are defined:

Provides: boot_facility_1 [boot_facility_2...]

 boot facilities provided by this init script. When an init script is run with a
start argument, the boot facility or facilities specified by the Provides
keyword shall be deemed present and hence init scripts which require
those boot facilities should be started later. When an init script is run with a
stop argument, the boot facilities specified by the Provides keyword are
deemed no longer present.

Required-Start: boot_facility_1 [boot_facility_2...]

 facilities which must be available during startup of this service. The init-
script system should insure init scripts which provide the Required-Start
facilities are started before starting this script.

Required-Stop: boot_facility_1 [boot_facility_2...]

 facilities which must be available during the shutdown of this service. The
init-script system should avoid stopping init scripts which provide the
Required-Stop facilities until this script is stopped.

Should-Start: boot_facility_1 [boot_facility_2...]

 facilities which, if present, should be available during startup of this
service. This allows for weak dependencies which do not cause the service
to fail if a facility is not available. The service may provide reduced
functionality in this situation. Conforming applications should not rely on
the existence of this feature.

Should-Stop: boot_facility_1 [boot_facility_2...]

 facilities which should be available during shutdown of this service.

 © 2007 Linux Foundation 451

20 System Initialization ISO/IEC 23360 Part 1:2007(E)

Default-Start: run_level_1 [run_level_2...]
Default-Stop: run_level_1 [run_level_2...]

 which run levels should by default run the init script with a start (stop)
argument to start (stop) the services controlled by the init script.

For example, if a service should run in runlevels 3, 4, and 5 only, specify
"Default-Start: 3 4 5" and "Default-Stop: 0 1 2 6".

Short-Description: short_description

 provide a brief description of the actions of the init script. Limited to a
single line of text.

Description: multiline_description

 provide a more complete description of the actions of the init script. May
span mulitple lines. In a multiline description, each continuation line shall
begin with a '#' followed by tab character or a '#' followed by at least two
space characters. The multiline description is terminated by the first line
that does not match this criteria.

Additional keywords may be defined in future versions of this specification.
Also, implementations may define local extensions by using the prefix X-
implementor. For example, X-RedHat-foobardecl, or X-Debian-xyzzydecl.

Example:

 ### BEGIN INIT INFO
 # Provides: lsb-ourdb
 # Required-Start: $local_fs $network $remote_fs
 # Required-Stop: $local_fs $network $remote_fs
 # Default-Start: 2 3 4 5
 # Default-Stop: 0 1 6
 # Short-Description: start and stop OurDB
 # Description: OurDB is a very fast and reliable database
 # engine used for illustrating init scripts
 ### END INIT INFO

The comment conventions described in this section are only required for init
scripts installed by conforming applications. Conforming runtime
implementations are not required to use this scheme in their system provided
init scripts.

Note: This specification does not require, but is designed to allow, the development
of a system which runs init scripts in parallel. Hence, enforced-serialization of
scripts is avoided unless it is explicitly necessary.

20.4 Installation and Removal of Init Scripts
Conforming applications may install one or more initialization scripts (or init
scripts). An init script shall be installed in /etc/init.d (which may be a
symbolic link to another location), by the package installer.

Note: The requirement to install scripts in /etc/init.d may be removed in future
versions of this specification. See Host-specific system configuration and Future
Directions for further details.

During the installer's post-install processing phase the program
/usr/lib/lsb/install_initd must be called to activate the init script. Activation
consists of arranging for the init script to be called in the correct order on
system run-level changes (including system boot and shutdown), based on

452 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 20 System Initialization

dependencies supplied in the init script (see Comment Conventions for Init
Scripts). The install_initd command should be thought of as a wrapper which
hides the implementation details; how any given implementation arranges for
the init script to be called at the appropriate time is not specified.

 /usr/lib/lsb/install_initd /etc/init.d/example.com-coffeed

The install_initd command shall return an exit status of zero if the init-script
activation was successful or if the init script was already activated. If the
dependencies in the init script (see Comment Conventions for Init Scripts)
cannot be met, an exit status of one shall be returned and the init script shall not
be activated.

20.5 Run Levels
The following run levels are specified for use by the Default-Start and Default-
Stop actions defined in Comment Conventions for Init Scripts as hints to the in-
stall_initd command. Conforming implementations are not required to provide
these exact run levels or give them the meanings described here, and may map
any level described here to a different level which provides the equivalent func-
tionality. Applications may not depend on specific run-level numbers.

1 single user mode
2 multiuser with no network services

exported

Example: if an init script specified "Default-Start: 3 4 5" and "Default-Stop: 0 1 2 6",
install_initd might create "start" symbolic links with names starting with 'S' in
/etc/rc3.d, /etc/rc4.d and /etc/rc5.d and "stop" symbolic links with names
starting with 'K' in /etc/rc0.d, /etc/rc1.d, /etc/rc2.d and /etc/rc6.d. Such a
scheme would be similar to the System V Init mechanism, but is by no means the
only way this specification could be implemented.

The install_initd command takes a single argument, the full pathname of the
installed init script. The init script must already be installed in /etc/init.d.
The install_initd command will not copy it there, only activate it once it has
been installed. For example:

When a software package is removed, /usr/lib/lsb/remove_initd must be called
to deactivate the init script. This must occur before the init script itself is
removed, as the dependency information in the script may be required for
successful completion. Thus the installer's pre-remove processing phase must
call remove_initd, and pass the full pathname of the installed init script. The
package installer is still responsible for removing the init script. For example:

 /usr/lib/lsb/remove_initd /etc/init.d/example.com-coffeed

The remove_initd program shall return an exit status of zero if the init script
has been successfully deactivated or if the init script is not activated. If another
init script which depends on a boot facility provided by this init script is
activated, an exit status of one shall be returned and the init script shall remain
activated. The installer must fail on such an exit code so it does not
subsequently remove the init script.

Note: This specification does not describe a mechanism for the system
administrator to manipulate the run levels at which an init script is started or
stopped. There is no assurance that modifying the comment block for this purpose
will have the desired effect.

0 halt

 © 2007 Linux Foundation 453

20 System Initialization ISO/IEC 23360 Part 1:2007(E)

3 normal/full multiuser
4 reserved for local use, default is

normal/full multiuser
5 multiuser with a display manager or

equivalent
6 reboot

Note: These run levels were chosen as reflecting the most frequent existing practice,
and in the absence of other considerations, implementors are strongly encouraged
to follow this convention to provide consistency for system administrators who
need to work with multiple distributions.

20.6 Facility Names
Boot facilities are used to indicate dependencies in initialization scripts, as
defined in Comment Conventions for Init Scripts. Facility names are assigned to
scripts by the Provides: keyword. Facility names that begin with a dollar sign
('$') are reserved system facility names.

$portmap

 daemons providing SunRPC/ONCRPC portmapping service as defined in
RFC 1833: Binding Protocols for ONC RPC Version 2 (if present) are
running.

Note: Facility names are only recognized in the context of the init script comment
block and are not available in the body of the init script. In particular, the use of the
leading '$' character does not imply system facility names are subject to shell
variable expansion, since they appear inside comments.

Conforming applications shall not provide facilities that begin with a dollar
sign. Implementations shall provide the following facility names:

$local_fs

 all local file systems are mounted

$network

 basic networking support is available. Example: a server program could
listen on a socket.

$named

 IP name-to-address translation, using the interfaces described in this
specification, are available to the level the system normally provides them.
Example: if a DNS query daemon normally provides this facility, then that
daemon has been started.

$remote_fs

 all remote file systems are available. In some configurations, file systems
such as /usr may be remote. Many applications that require $local_fs will
probably also require $remote_fs.

$syslog

 system logger is operational.

454 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 20 System Initialization

$time

 the system time has been set, for example by using a network-based time
program such as ntp or rdate, or via the hardware Real Time Clock.

Other (non-system) facilities may be defined by other conforming applications.
These facilities shall be named using the same conventions defined for naming
init scripts (see Script Names). Commonly, the facility provided by a
conforming init script will have the same name as the name assigned to the init
script.

20.7 Script Names
Since init scripts live in a single directory, they must share a single namespace.
To avoid conflicts, applications installing files in this directories shall use the
LSB naming conventions (see File Naming Conventions).

20.8 Init Script Functions
Each conforming init script shall execute the commands in the file
/lib/lsb/init-functions in the current environment (see shell special built-
in command dot). This file shall cause the following shell script commands to be
defined in an unspecified manner.

Note: This can be done either by adding a directory to the PATH variable which
defines these commands, or by defining shell aliases or functions.

Although the commands made available via this mechanism need not be
conforming applications in their own right, applications that use them should only
depend on features described in this specification.

Conforming scripts shall not specify the "exit on error" option (i.e. set -e) when
sourcing this file, or calling any of the commands thus made available.

The start_daemon, killproc and pidofproc functions shall use the following
algorithm for determining the status and the process identifiers of the specified
program.

 1. If the -p pidfile option is specified, and the named pidfile exists, a
single line at the start of the pidfile shall be read. If this line contains one
or more numeric values, separated by spaces, these values shall be used. If
the -p pidfile option is specified and the named pidfile does not exist,
the functions shall assume that the daemon is not running.

 2. Otherwise, /var/run/basename.pid shall be read in a similar fashion. If
this contains one or more numeric values on the first line, these values
shall be used. Optionally, implementations may use unspecified additional
methods to locate the process identifiers required.

The method used to determine the status is implementation defined, but should
allow for non-binary programs.

Note: Commonly used methods check either for the existence of the /proc/pid
directory or use /proc/pid/exe and /proc/pid/cmdline. Relying only on
/proc/pid/exe is discouraged since this specification does not specify the existence
of, or semantics for, /proc. Additionally, using /proc/pid/exe may result in a not-
running status for daemons that are written in a script language.

Conforming implementations may use other mechanisms besides those based
on pidfiles, unless the -p pidfile option has been used. Conforming
applications should not rely on such mechanisms and should always use a

 © 2007 Linux Foundation 455

20 System Initialization ISO/IEC 23360 Part 1:2007(E)

pidfile. When a program is stopped, it should delete its pidfile. Multiple
process identifiers shall be separated by a single space in the pidfile and in the
output of pidofproc.

start_daemon [-f] [-n nicelevel] [-p pidfile] pathname [args...]

 runs the specified program as a daemon. The start_daemon function shall
check if the program is already running using the algorithm given above. If
so, it shall not start another copy of the daemon unless the -f option is
given. The -n option specifies a nice level. See nice. start_daemon shall
return the LSB defined exit status codes. It shall return 0 if the program has
been successfully started or is running and not 0 otherwise.

killproc [-p pidfile] pathname [signal]

 The killproc function shall stop the specified program. The program is
found using the algorithm given above. If a signal is specified, using the -
signal_name or -signal_number syntaxes as specified by the kill command,
the program is sent that signal. Otherwise, a SIGTERM followed by a
SIGKILL after an unspecified number of seconds shall be sent. If a program
has been terminated, the pidfile should be removed if the terminated
process has not already done so. The killproc function shall return the LSB
defined exit status codes. If called without a signal, it shall return 0 if the
program has been stopped or is not running and not 0 otherwise. If a signal
is given, it shall return 0 only if the program is running.

pidofproc [-p pidfile] pathname

 The pidofproc function shall return one or more process identifiers for a
particular daemon using the algorithm given above. Only process
identifiers of running processes should be returned. Multiple process
identifiers shall be separated by a single space.

Note: A process may exit between pidofproc discovering its identity and the caller
of pidofproc being able to act on that identity. As a result, no test assertion can
be made that the process identifiers returned by pidofproc shall be running
processes.

The pidofproc function shall return the LSB defined exit status codes for
"status". It shall return 0 if the program is running and not 0 otherwise.

log_success_msg message

 The log_success_msg function shall cause the system to write a success
message to an unspecified log file. The format of the message is
unspecified. The log_success_msg function may also write a message to the
standard output.

Note: The message should be relatively short; no more than 60 characters is highly
desirable.

log_failure_msg message

 The log_failure_msg function shall cause the system to write a failure
message to an unspecified log file. The format of the message is
unspecified. The log_failure_msg function may also write a message to the
standard output.

Note: The message should be relatively short; no more than 60 characters is highly
desirable.

456 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 20 System Initialization

log_warning_msg message

 The log_warning_msg function shall cause the system to write a warning
message to an unspecified log file. The format of the message is
unspecified. The log_warning_msg function may also write a message to
the standard output.

Note: The message should be relatively short; no more than 60 characters is highly
desirable.

 © 2007 Linux Foundation 457

VIII Users & Groups

 ISO/IEC 23360 Part 1:2007(E)

21 Users & Groups

21.1 User and Group Database
The format of the User and Group databases is not specified. Programs may
only read these databases using the provided API. Changes to these databases
should be made using the provided commands.

21.2 User & Group Names
Table 21-1 describes required mnemonic user and group names. This
specification makes no attempt to numerically assign user or group identity
numbers, with the exception that both the User ID and Group ID for the user
root shall be equal to 0.

Table 21-1 Required User & Group Names

User Group Comments

root root Administrative user
with all appropriate
privileges

bin bin Legacy User ID/Group
IDa

daemon daemon Legacy User ID/Group
IDb

Notes:
a The bin User ID/Group ID is included for compatibility with legacy

applications. New applications should no longer use the bin User
ID/Group ID.

b The daemon User ID/Group ID was used as an unprivileged User
ID/Group ID for daemons to execute under in order to limit their access
to the system. Generally daemons should now run under individual User
ID/Group IDs in order to further partition daemons from one another.

Table 21-2 is a table of optional mnemonic user and group names. This
specification makes no attempt to numerically assign uid or gid numbers. If the
username exists on a system, then they should be in the suggested
corresponding group. These user and group names are for use by distributions,
not by applications.

Table 21-2 Optional User & Group Names

User Group Comments

adm adm Administrative special
privileges

lp lp Printer special
privileges

sync sync Login to sync the
system

shutdown shutdown Login to shutdown the

 © 2007 Linux Foundation 459

21 Users & Groups ISO/IEC 23360 Part 1:2007(E)

User Group Comments
system

halt halt Login to halt the system

mail mail Mail special privileges

news news News special privileges

uucp uucp UUCP special
privileges

operator root Operator special
privileges

man man Man special privileges

nobody nobody Used by NFS
Only a minimum working set of "user names" and their corresponding "user
groups" are required. Applications cannot assume non system user or group
names will be defined.

Applications cannot assume any policy for the default file creation mask
(umask) or the default directory permissions a user may have. Applications
should enforce user only file permissions on private files such as mailboxes. The
location of the users home directory is also not defined by policy other than the
recommendations of the Filesystem Hierarchy Standard and should be obtained
by the getpwnam(), getpwnam_r(), getpwent(), getpwuid(), and
getpwuid_r() functions.

21.3 User ID Ranges
The system User IDs from 0 to 99 should be statically allocated by the system,
and shall not be created by applications.

The system User IDs from 100 to 499 should be reserved for dynamic allocation
by system administrators and post install scripts using useradd.

21.4 Rationale
The purpose of specifying optional users and groups is to reduce the potential
for name conflicts between applications and distributions.

460 © 2007 Linux Foundation

IX Package Format and Installation

 ISO/IEC 23360 Part 1:2007(E)

22 Software Installation

22.1 Introduction
Applications shall either be packaged in the RPM packaging format as defined
in this specification, or supply an installer which is LSB conforming (for
example, calls LSB commands and utilities).

Note: Supplying an RPM format package is encouraged because it makes systems
easier to manage. This specification does not require the implementation to use
RPM as the package manager; it only specifies the format of the package file.

Applications are also encouraged to uninstall cleanly.

A package in RPM format may include a dependency on the LSB Core and
other LSB specifications, as described in Section 22.6. Packages that are not in
RPM format may test for the presence of a conforming implementation by
means of the lsb_release utility.

Implementations shall provide a mechanism for installing applications in this
packaging format with some restrictions listed below.

Note: The implementation itself may use a different packaging format for its own
packages, and of course it may use any available mechanism for installing the LSB-
conformant packages.

22.2 Package File Format
An RPM format file consists of 4 sections, the Lead, Signature, Header, and the
Payload. All values are stored in network byte order.

Table 22-1 RPM File Format

Lead

Signature

Header

Payload
These 4 sections shall exist in the order specified.

The lead section is used to identify the package file.

The signature section is used to verify the integrity, and optionally, the
authenticity of the majority of the package file.

The header section contains all available information about the package. Entries
such as the package's name, version, and file list, are contained in the header.

The payload section holds the files to be installed.

22.2.1 Lead Section
struct rpmlead {
 unsigned char magic[4];
 unsigned char major, minor;
 short type;
 short archnum;
 char name[66];
 short osnum;

 © 2007 Linux Foundation 462

 ISO/IEC 23360 Part 1:2007(E) 22 Software Installation

 short signature_type;
 char reserved[16];
} ;

magic

 Value identifying this file as an RPM format file. This value shall be
"\355\253\356\333".

major

 Value indicating the major version number of the file format version. This
value shall be 3.

minor

 Value indicating the minor revision number of file format version. This
value shall be 0.

type

 Value indicating whether this is a source or binary package. This value
shall be 0 to indicate a binary package.

archnum

 Value indicating the architecture for which this package is valid. This value
is specified in the relevant architecture specific part of ISO/IEC 23360.

name

 A NUL terminated string that provides the package name. This name shall
conform with the Package Naming section of this specification.

osnum

 Value indicating the Operating System for which this package is valid. This
value shall be 1.

signature_type

 Value indicating the type of the signature used in the Signature part of the
file. This value shall be 5.

reserved

 Reserved space. The value is undefined.

22.2.2 Header Structure
The Header structure is used for both the Signature and Header Sections. A
Header Structure consists of 3 parts, a Header record, followed by 1 or more
Index records, followed by 0 or more bytes of data associated with the Index
records. A Header structure shall be aligned to an 8 byte boundary.

Table 22-2 Signature Format

Header Record

Array of Index Records

Store of Index Values

 © 2007 Linux Foundation 463

22 Software Installation ISO/IEC 23360 Part 1:2007(E)

22.2.2.1 Header Record

struct rpmheader {
 unsigned char magic[4];
 unsigned char reserved[4];
 int nindex;
 int hsize;
 } ;

magic

 Value identifying this record as an RPM header record. This value shall be
"\216\255\350\001".

reserved

 Reserved space. This value shall be "\000\000\000\000".

nindex

 The number of Index Records that follow this Header Record. There should
be at least 1 Index Record.

hsize

 The size in bytes of the storage area for the data pointed to by the Index
Records.

22.2.2.2 Index Record

struct rpmhdrindex {
 int tag;
 int type;
 int offset;
 int count;
 } ;

tag

 Value identifying the purpose of the data associated with this Index
Record. The value of this field is dependent on the context in which the
Index Record is used, and is defined below and in later sections.

type

 Value identifying the type of the data associated with this Index Record.
The possible type values are defined below.

offset

 Location in the Store of the data associated with this Index Record. This
value should between 0 and the value contained in the hsize of the Header
Structure.

count

 Size of the data associated with this Index Record. The count is the number
of elements whose size is defined by the type of this Record.

22.2.2.2.1 Index Type Values

The possible values for the type field are defined in this table.

464 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 22 Software Installation

Table 22-3 Index Type values

Type Value Size (in bytes) Alignment

RPM_NULL_TYPE 0 Not
Implemented.

RPM_CHAR_TYPE 1 1 1

RPM_INT8_TYPE 2 1 1

RPM_INT16_TYPE 3 2 2

RPM_INT32_TYPE 4 4 4

RPM_INT64_TYPE 5 Reserved.

RPM_STRING_TYP
E

6 variable, NUL
terminated

1

RPM_BIN_TYPE 7 1 1

RPM_STRING_ARR
AY_TYPE

8 Variable,
sequence of NUL
terminated
strings

1

RPM_I18NSTRING
_TYPE

9 variable,
sequence of NUL
terminated
strings

1

The string arrays specified for entries of type RPM_STRING_ARRAY_TYPE and
RPM_I18NSTRING_TYPE are vectors of strings in a contiguous block of memory,
each element separated from its neighbors by a NUL character.

Index records with type RPM_I18NSTRING_TYPE shall always have a count of 1.
The array entries in an index of type RPM_I18NSTRING_TYPE correspond to the
locale names contained in the RPMTAG_HDRI18NTABLE index.

22.2.2.2.2 Index Tag Values

Some values are designated as header private, and may appear in any header
structure. These are defined here. Additional values are defined in later
sections.

Table 22-4 Header Private Tag Values

Name Tag Value Type Count Status

RPMTAG_HEAD
ERSIGNATURE
S

62 BIN 16 Optional

RPMTAG_HEAD
ERIMMUTABLE

63 BIN 16 Optional

RPMTAG_HEAD
ERI18NTABLE

100 STRING_AR
RAY

 Optional

 © 2007 Linux Foundation 465

22 Software Installation ISO/IEC 23360 Part 1:2007(E)

RPMTAG_HEADERSIGNATURES

 The signature tag differentiates a signature header from a metadata header,
and identifies the original contents of the signature header.

RPMTAG_HEADERIMMUTABLE

 This tag contains an index record which specifies the portion of the Header
Record which was used for the calculation of a signature. This data shall be
preserved or any header-only signature will be invalidated.

RPMTAG_HEADERI18NTABLE

 Contains a list of locales for which strings are provided in other parts of the
package.

Not all Index records defined here will be present in all packages. Each tag
value has a status which is defined here.

Required

 This Index Record shall be present.

Optional

 This Index Record may be present.

Informational

 This Index Record may be present, but does not contribute to the
processing of the package.

Deprecated

 This Index Record should not be present.

Obsolete

 This Index Record shall not be present.

Reserved

 This Index Record shall not be present.

22.2.2.3 Header Store
The header store contains the values specified by the Index structures. These
values are aligned according to their type and padding is used if needed. The
store is located immediately following the Index structures.

22.2.3 Signature Section
The Signature section is implemented using the Header structure. The signature
section defines the following additional tag values which may be used in the
Index structures.

These values exist to provide additional information about the rest of the
package.

Table 22-5 Signature Tag Values

Name Tag Value Type Count Status

RPMSIGTAG_S
IZE

1000 INT32 1 Required

466 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 22 Software Installation

Name Tag Value Type Count Status

RPMSIGTAG_P
AYLOADSIZE

1007 INT32 1 Optional

RPMSIGTAG_SIZE

 This tag specifies the combined size of the Header and Payload sections.

RPMSIGTAG_PAYLOADSIZE

 This tag specifies the uncompressed size of the Payload archive, including
the cpio headers.

These values exist to ensure the integrity of the rest of the package.

Table 22-6 Signature Digest Tag Values

Name Tag Value Type Count Status

RPMSIGTAG_S
HA1

269 STRING 1 Optional

RPMSIGTAG_M
D5

1004 BIN 16 Required

RPMSIGTAG_SHA1

 This index contains the SHA1 checksum of the entire Header Section,
including the Header Record, Index Records and Header store.

RPMSIGTAG_MD5

 This tag specifies the 128-bit MD5 checksum of the combined Header and
Archive sections.

These values exist to provide authentication of the package.

Table 22-7 Signature Signing Tag Values

Name Tag Value Type Count Status

RPMSIGTAG_D
SA

267 BIN 65 Optional

RPMSIGTAG_R
SA

268 BIN 1 Optional

RPMSIGTAG_P
GP

1002 BIN 1 Optional

RPMSIGTAG_G
PG

1005 BIN 65 Optional

RPMSIGTAG_DSA

 The tag contains the DSA signature of the Header section. The data is
formatted as a Version 3 Signature Packet as specified in RFC 2440:
OpenPGP Message Format. If this tag is present, then the SIGTAG_GPG tag
shall also be present.

RPMSIGTAG_RSA

 The tag contains the RSA signature of the Header section.The data is
formatted as a Version 3 Signature Packet as specified in RFC 2440:

 © 2007 Linux Foundation 467

22 Software Installation ISO/IEC 23360 Part 1:2007(E)

OpenPGP Message Format. If this tag is present, then the SIGTAG_PGP
shall also be present.

RPMSIGTAG_PGP

 This tag specifies the RSA signature of the combined Header and Payload
sections. The data is formatted as a Version 3 Signature Packet as specified
in RFC 2440: OpenPGP Message Format.

RPMSIGTAG_GPG

 The tag contains the DSA signature of the combined Header and Payload
sections. The data is formatted as a Version 3 Signature Packet as specified
in RFC 2440: OpenPGP Message Format.

22.2.4 Header Section
The Header section is implemented using the Header structure. The Header
section defines the following additional tag values which may be used in the
Index structures.

22.2.4.1 Package Information
The following tag values are used to indicate information that describes the
package as a whole.

Table 22-8 Package Info Tag Values

Name Tag Value Type Count Status

RPMTAG_NAME 1000 STRING 1 Required

RPMTAG_VERS
ION

1001 STRING 1 Required

RPMTAG_RELE
ASE

1002 STRING 1 Required

RPMTAG_SUMM
ARY

1004 I18NSTRING 1 Required

RPMTAG_DESC
RIPTION

1005 I18NSTRING 1 Required

RPMTAG_SIZE 1009 INT32 1 Required

RPMTAG_DIST
RIBUTION

1010 STRING 1 Informationa
l

RPMTAG_VEND
OR

1011 STRING 1 Informationa
l

RPMTAG_LICE
NSE

1014 STRING 1 Required

RPMTAG_PACK
AGER

1015 STRING 1 Informationa
l

RPMTAG_GROU
P

1016 I18NSTRING 1 Required

RPMTAG_URL 1020 STRING 1 Informationa
l

RPMTAG_OS 1021 STRING 1 Required

468 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 22 Software Installation

Name Tag Value Type Count Status

RPMTAG_ARCH 1022 STRING 1 Required

RPMTAG_SOUR
CERPM

1044 STRING 1 Informationa
l

RPMTAG_ARCH
IVESIZE

1046 INT32 1 Optional

RPMTAG_RPMV
ERSION

1064 STRING 1 Informationa
l

RPMTAG_COOK
IE

1094 STRING 1 Optional

RPMTAG_DIST
URL

1123 STRING 1 Informationa
l

RPMTAG_PAYL
OADFORMAT

1124 STRING 1 Required

RPMTAG_PAYL
OADCOMPRESS
OR

1125 STRING 1 Required

RPMTAG_PAYL
OADFLAGS

1126 STRING 1 Required

RPMTAG_NAME

 This tag specifies the name of the package.

RPMTAG_VERSION

 This tag specifies the version of the package.

RPMTAG_RELEASE

 This tag specifies the release of the package.

RPMTAG_SUMMARY

 This tag specifies the summary description of the package. The summary
value pointed to by this index record contains a one line description of the
package.

RPMTAG_DESCRIPTION

 This tag specifies the description of the package. The description value
pointed to by this index record contains a full desription of the package.

RPMTAG_SIZE

 This tag specifies the sum of the sizes of the regular files in the archive.

RPMTAG_DISTRIBUTION

 A string containing the name of the distribution on which the package was
built.

RPMTAG_VENDOR

 A string containing the name of the organization that produced the
package.

 © 2007 Linux Foundation 469

22 Software Installation ISO/IEC 23360 Part 1:2007(E)

RPMTAG_LICENSE

 This tag specifies the license which applies to this package.

RPMTAG_PACKAGER

 A string identifying the tool used to build the package.

RPMTAG_GROUP

 This tag specifies the administrative group to which this package belongs.

RPMTAG_URL

 Generic package information URL.

RPMTAG_OS

 This tag specifies the OS of the package. The OS value pointed to by this
index record shall be "linux".

RPMTAG_ARCH

 This tag specifies the architecture of the package. The architecture value
pointed to by this index record is defined in architecture specific LSB
specification.

RPMTAG_SOURCERPM

 This tag specifies the name of the source RPM.

RPMTAG_ARCHIVESIZE

 This tag specifies the uncompressed size of the Payload archive, including
the cpio headers.

RPMTAG_RPMVERSION

 This tag indicates the version of RPM tool used to build this package. The
value is unused.

RPMTAG_COOKIE

 This tag contains an opaque string whose contents are undefined.

RPMTAG_DISTURL

 URL for package.

RPMTAG_PAYLOADFORMAT

 This tag specifies the format of the Archive section. The format value
pointed to by this index record shall be 'cpio'.

RPMTAG_PAYLOADCOMPRESSOR

 This tag specifies the compression used on the Archive section. The
compression value pointed to by this index record shall be 'gzip'.

RPMTAG_PAYLOADFLAGS

 This tag indicates the compression level used for the Payload. This value
shall always be '9'.

470 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 22 Software Installation

22.2.4.2 Installation Information
The following tag values are used to provide information needed during the
installation of the package.

Table 22-9 Installation Tag Values

Name Tag Value Type Count Status

RPMTAG_PREI
N

1023 STRING 1 Optional

RPMTAG_POST
IN

1024 STRING 1 Optional

RPMTAG_PREU
N

1025 STRING 1 Optional

RPMTAG_POST
UN

1026 STRING 1 Optional

RPMTAG_PREI
NPROG

1085 STRING 1 Optional

RPMTAG_POST
INPROG

1086 STRING 1 Optional

RPMTAG_PREU
NPROG

1087 STRING 1 Optional

RPMTAG_POST
UNPROG

1088 STRING 1 Optional

RPMTAG_PREIN

 This tag specifies the preinstall scriptlet. If present, then
RPMTAG_PREINPROG shall also be present.

RPMTAG_POSTIN

 This tag specifies the postinstall scriptlet. If present, then
RPMTAG_POSTINPROG shall also be present.

RPMTAG_PREUN

 his tag specifies the preuninstall scriptlet. If present, then
RPMTAG_PREUNPROG shall also be present.

RPMTAG_POSTUN

 This tag specified the postuninstall scriptlet. If present, then
RPMTAG_POSTUNPROG shall also be present.

RPMTAG_PREINPROG

 This tag specifies the name of the intepreter to which the preinstall scriptlet
will be passed. The intepreter pointed to by this index record shall be
/bin/sh.

RPMTAG_POSTINPROG

 This tag specifies the name of the intepreter to which the postinstall
scriptlet will be passed. The intepreter pointed to by this index record shall
be /bin/sh.

 © 2007 Linux Foundation 471

22 Software Installation ISO/IEC 23360 Part 1:2007(E)

RPMTAG_PREUNPROG

 This tag specifies the name of the intepreter to which the preuninstall
scriptlet will be passed. The intepreter pointed to by this index record shall
be /bin/sh.

RPMTAG_POSTUNPROG

 This program specifies the name of the intepreter to which the
postuninstall scriptlet will be passed. The intepreter pointed to by this
index record shall be /bin/sh.

22.2.4.3 File Information
The following tag values are used to provide information about the files in the
payload. This information is provided in the header to allow more efficient
access of the information.

Table 22-10 File Info Tag Values

Name Tag Value Type Count Status

RPMTAG_OLDF
ILENAMES

1027 STRING_AR
RAY

 Optional

RPMTAG_FILE
SIZES

1028 INT32
 Required

RPMTAG_FILE
MODES

1030 INT16
 Required

RPMTAG_FILE
RDEVS

1033 INT16
 Required

RPMTAG_FILE
MTIMES

1034 INT32
 Required

RPMTAG_FILE
MD5S

1035 STRING_AR
RAY

 Required

RPMTAG_FILE
LINKTOS

1036 STRING_AR
RAY

 Required

RPMTAG_FILE
FLAGS

1037 INT32
 Required

RPMTAG_FILE
USERNAME

1039 STRING_AR
RAY

 Required

RPMTAG_FILE
GROUPNAME

1040 STRING_AR
RAY

 Required

RPMTAG_FILE
DEVICES

1095 INT32
 Required

RPMTAG_FILE
INODES

1096 INT32
 Required

RPMTAG_FILE
LANGS

1097 STRING_AR
RAY

 Required

RPMTAG_DIRI
NDEXES

1116 INT32
 Optional

RPMTAG_BASE 1117 STRING_AR
 Optional

472 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 22 Software Installation

Name Tag Value Type Count Status
NAMES RAY

RPMTAG_DIRN
AMES

1118 STRING_AR
RAY

 Optional

RPMTAG_OLDFILENAMES

 This tag specifies the filenames when not in a compressed format as
determined by the absence of rpmlib(CompressedFileNames) in the
RPMTAG_REQUIRENAME index.

RPMTAG_FILESIZES

 This tag specifies the size of each file in the archive.

RPMTAG_FILEMODES

 This tag specifies the mode of each file in the archive.

RPMTAG_FILERDEVS

 This tag specifies the device number from which the file was copied.

RPMTAG_FILEMTIMES

 This tag specifies the modification time in seconds since the epoch of each
file in the archive.

RPMTAG_FILEMD5S

 This tag specifies the ASCII representation of the MD5 sum of the
corresponding file contents. This value is empty if the corresponding
archive entry is not a regular file.

RPMTAG_FILELINKTOS

 The target for a symlink, otherwise NULL.

RPMTAG_FILEFLAGS

 This tag specifies the bit(s) to classify and control how files are to be
installed. See below.

RPMTAG_FILEUSERNAME

 This tag specifies the owner of the corresponding file.

RPMTAG_FILEGROUPNAME

 This tag specifies the group of the corresponding file.

RPMTAG_FILEDEVICES

 This tag specifies the 16 bit device number from which the file was copied.

RPMTAG_FILEINODES

 This tag specifies the inode value from the original file system on the the
system on which it was built.

RPMTAG_FILELANGS

 This tag specifies a per-file locale marker used to install only locale specific
subsets of files when the package is installed.

 © 2007 Linux Foundation 473

22 Software Installation ISO/IEC 23360 Part 1:2007(E)

RPMTAG_DIRINDEXES

 This tag specifies the index into the array provided by the
RPMTAG_DIRNAMES Index which contains the directory name for the
corresponding filename.

RPMTAG_BASENAMES

 This tag specifies the base portion of the corresponding filename.

RPMTAG_DIRNAMES

One of RPMTAG_OLDFILENAMES or the tuple
RPMTAG_DIRINDEXES,RPMTAG_BASENAMES,RPMTAG_DIRNAMES shall be present,
but not both.

22.2.4.3.1 File Flags

The RPMTAG_FILEFLAGS tag value shall identify various characteristics of the file
in the payload that it describes. It shall be an INT32 value consisting of either
the value RPMFILE_NONE (0) or the bitwise inclusive or of one or more of the
following values:

Table 22-11 File Flags

Name Value

RPMFILE_CONFIG (1 << 0)

RPMFILE_DOC (1 << 1)

RPMFILE_DONOTUSE (1 << 2)

RPMFILE_MISSINGOK (1 << 3)

RPMFILE_NOREPLACE (1 << 4)

RPMFILE_SPECFILE (1 << 5)

RPMFILE_GHOST (1 << 6)

RPMFILE_LICENSE (1 << 7)

RPMFILE_README (1 << 8)

RPMFILE_EXCLUDE (1 << 9)
These bits have the following meaning:

RPMFILE_CONFIG

 The file is a configuration file, and an existing file should be saved during a
package upgrade operation and not removed during a pakage removal
operation.

RPMFILE_DOC

 The file contains documentation.

RPMFILE_DONOTUSE

 This value is reserved for future use; conforming packages may not use this
flag.

474 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 22 Software Installation

RPMFILE_MISSINGOK

 The file need not exist on the installed system.

RPMFILE_NOREPLACE

 Similar to the RPMFILE_CONFIG, this flag indicates that during an upgrade
operation the original file on the system should not be altered.

RPMFILE_SPECFILE

 The file is a package specification.

RPMFILE_GHOST

 The file is not actually included in the payload, but should still be
considered as a part of the package. For example, a log file generated by the
application at run time.

RPMFILE_LICENSE

 The file contains the license conditions.

RPMFILE_README

 The file contains high level notes about the package.

RPMFILE_EXCLUDE

 The corresponding file is not a part of the package, and should not be
installed.

22.2.4.4 Dependency Information
The following tag values are used to provide information about
interdependencies between packages.

Table 22-12 Package Dependency Tag Values

Name Tag Value Type Count Status

RPMTAG_PROV
IDENAME

1047 STRING_AR
RAY

1 Required

RPMTAG_REQU
IREFLAGS

1048 INT32
 Required

RPMTAG_REQU
IRENAME

1049 STRING_AR
RAY

 Required

RPMTAG_REQU
IREVERSION

1050 STRING_AR
RAY

 Required

RPMTAG_CONF
LICTFLAGS

1053 INT32
 Optional

RPMTAG_CONF
LICTNAME

1054 STRING_AR
RAY

 Optional

RPMTAG_CONF
LICTVERSION

1055 STRING_AR
RAY

 Optional

RPMTAG_OBSO
LETENAME

1090 STRING_AR
RAY

 Optional

RPMTAG_PROV 1112 INT32
 Required

 © 2007 Linux Foundation 475

22 Software Installation ISO/IEC 23360 Part 1:2007(E)

Name Tag Value Type Count Status
IDEFLAGS

RPMTAG_PROV
IDEVERSION

1113 STRING_AR
RAY

 Required

RPMTAG_OBSO
LETEFLAGS

1114 INT32 1 Optional

RPMTAG_OBSO
LETEVERSION

1115 STRING_AR
RAY

 Optional

RPMTAG_PROVIDENAME

 This tag indicates the name of the dependency provided by this package.

RPMTAG_REQUIREFLAGS

 Bits(s) to specify the dependency range and context.

RPMTAG_REQUIRENAME

 This tag indicates the dependencies for this package.

RPMTAG_REQUIREVERSION

 This tag indicates the versions associated with the values found in the
RPMTAG_REQUIRENAME Index.

RPMTAG_CONFLICTFLAGS

 Bits(s) to specify the conflict range and context.

RPMTAG_CONFLICTNAME

 This tag indicates the conflicting dependencies for this package.

RPMTAG_CONFLICTVERSION

 This tag indicates the versions associated with the values found in the
RPMTAG_CONFLICTNAME Index.

RPMTAG_OBSOLETENAME

 This tag indicates the obsoleted dependencies for this package.

RPMTAG_PROVIDEFLAGS

 Bits(s) to specify the conflict range and context.

RPMTAG_PROVIDEVERSION

 This tag indicates the versions associated with the values found in the
RPMTAG_PROVIDENAME Index.

RPMTAG_OBSOLETEFLAGS

 Bits(s) to specify the conflict range and context.

RPMTAG_OBSOLETEVERSION

 This tag indicates the versions associated with the values found in the
RPMTAG_OBSOLETENAME Index.

476 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 22 Software Installation

22.2.4.4.1 Package Dependency Values

The package dependencies are stored in the RPMTAG_REQUIRENAME and
RPMTAG_REQUIREVERSION index records. The following values may be used.

Table 22-13 Index Type values

Name Version Meaning Status

rpmlib(Versione
dDependencies)

3.0.3-1 Indicates that the
package contains
RPMTAG_PROVIDE
NAME,
RPMTAG_OBSOLET
ENAME or
RPMTAG_PREREQ
records that have
a version
associated with
them.

Optional

rpmlib(PayloadF
ilesHavePrefix)

4.0-1 Indicates the
filenames in the
Archive have
had "."
prepended to
them.

Optional

rpmlib(Compres
sedFileNames)

3.0.4-1 Indicates that the
filenames in the
Payload are
represented in
the
RPMTAG_DIRINDE
XES,
RPMTAG_DIRNAME
and
RPMTAG_BASENAM
ES indexes.

Optional

/bin/sh
 Interpreter

usually required
for installation
scripts.

Optional

Additional dependencies are specified in the Package Dependencies section of
this specification, and in the relevant architecture specific part of ISO/IEC
23360.

22.2.4.4.2 Package Dependencies Attributes

The package dependency attributes are stored in the RPMTAG_REQUIREFLAGS,
RPMTAG_PROVIDEFLAGS and RPMTAG_OBSOLETEFLAGS index records. The
following values may be used.

Table 22-14 Package Dependency Attributes

Name Value Meaning

 © 2007 Linux Foundation 477

22 Software Installation ISO/IEC 23360 Part 1:2007(E)

Name Value Meaning

RPMSENSE_LESS 0x02

RPMSENSE_GREATER 0x04

RPMSENSE_EQUAL 0x08

RPMSENSE_PREREQ 0x40

RPMSENSE_INTERP 0x100

RPMSENSE_SCRIPT_PRE 0x200

RPMSENSE_SCRIPT_POS
T

0x400

RPMSENSE_SCRIPT_PRE
UN

0x800

RPMSENSE_SCRIPT_POS
TUN

0x1000

RPMSENSE_RPMLIB 0x1000000

22.2.4.5 Other Information
The following tag values are also found in the Header section.

Table 22-15 Other Tag Values

Name Tag Value Type Count Status

RPMTAG_BUIL
DTIME

1006 INT32 1 Informationa
l

RPMTAG_BUIL
DHOST

1007 STRING 1 Informationa
l

RPMTAG_FILE
VERIFYFLAGS

1045 INT32
 Optional

RPMTAG_CHAN
GELOGTIME

1080 INT32
 Optional

RPMTAG_CHAN
GELOGNAME

1081 STRING_AR
RAY

 Optional

RPMTAG_CHAN
GELOGTEXT

1082 STRING_AR
RAY

 Optional

RPMTAG_OPTF
LAGS

1122 STRING 1 Informationa
l

RPMTAG_RHNP
LATFORM

1131 STRING 1 Deprecated

RPMTAG_PLAT
FORM

1132 STRING 1 Informationa
l

RPMTAG_BUILDTIME

 This tag specifies the time as seconds since the epoch at which the package
was built.

478 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 22 Software Installation

RPMTAG_BUILDHOST

 This tag specifies the hostname of the system on which which the package
was built.

RPMTAG_FILEVERIFYFLAGS

 This tag specifies the bit(s) to control how files are to be verified after
install, specifying which checks should be performed.

RPMTAG_CHANGELOGTIME

 This tag specifies the Unix time in seconds since the epoch associated with
each entry in the Changelog file.

RPMTAG_CHANGELOGNAME

 This tag specifies the name of who made a change to this package.

RPMTAG_CHANGELOGTEXT

 This tag specifies the changes asssociated with a changelog entry.

RPMTAG_OPTFLAGS

 This tag indicates additional flags which may have been passed to the
compiler when building this package.

RPMTAG_RHNPLATFORM

 This tag contains an opaque string whose contents are undefined.

RPMTAG_PLATFORM

 This tag contains an opaque string whose contents are undefined.

22.2.5 Payload Section
The Payload section contains a compressed cpio archive. The format of this
section is defined by RFC 1952: GZIP File Format Specification.

When uncompressed, the cpio archive contains a sequence of records for each
file. Each record contains a CPIO Header, Filename, Padding, and File Data.

Table 22-16 CPIO File Format

CPIO Header Header structure as defined below.

Filename NUL terminated ASCII string
containing the name of the file.

Padding 0-3 bytes as needed to align the file
stream to a 4 byte boundary.

File data The contents of the file.

Padding 0-3 bytes as needed to align the file
stream to a 4 byte boundary.

The CPIO Header uses the following header structure (sometimes referred to as
"new ASCII" or "SVR4 cpio"). All numbers are stored as ASCII representations
of their hexadecimal value with leading zeros as needed to fill the field. With
the exception of c_namesize and the corresponding name string, and
c_checksum, all information contained in the CPIO Header is also represented

 © 2007 Linux Foundation 479

22 Software Installation ISO/IEC 23360 Part 1:2007(E)

in the Header Section. The values in the CPIO Header shall match the values
contained in the Header Section.

struct {
 char c_magic[6];
 char c_ino[8];
 char c_mode[8];
 char c_uid[8];
 char c_gid[8];
 char c_nlink[8];
 char c_mtime[8];
 char c_filesize[8];
 char c_devmajor[8];
 char c_devminor[8];
 char c_rdevmajor[8];
 char c_rdevminor[8];
 char c_namesize[8];
 char c_checksum[8];
 };

c_magic

 Value identifying this cpio format. This value shall be "070701".

c_ino

 This field contains the inode number from the filesystem from which the
file was read. This field is ignored when installing a package. This field
shall match the corresponding value in the RPMTAG_FILEINODES index in
the Header section.

c_mode

 Permission bits of the file. This is an ascii representation of the hexadecimal
number representing the bit as defined for the st_mode field of the stat
structure defined for the stat function. This field shall match the
corresponding value in the RPMTAG_FILEMODES index in the Header section.

c_uid

 Value identifying this owner of this file. This value matches the uid value
of the corresponding user in the RPMTAG_FILEUSERNAME as found on
the system where this package was built. The username specified in
RPMTAG_FILEUSERNAME should take precedence when installing the
package.

c_gid

 Value identifying this group of this file. This value matches the gid value of
the corresponding user in the RPMTAG_FILEGROUPNAME as found on
the system where this package was built. The groupname specified in
RPMTAG_FILEGROUPNAME should take precedence when installing the
package.

c_nlink

 Value identifying the number of links associated with this file. If the value
is greater than 1, then this filename will be linked to 1 or more files in this
archive that has a matching value for the c_ino, c_devmajor and
c_devminor fields.

480 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 22 Software Installation

c_mtime

 Value identifying the modification time of the file when it was read. This
field shall match the corresponding value in the RPMTAG_FILEMTIMES index
in the Header section.

c_filesize

 Value identifying the size of the file. This field shall match the
corresponding value in the RPMTAG_FILESIZES index in the Header section.

c_devmajor

 The major number of the device containing the file system from which the
file was read. With the exception of processing files with c_nlink >1, this
field is ignored when installing a package. This field shall match the
corresponding value in the RPMTAG_FILEDEVICES index in the Header
section.

c_devminor

 The minor number of the device containing the file system from which the
file was read. With the exception of processing files with c_nlink >1, this
field is ignored when installing a package. This field shall match the
corresponding value in the RPMTAG_FILEDEVICES index in the Header
section.

c_rdevmajor

 The major number of the raw device containing the file system from which
the file was read. This field is ignored when installing a package. This field
shall match the corresponding value in the RPMTAG_RDEVS index in the
Header section.

c_rdevminor

 The minor number of the raw device containing the file system from which
the file was read. This field is ignored when installing a package. This field
shall match the corresponding value in the RPMTAG_RDEVS index in the
Header section.

c_namesize

 Value identifying the length of the filename, which is located immediately
following the CPIO Header structure.

c_checksum

 Value containing the CRC checksum of the file data. This field is not used,
and shall contain the value "00000000". This field is ignored when installing
a package.

A record with the filename "TRAILER!!!" indicates the last record in the archive.

22.3 Package Script Restrictions
Scripts used as part of the package install and uninstall shall only use
commands and interfaces that are specified by the LSB. All other commands are
not guaranteed to be present, or to behave in expected ways.

Packages shall not use RPM triggers.

Packages shall not depend on the order in which scripts are executed (pre-
install, pre-uninstall, etc), when doing an upgrade.

 © 2007 Linux Foundation 481

22 Software Installation ISO/IEC 23360 Part 1:2007(E)

22.4 Package Tools
The LSB does not specify the interface to the tools used to manipulate LSB-
conformant packages. Each conforming implementation shall provide
documentation for installing LSB packages.

22.5 Package Naming
Packages supplied by implementations and applications shall follow the
following rules for the name field within the package. These rules are not
required for the filename of the package file itself.

Note: There are discrepancies among implementations concerning whether the
name might be frobnicator-1.7-21-ppc32.rpm or frobnicator-1.7-21-
powerpc32.rpm. The architecture aside, recommended practice is for the filename of
the package file to match the name within the package.

The following rules apply to the name field alone, not including any release or
version.

Note: If the name with the release and version is frobnicator-1.7-21, the name
part is frobnicator and falls under the rules for a name with no hyphens.

• If the name begins with lsb- and contains no other hyphens, the name shall
be assigned by the Linux Assigned Names and Numbers Authority
(http://www.lanana.org) (LANANA), which shall maintain a registry of LSB
names. The name may be registered by either an implementation or an
application.

• If the package name begins with lsb- and contains more than one hyphen
(for example lsb-distro.example.com-database or lsb-gnome-gnumeric),
then the portion of the package name between first and second hyphens shall
either be an LSB provider name assigned by the LANANA, or it may be one
of the owners' fully-qualified domain names in lower case (e.g., debian.org,
staroffice.sun.com). The LSB provider name assigned by LANANA shall
only consist of the ASCII characters [a-z0-9]. The provider name or domain
name may be either that of an implementation or an application.

• Package names containing no hyphens are reserved for use by
implementations. Applications shall not use such names.

• Package names which do not start with lsb- and which contain a hyphen are
open to both implementations and applications. Implementations may name
packages in any part of this namespace. They are encouraged to use names
from one of the other namespaces available to them, but this is not required
due to the large amount of current practice to the contrary.

Note: Widespread existing practice includes such names as ssh-common, ssh-
client, kernel-pcmcia, and the like. Possible alternative names include
sshcommon, foolinux-ssh-common (where foolinux is registered to the
implementation), or lsb-foolinux-ssh-common.

Applications may name their packages this way, but only if the portion of the
name before the first hyphen is a provider name or registered domain name
as described above.

Note: If an application vendor has domain name such as visicalc.example.com
and has registered visicalc as a provider name, they might name packages
visicalc-base, visicalc.example.com-charting, and the like.

482 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E) 22 Software Installation

Package names in this namespace are available to both the implementation and an
application. Implementations and applications will need to consider this
potential for conflicts when deciding to use these names rather than the
alternatives (such as names starting with lsb-).

22.6 Package Dependencies
Packages shall have a dependency that indicates which LSB modules are
required. LSB module descriptions are dash seperated tuples containing the
name 'lsb', the module name, and the architecture name. The following
dependencies may be used.

lsb-core-arch

 This dependency is used to indicate that the application is dependent on
features contained in the LSB-Core specification.

lsb-core-noarch

 This dependency is used to indicate that the application is dependent on
features contained in the LSB-Core specification and that the package does
not contain any architecture specific files.

These dependencies shall have a version of 3.0.

Packages shall not depend on other system-provided dependencies. They shall
not depend on non-system-provided dependencies unless the package provider
also makes available the LSB conforming packages needed to satisfy such
dependencies.

Other modules in the LSB may supplement this list. The architecture specific
dependencies are described in the relevant architecture specific LSB.

22.7 Package Architecture Considerations
Packages which do not contain any architecture specific files should specify an
architecture of noarch. An LSB runtime environment shall accept values
noarch, or the value specified in the relevant architecture specific part of
ISO/IEC 23360.

Additional specifications or restrictions may be found in the architecture
specific LSB specification.

 © 2007 Linux Foundation 483

 ISO/IEC 23360 Part 1:2007(E)

Annex A Alphabetical Listing of Interfaces

A.1 libc
The behavior of the interfaces in this library is specified by the following Stan-
dards.

Large File Support [LFS]
This Specification [LSB]
SUSv2 [SUSv2]
ISO POSIX (2003) [SUSv3]
SVID Issue 3 [SVID.3]
SVID Issue 4 [SVID.4]

Table A-1 libc Function Interfaces

_Exit[SUSv3] getrusage[SUSv3] setsockopt[LSB]

_IO_feof[LSB] getservbyname[SUSv3] setstate[SUSv3]

_IO_getc[LSB] getservbyport[SUSv3] setuid[SUSv3]

_IO_putc[LSB] getservent[SUSv3] setutent[LSB]

_IO_puts[LSB] getsid[SUSv3] setutxent[SUSv3]

__assert_fail[LSB] getsockname[SUSv3] setvbuf[SUSv3]

__ctype_b_loc(GLIBC_2
.3)[LSB]

getsockopt[LSB] shmat[SUSv3]

__ctype_get_mb_cur_m
ax[LSB]

getsubopt[SUSv3] shmctl[SUSv3]

__ctype_tolower_loc(G
LIBC_2.3)[LSB]

gettext[LSB] shmdt[SUSv3]

__ctype_toupper_loc(G
LIBC_2.3)[LSB]

gettimeofday[SUSv3] shmget[SUSv3]

__cxa_atexit[LSB] getuid[SUSv3] shutdown[SUSv3]

__cxa_finalize[LSB] getutent[LSB] sigaction[SUSv3]

__errno_location[LSB] getutent_r[LSB] sigaddset[SUSv3]

__fpending[LSB] getutxent[SUSv3] sigaltstack[SUSv3]

__fxstat[LSB] getutxid[SUSv3] sigandset[LSB]

__fxstat64[LSB] getutxline[SUSv3] sigdelset[SUSv3]

__getpagesize[LSB] getw[SUSv2] sigemptyset[SUSv3]

__getpgid[LSB] getwc[SUSv3] sigfillset[SUSv3]

__h_errno_location[LSB
]

getwchar[SUSv3] sighold[SUSv3]

__isinf[LSB] getwd[SUSv3] sigignore[SUSv3]

__isinff[LSB] glob[SUSv3] siginterrupt[SUSv3]

 © 2007 Linux Foundation 484

 ISO/IEC 23360 Part 1:2007(E)Annex A Alphabetical Listing of Interfaces

__isinfl[LSB] glob64[LSB] sigisemptyset[LSB]

__isnan[LSB] globfree[SUSv3] sigismember[SUSv3]

__isnanf[LSB] globfree64[LSB] siglongjmp[SUSv3]

__isnanl[LSB] gmtime[SUSv3] signal[SUSv3]

__libc_current_sigrtmax
[LSB]

gmtime_r[SUSv3] sigorset[LSB]

__libc_current_sigrtmin
[LSB]

grantpt[SUSv3] sigpause[LSB]

__libc_start_main[LSB] hcreate[SUSv3] sigpending[SUSv3]

__lxstat[LSB] hdestroy[SUSv3] sigprocmask[SUSv3]

__lxstat64[LSB] hsearch[SUSv3] sigqueue[SUSv3]

__mempcpy[LSB] htonl[SUSv3] sigrelse[SUSv3]

__rawmemchr[LSB] htons[SUSv3] sigreturn[LSB]

__register_atfork(GLIB
C_2.3.2)[LSB]

iconv[SUSv3] sigset[SUSv3]

__sigsetjmp[LSB] iconv_close[SUSv3] sigsuspend[SUSv3]

__stpcpy[LSB] iconv_open[SUSv3] sigtimedwait[SUSv3]

__strdup[LSB] if_freenameindex[SUSv
3]

sigwait[SUSv3]

__strtod_internal[LSB] if_indextoname[SUSv3] sigwaitinfo[SUSv3]

__strtof_internal[LSB] if_nameindex[SUSv3] sleep[SUSv3]

__strtok_r[LSB] if_nametoindex[SUSv3] snprintf[SUSv3]

__strtol_internal[LSB] imaxabs[SUSv3] sockatmark[SUSv3]

__strtold_internal[LSB] imaxdiv[SUSv3] socket[SUSv3]

__strtoll_internal[LSB] index[SUSv3] socketpair[SUSv3]

__strtoul_internal[LSB] inet_addr[SUSv3] sprintf[SUSv3]

__strtoull_internal[LSB] inet_aton[LSB] srand[SUSv3]

__sysconf[LSB] inet_ntoa[SUSv3] srand48[SUSv3]

__sysv_signal[LSB] inet_ntop[SUSv3] srandom[SUSv3]

__wcstod_internal[LSB] inet_pton[SUSv3] sscanf[LSB]

__wcstof_internal[LSB] initgroups[LSB] statfs[LSB]

__wcstol_internal[LSB] initstate[SUSv3] statfs64[LSB]

__wcstold_internal[LSB
]

insque[SUSv3] statvfs[SUSv3]

__wcstoul_internal[LSB
]

ioctl[LSB] statvfs64[LFS]

__xmknod[LSB] isalnum[SUSv3] stime[LSB]

 © 2007 Linux Foundation 485

Annex A Alphabetical Listing of InterfacesISO/IEC 23360 Part 1:2007(E)

__xpg_basename[LSB] isalpha[SUSv3] stpcpy[LSB]

__xpg_sigpause[LSB] isascii[SUSv3] stpncpy[LSB]

__xpg_strerror_r(GLIB
C_2.3.4)[LSB]

isatty[SUSv3] strcasecmp[SUSv3]

__xstat[LSB] isblank[SUSv3] strcasestr[LSB]

__xstat64[LSB] iscntrl[SUSv3] strcat[SUSv3]

_exit[SUSv3] isdigit[SUSv3] strchr[SUSv3]

_longjmp[SUSv3] isgraph[SUSv3] strcmp[SUSv3]

_setjmp[SUSv3] islower[SUSv3] strcoll[SUSv3]

_tolower[SUSv3] isprint[SUSv3] strcpy[SUSv3]

_toupper[SUSv3] ispunct[SUSv3] strcspn[SUSv3]

a64l[SUSv3] isspace[SUSv3] strdup[SUSv3]

abort[SUSv3] isupper[SUSv3] strerror[SUSv3]

abs[SUSv3] iswalnum[SUSv3] strerror_r[LSB]

accept[SUSv3] iswalpha[SUSv3] strfmon[SUSv3]

access[SUSv3] iswblank[SUSv3] strftime[SUSv3]

acct[LSB] iswcntrl[SUSv3] strlen[SUSv3]

adjtime[LSB] iswctype[SUSv3] strncasecmp[SUSv3]

alarm[SUSv3] iswdigit[SUSv3] strncat[SUSv3]

asctime[SUSv3] iswgraph[SUSv3] strncmp[SUSv3]

asctime_r[SUSv3] iswlower[SUSv3] strncpy[SUSv3]

asprintf[LSB] iswprint[SUSv3] strndup[LSB]

atof[SUSv3] iswpunct[SUSv3] strnlen[LSB]

atoi[SUSv3] iswspace[SUSv3] strpbrk[SUSv3]

atol[SUSv3] iswupper[SUSv3] strptime[LSB]

atoll[SUSv3] iswxdigit[SUSv3] strrchr[SUSv3]

authnone_create[SVID.
4]

isxdigit[SUSv3] strsep[LSB]

basename[LSB] jrand48[SUSv3] strsignal[LSB]

bcmp[SUSv3] key_decryptsession[SVI
D.3]

strspn[SUSv3]

bcopy[SUSv3] kill[LSB] strstr[SUSv3]

bind[SUSv3] killpg[SUSv3] strtod[SUSv3]

bind_textdomain_codes
et[LSB]

l64a[SUSv3] strtof[SUSv3]

bindresvport[LSB] labs[SUSv3] strtoimax[SUSv3]

486 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E)Annex A Alphabetical Listing of Interfaces

bindtextdomain[LSB] lchown[SUSv3] strtok[SUSv3]

brk[SUSv2] lcong48[SUSv3] strtok_r[SUSv3]

bsd_signal[SUSv3] ldiv[SUSv3] strtol[SUSv3]

bsearch[SUSv3] lfind[SUSv3] strtold[SUSv3]

btowc[SUSv3] link[LSB] strtoll[SUSv3]

bzero[SUSv3] listen[SUSv3] strtoq[LSB]

calloc[SUSv3] llabs[SUSv3] strtoul[SUSv3]

catclose[SUSv3] lldiv[SUSv3] strtoull[SUSv3]

catgets[SUSv3] localeconv[SUSv3] strtoumax[SUSv3]

catopen[SUSv3] localtime[SUSv3] strtouq[LSB]

cfgetispeed[SUSv3] localtime_r[SUSv3] strxfrm[SUSv3]

cfgetospeed[SUSv3] lockf[SUSv3] svc_getreqset[SVID.3]

cfmakeraw[LSB] lockf64[LFS] svc_register[LSB]

cfsetispeed[SUSv3] longjmp[SUSv3] svc_run[LSB]

cfsetospeed[SUSv3] lrand48[SUSv3] svc_sendreply[LSB]

cfsetspeed[LSB] lsearch[SUSv3] svcerr_auth[SVID.3]

chdir[SUSv3] lseek[SUSv3] svcerr_decode[SVID.3]

chmod[SUSv3] makecontext[SUSv3] svcerr_noproc[SVID.3]

chown[SUSv3] malloc[SUSv3] svcerr_noprog[SVID.3]

chroot[SUSv2] mblen[SUSv3] svcerr_progvers[SVID.3
]

clearerr[SUSv3] mbrlen[SUSv3] svcerr_systemerr[SVID.
3]

clnt_create[SVID.4] mbrtowc[SUSv3] svcerr_weakauth[SVID.
3]

clnt_pcreateerror[SVID.
4]

mbsinit[SUSv3] svctcp_create[LSB]

clnt_perrno[SVID.4] mbsnrtowcs[LSB] svcudp_create[LSB]

clnt_perror[SVID.4] mbsrtowcs[SUSv3] swab[SUSv3]

clnt_spcreateerror[SVID
.4]

mbstowcs[SUSv3] swapcontext[SUSv3]

clnt_sperrno[SVID.4] mbtowc[SUSv3] swprintf[SUSv3]

clnt_sperror[SVID.4] memccpy[SUSv3] swscanf[LSB]

clock[SUSv3] memchr[SUSv3] symlink[SUSv3]

close[SUSv3] memcmp[SUSv3] sync[SUSv3]

closedir[SUSv3] memcpy[SUSv3] sysconf[LSB]

 © 2007 Linux Foundation 487

Annex A Alphabetical Listing of InterfacesISO/IEC 23360 Part 1:2007(E)

closelog[SUSv3] memmem[LSB] syslog[SUSv3]

confstr[SUSv3] memmove[SUSv3] system[LSB]

connect[SUSv3] memrchr[LSB] tcdrain[SUSv3]

creat[SUSv3] memset[SUSv3] tcflow[SUSv3]

creat64[LFS] mkdir[SUSv3] tcflush[SUSv3]

ctermid[SUSv3] mkfifo[SUSv3] tcgetattr[SUSv3]

ctime[SUSv3] mkstemp[SUSv3] tcgetpgrp[SUSv3]

ctime_r[SUSv3] mkstemp64[LFS] tcgetsid[SUSv3]

cuserid[SUSv2] mktemp[SUSv3] tcsendbreak[SUSv3]

daemon[LSB] mktime[SUSv3] tcsetattr[SUSv3]

dcgettext[LSB] mlock[SUSv3] tcsetpgrp[SUSv3]

dcngettext[LSB] mlockall[SUSv3] tdelete[SUSv3]

dgettext[LSB] mmap[SUSv3] telldir[SUSv3]

difftime[SUSv3] mmap64[LFS] tempnam[SUSv3]

dirname[SUSv3] mprotect[SUSv3] textdomain[LSB]

div[SUSv3] mrand48[SUSv3] tfind[SUSv3]

dngettext[LSB] mremap[LSB] time[SUSv3]

drand48[SUSv3] msgctl[SUSv3] times[SUSv3]

dup[SUSv3] msgget[SUSv3] tmpfile[SUSv3]

dup2[SUSv3] msgrcv[SUSv3] tmpfile64[LFS]

duplocale(GLIBC_2.3)[
LSB]

msgsnd[SUSv3] tmpnam[SUSv3]

ecvt[SUSv3] msync[SUSv3] toascii[SUSv3]

endgrent[SUSv3] munlock[SUSv3] tolower[SUSv3]

endprotoent[SUSv3] munlockall[SUSv3] toupper[SUSv3]

endpwent[SUSv3] munmap[SUSv3] towctrans[SUSv3]

endservent[SUSv3] nanosleep[SUSv3] towlower[SUSv3]

endutent[LSB] newlocale(GLIBC_2.3)[
LSB]

towupper[SUSv3]

endutxent[SUSv3] nftw[SUSv3] truncate[SUSv3]

erand48[SUSv3] nftw64[LFS] truncate64[LFS]

err[LSB] ngettext[LSB] tsearch[SUSv3]

error[LSB] nice[SUSv3] ttyname[SUSv3]

errx[LSB] nl_langinfo[SUSv3] ttyname_r[SUSv3]

execl[SUSv3] nrand48[SUSv3] twalk[SUSv3]

488 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E)Annex A Alphabetical Listing of Interfaces

execle[SUSv3] ntohl[SUSv3] tzset[SUSv3]

execlp[SUSv3] ntohs[SUSv3] ualarm[SUSv3]

execv[SUSv3] open[SUSv3] ulimit[SUSv3]

execve[SUSv3] opendir[SUSv3] umask[SUSv3]

execvp[SUSv3] openlog[SUSv3] uname[SUSv3]

exit[SUSv3] pathconf[SUSv3] ungetc[SUSv3]

fchdir[SUSv3] pause[SUSv3] ungetwc[SUSv3]

fchmod[SUSv3] pclose[SUSv3] unlink[LSB]

fchown[SUSv3] perror[SUSv3] unlockpt[SUSv3]

fclose[SUSv3] pipe[SUSv3] unsetenv[SUSv3]

fcntl[LSB] pmap_getport[LSB] uselocale(GLIBC_2.3)[L
SB]

fcvt[SUSv3] pmap_set[LSB] usleep[SUSv3]

fdatasync[SUSv3] pmap_unset[LSB] utime[SUSv3]

fdopen[SUSv3] poll[SUSv3] utimes[SUSv3]

feof[SUSv3] popen[SUSv3] utmpname[LSB]

ferror[SUSv3] posix_fadvise[SUSv3] vasprintf[LSB]

fflush[SUSv3] posix_fadvise64[LSB] vdprintf[LSB]

fflush_unlocked[LSB] posix_fallocate[SUSv3] verrx[LSB]

ffs[SUSv3] posix_fallocate64[LSB] vfork[SUSv3]

fgetc[SUSv3] posix_madvise[SUSv3] vfprintf[SUSv3]

fgetpos[SUSv3] posix_memalign[SUSv3
]

vfscanf[LSB]

fgetpos64[LFS] posix_openpt[SUSv3] vfwprintf[SUSv3]

fgets[SUSv3] posix_spawn[SUSv3] vfwscanf[LSB]

fgetwc[SUSv3] posix_spawn_file_actio
ns_addclose[SUSv3]

vprintf[SUSv3]

fgetwc_unlocked[LSB] posix_spawn_file_actio
ns_adddup2[SUSv3]

vscanf[LSB]

fgetws[SUSv3] posix_spawn_file_actio
ns_addopen[SUSv3]

vsnprintf[SUSv3]

fileno[SUSv3] posix_spawn_file_actio
ns_destroy[SUSv3]

vsprintf[SUSv3]

flock[LSB] posix_spawn_file_actio
ns_init[SUSv3]

vsscanf[LSB]

flockfile[SUSv3] posix_spawnattr_destro
y[SUSv3]

vswprintf[SUSv3]

 © 2007 Linux Foundation 489

Annex A Alphabetical Listing of InterfacesISO/IEC 23360 Part 1:2007(E)

fmtmsg[SUSv3] posix_spawnattr_getfla
gs[SUSv3]

vswscanf[LSB]

fnmatch[SUSv3] posix_spawnattr_getpg
roup[SUSv3]

vsyslog[LSB]

fopen[SUSv3] posix_spawnattr_getsch
edparam[SUSv3]

vwprintf[SUSv3]

fopen64[LFS] posix_spawnattr_getsch
edpolicy[SUSv3]

vwscanf[LSB]

fork[SUSv3] posix_spawnattr_getsig
default[SUSv3]

wait[SUSv3]

fpathconf[SUSv3] posix_spawnattr_getsig
mask[SUSv3]

wait4[LSB]

fprintf[SUSv3] posix_spawnattr_init[S
USv3]

waitid[SUSv3]

fputc[SUSv3] posix_spawnattr_setfla
gs[SUSv3]

waitpid[LSB]

fputs[SUSv3] posix_spawnattr_setpgr
oup[SUSv3]

warn[LSB]

fputwc[SUSv3] posix_spawnattr_setsch
edparam[SUSv3]

warnx[LSB]

fputws[SUSv3] posix_spawnattr_setsch
edpolicy[SUSv3]

wcpcpy[LSB]

fread[SUSv3] posix_spawnattr_setsig
default[SUSv3]

wcpncpy[LSB]

free[SUSv3] posix_spawnattr_setsig
mask[SUSv3]

wcrtomb[SUSv3]

freeaddrinfo[SUSv3] posix_spawnp[SUSv3] wcscasecmp[LSB]

freelocale(GLIBC_2.3)[L
SB]

printf[SUSv3] wcscat[SUSv3]

freopen[SUSv3] pselect[SUSv3] wcschr[SUSv3]

freopen64[LFS] psignal[LSB] wcscmp[SUSv3]

fscanf[LSB] ptsname[SUSv3] wcscoll[SUSv3]

fseek[SUSv3] putc[SUSv3] wcscpy[SUSv3]

fseeko[SUSv3] putc_unlocked[SUSv3] wcscspn[SUSv3]

fseeko64[LFS] putchar[SUSv3] wcsdup[LSB]

fsetpos[SUSv3] putchar_unlocked[SUS
v3]

wcsftime[SUSv3]

fsetpos64[LFS] putenv[SUSv3] wcslen[SUSv3]

fstatfs[LSB] puts[SUSv3] wcsncasecmp[LSB]

fstatfs64[LSB] pututxline[SUSv3] wcsncat[SUSv3]

490 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E)Annex A Alphabetical Listing of Interfaces

fstatvfs[SUSv3] putw[SUSv2] wcsncmp[SUSv3]

fstatvfs64[LFS] putwc[SUSv3] wcsncpy[SUSv3]

fsync[SUSv3] putwchar[SUSv3] wcsnlen[LSB]

ftell[SUSv3] qsort[SUSv3] wcsnrtombs[LSB]

ftello[SUSv3] raise[SUSv3] wcspbrk[SUSv3]

ftello64[LFS] rand[SUSv3] wcsrchr[SUSv3]

ftime[SUSv3] rand_r[SUSv3] wcsrtombs[SUSv3]

ftok[SUSv3] random[SUSv3] wcsspn[SUSv3]

ftruncate[SUSv3] read[SUSv3] wcsstr[SUSv3]

ftruncate64[LFS] readdir[SUSv3] wcstod[SUSv3]

ftrylockfile[SUSv3] readdir64[LFS] wcstof[SUSv3]

ftw[SUSv3] readdir64_r[LSB] wcstoimax[SUSv3]

ftw64[LFS] readdir_r[SUSv3] wcstok[SUSv3]

funlockfile[SUSv3] readlink[SUSv3] wcstol[SUSv3]

fwide[SUSv3] readv[SUSv3] wcstold[SUSv3]

fwprintf[SUSv3] realloc[SUSv3] wcstoll[SUSv3]

fwrite[SUSv3] realpath[SUSv3] wcstombs[SUSv3]

fwscanf[LSB] recv[SUSv3] wcstoq[LSB]

gai_strerror[SUSv3] recvfrom[SUSv3] wcstoul[SUSv3]

gcvt[SUSv3] recvmsg[SUSv3] wcstoull[SUSv3]

getaddrinfo[SUSv3] regcomp[SUSv3] wcstoumax[SUSv3]

getc[SUSv3] wcstouq[LSB]regerror[SUSv3]

getc_unlocked[SUSv3] wcswcs[SUSv3]regexec[LSB]

getchar[SUSv3] wcswidth[SUSv3]regfree[SUSv3]

getchar_unlocked[SUSv
3]

remove[SUSv3] wcsxfrm[SUSv3]

getcontext[SUSv3] wctob[SUSv3]remque[SUSv3]

getcwd[SUSv3] wctomb[SUSv3]rename[SUSv3]

getdate[SUSv3] wctrans[SUSv3]rewind[SUSv3]

getdomainname[LSB] wctype[SUSv3]rewinddir[SUSv3]

getdtablesize[LSB] wcwidth[SUSv3]rindex[SUSv3]

getegid[SUSv3] wmemchr[SUSv3]rmdir[SUSv3]

getenv[SUSv3] wmemcmp[SUSv3]sbrk[SUSv2]

geteuid[SUSv3] wmemcpy[SUSv3]scanf[LSB]

getgid[SUSv3] wmemmove[SUSv3]sched_get_priority_max

 © 2007 Linux Foundation 491

Annex A Alphabetical Listing of InterfacesISO/IEC 23360 Part 1:2007(E)

[SUSv3]

getgrent[SUSv3] sched_get_priority_min
[SUSv3]

wmemset[SUSv3]

getgrgid[SUSv3] wordexp[SUSv3]sched_getparam[SUSv3
]

getgrgid_r[SUSv3] wordfree[SUSv3]sched_getscheduler[SU
Sv3]

getgrnam[SUSv3] wprintf[SUSv3]sched_rr_get_interval[S
USv3]

getgrnam_r[SUSv3] write[SUSv3]sched_setparam[SUSv3]

getgrouplist[LSB] writev[SUSv3]sched_setscheduler[LSB
]

getgroups[SUSv3] wscanf[LSB]sched_yield[SUSv3]

gethostbyaddr[SUSv3] xdr_accepted_reply[SVI
D.3]

seed48[SUSv3]

gethostbyaddr_r[LSB] xdr_array[SVID.3]seekdir[SUSv3]

gethostbyname[SUSv3] xdr_bool[SVID.3]select[SUSv3]

gethostbyname2[LSB] xdr_bytes[SVID.3]semctl[SUSv3]

gethostbyname2_r[LSB] xdr_callhdr[SVID.3]semget[SUSv3]

gethostbyname_r[LSB] xdr_callmsg[SVID.3]semop[SUSv3]

gethostid[SUSv3] xdr_char[SVID.3]send[SUSv3]

gethostname[SUSv3] xdr_double[SVID.3]sendmsg[SUSv3]

getitimer[SUSv3] xdr_enum[SVID.3]sendto[SUSv3]

getloadavg[LSB] xdr_float[SVID.3]setbuf[SUSv3]

getlogin[SUSv3] xdr_free[SVID.3]setbuffer[LSB]

getlogin_r[SUSv3] xdr_int[SVID.3]setcontext[SUSv3]

getnameinfo[SUSv3] xdr_long[SVID.3]setegid[SUSv3]

getopt[LSB] xdr_opaque[SVID.3]setenv[SUSv3]

getopt_long[LSB] xdr_opaque_auth[SVID
.3]

seteuid[SUSv3]

getopt_long_only[LSB] xdr_pointer[SVID.3]setgid[SUSv3]

getpagesize[LSB] setgrent[SUSv3] xdr_reference[SVID.3]

getpeername[SUSv3] setgroups[LSB] xdr_rejected_reply[SVI
D.3]

getpgid[SUSv3] xdr_replymsg[SVID.3]sethostname[LSB]

getpgrp[SUSv3] setitimer[SUSv3] xdr_short[SVID.3]

getpid[SUSv3] setlocale[SUSv3] xdr_string[SVID.3]

492 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E)Annex A Alphabetical Listing of Interfaces

getppid[SUSv3] xdr_u_char[SVID.3]setlogmask[SUSv3]

getpriority[SUSv3] setpgid[SUSv3] xdr_u_int[LSB]

getprotobyname[SUSv3
]

setpgrp[SUSv3] xdr_u_long[SVID.3]

getprotobynumber[SUS
v3]

xdr_u_short[SVID.3]setpriority[SUSv3]

getprotoent[SUSv3] setprotoent[SUSv3] xdr_union[SVID.3]

getpwent[SUSv3] xdr_vector[SVID.3]setpwent[SUSv3]

getpwnam[SUSv3] setregid[SUSv3] xdr_void[SVID.3]

getpwnam_r[SUSv3] setreuid[SUSv3] xdr_wrapstring[SVID.3]

getpwuid[SUSv3] setrlimit[SUSv3] xdrmem_create[SVID.3]

getpwuid_r[SUSv3] setrlimit64[LFS] xdrrec_create[SVID.3]

getrlimit[SUSv3] setservent[SUSv3] xdrrec_eof[SVID.3]

getrlimit64[LFS] setsid[SUSv3] xdrstdio_create[LSB]
Table A-2 libc Data Interfaces

__daylight[LSB] __tzname[LSB] in6addr_loopback[SUS
v3]

_sys_errlist[LSB]
 __environ[LSB]

in6addr_any[SUSv3]
 __timezone[LSB]

A.2 libcrypt
The behavior of the interfaces in this library is specified by the following Stan-
dards.

ISO POSIX (2003) [SUSv3]
Table A-3 libcrypt Function Interfaces

crypt[SUSv3] encrypt[SUSv3] setkey[SUSv3]

A.3 libdl
The behavior of the interfaces in this library is specified by the following Stan-
dards.

This Specification [LSB]
ISO POSIX (2003) [SUSv3]

Table A-4 libdl Function Interfaces

dladdr[LSB] dlerror[SUSv3] dlsym[LSB]

dlopen[LSB]
 dlclose[SUSv3]

 © 2007 Linux Foundation 493

Annex A Alphabetical Listing of InterfacesISO/IEC 23360 Part 1:2007(E)

A.4 libm
The behavior of the interfaces in this library is specified by the following Stan-
dards.

ISO C (1999) [ISOC99]
This Specification [LSB]
ISO POSIX (2003) [SUSv3]
SVID Issue 3 [SVID.3]

Table A-5 libm Function Interfaces

__finite[LSB] csinl[SUSv3] llroundf[SUSv3]

__finitef[LSB] csqrt[SUSv3] llroundl[SUSv3]

__finitel[LSB] csqrtf[SUSv3] log[SUSv3]

__fpclassify[LSB] csqrtl[SUSv3] log10[SUSv3]

__fpclassifyf[LSB] ctan[SUSv3] log10f[SUSv3]

__signbit[LSB] ctanf[SUSv3] log10l[SUSv3]

__signbitf[LSB] ctanh[SUSv3] log1p[SUSv3]

acos[SUSv3] ctanhf[SUSv3] log1pf[SUSv3]

acosf[SUSv3] ctanhl[SUSv3] log1pl[SUSv3]

acosh[SUSv3] ctanl[SUSv3] log2[SUSv3]

acoshf[SUSv3] drem[LSB] log2f[SUSv3]

acoshl[SUSv3] dremf[LSB] log2l[SUSv3]

acosl[SUSv3] dreml[LSB] logb[SUSv3]

asin[SUSv3] erf[SUSv3] logbf[SUSv3]

asinf[SUSv3] erfc[SUSv3] logbl[SUSv3]

asinh[SUSv3] erfcf[SUSv3] logf[SUSv3]

asinhf[SUSv3] erfcl[SUSv3] logl[SUSv3]

asinhl[SUSv3] erff[SUSv3] lrint[SUSv3]

asinl[SUSv3] erfl[SUSv3] lrintf[SUSv3]

atan[SUSv3] exp[SUSv3] lrintl[SUSv3]

atan2[SUSv3] exp10[LSB] lround[SUSv3]

atan2f[SUSv3] exp10f[LSB] lroundf[SUSv3]

atan2l[SUSv3] exp10l[LSB] lroundl[SUSv3]

atanf[SUSv3] exp2[SUSv3] matherr[SVID.3]

atanh[SUSv3] exp2f[SUSv3] modf[SUSv3]

atanhf[SUSv3] expf[SUSv3] modff[SUSv3]

atanhl[SUSv3] expl[SUSv3] modfl[SUSv3]

atanl[SUSv3] expm1[SUSv3] nan[SUSv3]

494 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E)Annex A Alphabetical Listing of Interfaces

cabs[SUSv3] expm1f[SUSv3] nanf[SUSv3]

cabsf[SUSv3] expm1l[SUSv3] nanl[SUSv3]

cabsl[SUSv3] fabs[SUSv3] nearbyint[SUSv3]

cacos[SUSv3] fabsf[SUSv3] nearbyintf[SUSv3]

cacosf[SUSv3] fabsl[SUSv3] nearbyintl[SUSv3]

cacosh[SUSv3] fdim[SUSv3] nextafter[SUSv3]

cacoshf[SUSv3] fdimf[SUSv3] nextafterf[SUSv3]

cacoshl[SUSv3] fdiml[SUSv3] nextafterl[SUSv3]

cacosl[SUSv3] feclearexcept[SUSv3] nexttoward[SUSv3]

carg[SUSv3] fedisableexcept[LSB] nexttowardf[SUSv3]

cargf[SUSv3] feenableexcept[LSB] nexttowardl[SUSv3]

cargl[SUSv3] fegetenv[SUSv3] pow[SUSv3]

casin[SUSv3] fegetexcept[LSB] pow10[LSB]

casinf[SUSv3] fegetexceptflag[SUSv3] pow10f[LSB]

casinh[SUSv3] fegetround[SUSv3] pow10l[LSB]

casinhf[SUSv3] feholdexcept[SUSv3] powf[SUSv3]

casinhl[SUSv3] feraiseexcept[SUSv3] powl[SUSv3]

casinl[SUSv3] fesetenv[SUSv3] remainder[SUSv3]

catan[SUSv3] fesetexceptflag[SUSv3] remainderf[SUSv3]

catanf[SUSv3] fesetround[SUSv3] remainderl[SUSv3]

catanh[SUSv3] fetestexcept[SUSv3] remquo[SUSv3]

catanhf[SUSv3] feupdateenv[SUSv3] remquof[SUSv3]

catanhl[SUSv3] finite[LSB] remquol[SUSv3]

catanl[SUSv3] finitef[LSB] rint[SUSv3]

cbrt[SUSv3] finitel[LSB] rintf[SUSv3]

cbrtf[SUSv3] floor[SUSv3] rintl[SUSv3]

cbrtl[SUSv3] floorf[SUSv3] round[SUSv3]

ccos[SUSv3] floorl[SUSv3] roundf[SUSv3]

ccosf[SUSv3] fma[SUSv3] roundl[SUSv3]

ccosh[SUSv3] fmaf[SUSv3] scalb[SUSv3]

ccoshf[SUSv3] fmal[SUSv3] scalbf[ISOC99]

ccoshl[SUSv3] fmax[SUSv3] scalbl[ISOC99]

ccosl[SUSv3] fmaxf[SUSv3] scalbln[SUSv3]

ceil[SUSv3] fmaxl[SUSv3] scalblnf[SUSv3]

 © 2007 Linux Foundation 495

Annex A Alphabetical Listing of InterfacesISO/IEC 23360 Part 1:2007(E)

ceilf[SUSv3] fmin[SUSv3] scalblnl[SUSv3]

ceill[SUSv3] fminf[SUSv3] scalbn[SUSv3]

cexp[SUSv3] fminl[SUSv3] scalbnf[SUSv3]

cexpf[SUSv3] fmod[SUSv3] scalbnl[SUSv3]

cexpl[SUSv3] fmodf[SUSv3] significand[LSB]

cimag[SUSv3] fmodl[SUSv3] significandf[LSB]

cimagf[SUSv3] frexp[SUSv3] significandl[LSB]

cimagl[SUSv3] frexpf[SUSv3] sin[SUSv3]

clog[SUSv3] frexpl[SUSv3] sincos[LSB]

clog10[LSB] gamma[LSB] sincosf[LSB]

clog10f[LSB] gammaf[LSB] sincosl[LSB]

clog10l[LSB] gammal[LSB] sinf[SUSv3]

clogf[SUSv3] hypot[SUSv3] sinh[SUSv3]

clogl[SUSv3] hypotf[SUSv3] sinhf[SUSv3]

conj[SUSv3] hypotl[SUSv3] sinhl[SUSv3]

conjf[SUSv3] ilogb[SUSv3] sinl[SUSv3]

conjl[SUSv3] ilogbf[SUSv3] sqrt[SUSv3]

copysign[SUSv3] ilogbl[SUSv3] sqrtf[SUSv3]

copysignf[SUSv3] j0[SUSv3] sqrtl[SUSv3]

copysignl[SUSv3] j0f[LSB] tan[SUSv3]

cos[SUSv3] j0l[LSB] tanf[SUSv3]

cosf[SUSv3] j1[SUSv3] tanh[SUSv3]

cosh[SUSv3] j1f[LSB] tanhf[SUSv3]

coshf[SUSv3] j1l[LSB] tanhl[SUSv3]

coshl[SUSv3] jn[SUSv3] tanl[SUSv3]

cosl[SUSv3] jnf[LSB] tgamma[SUSv3]

cpow[SUSv3] jnl[LSB] tgammaf[SUSv3]

cpowf[SUSv3] ldexp[SUSv3] tgammal[SUSv3]

cpowl[SUSv3] ldexpf[SUSv3] trunc[SUSv3]

cproj[SUSv3] ldexpl[SUSv3] truncf[SUSv3]

cprojf[SUSv3] lgamma[SUSv3] truncl[SUSv3]

cprojl[SUSv3] lgamma_r[LSB] y0[SUSv3]

creal[SUSv3] lgammaf[SUSv3] y0f[LSB]

crealf[SUSv3] lgammaf_r[LSB] y0l[LSB]

496 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E)Annex A Alphabetical Listing of Interfaces

creall[SUSv3] lgammal[SUSv3] y1[SUSv3]

csin[SUSv3] lgammal_r[LSB] y1f[LSB]

csinf[SUSv3] llrint[SUSv3] y1l[LSB]

csinh[SUSv3] llrintf[SUSv3] yn[SUSv3]

csinhf[SUSv3] llrintl[SUSv3] ynf[LSB]

csinhl[SUSv3] llround[SUSv3] ynl[LSB]
Table A-6 libm Data Interfaces

signgam[SUSv3]

A.5 libncurses
The behavior of the interfaces in this library is specified by the following Stan-
dards.

X/Open Curses [SUS-CURSES]
Table A-7 libncurses Function Interfaces

addch[SUS-CURSES] mvdelch[SUS-CURSES] slk_refresh[SUS-
CURSES]

addchnstr[SUS-
CURSES]

mvderwin[SUS-
CURSES]

slk_restore[SUS-
CURSES]

addchstr[SUS-CURSES] mvgetch[SUS-CURSES] slk_set[SUS-CURSES]

addnstr[SUS-CURSES] mvgetnstr[SUS-
CURSES]

slk_touch[SUS-
CURSES]

addstr[SUS-CURSES] mvgetstr[SUS-CURSES] standend[SUS-
CURSES]

attr_get[SUS-CURSES] mvhline[SUS-CURSES] standout[SUS-CURSES]

attr_off[SUS-CURSES] mvinch[SUS-CURSES] start_color[SUS-
CURSES]

attr_on[SUS-CURSES] mvinchnstr[SUS-
CURSES]

subpad[SUS-CURSES]

attr_set[SUS-CURSES] mvinchstr[SUS-
CURSES]

subwin[SUS-CURSES]

attroff[SUS-CURSES] mvinnstr[SUS-CURSES] syncok[SUS-CURSES]

attron[SUS-CURSES] mvinsch[SUS-CURSES] termattrs[SUS-CURSES]

attrset[SUS-CURSES] mvinsnstr[SUS-
CURSES]

termname[SUS-
CURSES]

baudrate[SUS-CURSES] mvinsstr[SUS-CURSES] tgetent[SUS-CURSES]

beep[SUS-CURSES] mvinstr[SUS-CURSES] tgetflag[SUS-CURSES]

bkgd[SUS-CURSES] mvprintw[SUS-
CURSES]

tgetnum[SUS-CURSES]

 © 2007 Linux Foundation 497

Annex A Alphabetical Listing of InterfacesISO/IEC 23360 Part 1:2007(E)

bkgdset[SUS-CURSES] mvscanw[SUS-
CURSES]

tgetstr[SUS-CURSES]

border[SUS-CURSES] mvvline[SUS-CURSES] tgoto[SUS-CURSES]

box[SUS-CURSES] mvwaddch[SUS-
CURSES]

tigetflag[SUS-CURSES]

can_change_color[SUS-
CURSES]

mvwaddchnstr[SUS-
CURSES]

tigetnum[SUS-CURSES]

cbreak[SUS-CURSES] mvwaddchstr[SUS-
CURSES]

tigetstr[SUS-CURSES]

chgat[SUS-CURSES] mvwaddnstr[SUS-
CURSES]

timeout[SUS-CURSES]

clear[SUS-CURSES] mvwaddstr[SUS-
CURSES]

touchline[SUS-
CURSES]

clearok[SUS-CURSES] mvwchgat[SUS-
CURSES]

touchwin[SUS-
CURSES]

clrtobot[SUS-CURSES] mvwdelch[SUS-
CURSES]

tparm[SUS-CURSES]

clrtoeol[SUS-CURSES] mvwgetch[SUS-
CURSES]

tputs[SUS-CURSES]

color_content[SUS-
CURSES]

mvwgetnstr[SUS-
CURSES]

typeahead[SUS-
CURSES]

color_set[SUS-CURSES] mvwgetstr[SUS-
CURSES]

unctrl[SUS-CURSES]

copywin[SUS-CURSES] mvwhline[SUS-
CURSES]

ungetch[SUS-CURSES]

curs_set[SUS-CURSES] mvwin[SUS-CURSES] untouchwin[SUS-
CURSES]

def_prog_mode[SUS-
CURSES]

mvwinch[SUS-
CURSES]

use_env[SUS-CURSES]

def_shell_mode[SUS-
CURSES]

mvwinchnstr[SUS-
CURSES]

vidattr[SUS-CURSES]

del_curterm[SUS-
CURSES]

mvwinchstr[SUS-
CURSES]

vidputs[SUS-CURSES]

delay_output[SUS-
CURSES]

mvwinnstr[SUS-
CURSES]

vline[SUS-CURSES]

delch[SUS-CURSES] mvwinsch[SUS-
CURSES]

vw_printw[SUS-
CURSES]

deleteln[SUS-CURSES] mvwinsnstr[SUS-
CURSES]

vw_scanw[SUS-
CURSES]

delscreen[SUS-
CURSES]

mvwinsstr[SUS-
CURSES]

vwprintw[SUS-
CURSES]

delwin[SUS-CURSES] mvwinstr[SUS- vwscanw[SUS-

498 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E)Annex A Alphabetical Listing of Interfaces

CURSES] CURSES]

derwin[SUS-CURSES] mvwprintw[SUS-
CURSES]

waddch[SUS-CURSES]

doupdate[SUS-
CURSES]

mvwscanw[SUS-
CURSES]

waddchnstr[SUS-
CURSES]

dupwin[SUS-CURSES] mvwvline[SUS-
CURSES]

waddchstr[SUS-
CURSES]

echo[SUS-CURSES] napms[SUS-CURSES] waddnstr[SUS-
CURSES]

echochar[SUS-CURSES] newpad[SUS-CURSES] waddstr[SUS-CURSES]

endwin[SUS-CURSES] newterm[SUS-CURSES] wattr_get[SUS-
CURSES]

erase[SUS-CURSES] newwin[SUS-CURSES] wattr_off[SUS-CURSES]

erasechar[SUS-
CURSES]

nl[SUS-CURSES] wattr_on[SUS-CURSES]

filter[SUS-CURSES] nocbreak[SUS-CURSES] wattr_set[SUS-
CURSES]

flash[SUS-CURSES] nodelay[SUS-CURSES] wattroff[SUS-CURSES]

flushinp[SUS-CURSES] noecho[SUS-CURSES] wattron[SUS-CURSES]

getbkgd[SUS-CURSES] nonl[SUS-CURSES] wattrset[SUS-CURSES]

getch[SUS-CURSES] noqiflush[SUS-
CURSES]

wbkgd[SUS-CURSES]

getnstr[SUS-CURSES] noraw[SUS-CURSES] wbkgdset[SUS-
CURSES]

getstr[SUS-CURSES] notimeout[SUS-
CURSES]

wborder[SUS-CURSES]

getwin[SUS-CURSES] overlay[SUS-CURSES] wchgat[SUS-CURSES]

halfdelay[SUS-
CURSES]

overwrite[SUS-
CURSES]

wclear[SUS-CURSES]

has_colors[SUS-
CURSES]

pair_content[SUS-
CURSES]

wclrtobot[SUS-
CURSES]

has_ic[SUS-CURSES] pechochar[SUS-
CURSES]

wclrtoeol[SUS-
CURSES]

has_il[SUS-CURSES] pnoutrefresh[SUS-
CURSES]

wcolor_set[SUS-
CURSES]

hline[SUS-CURSES] prefresh[SUS-CURSES] wcursyncup[SUS-
CURSES]

idcok[SUS-CURSES] printw[SUS-CURSES] wdelch[SUS-CURSES]

idlok[SUS-CURSES] putp[SUS-CURSES] wdeleteln[SUS-
CURSES]

 © 2007 Linux Foundation 499

Annex A Alphabetical Listing of InterfacesISO/IEC 23360 Part 1:2007(E)

immedok[SUS-
CURSES]

putwin[SUS-CURSES] wechochar[SUS-
CURSES]

inch[SUS-CURSES] qiflush[SUS-CURSES] werase[SUS-CURSES]

inchnstr[SUS-CURSES] raw[SUS-CURSES] wgetch[SUS-CURSES]

inchstr[SUS-CURSES] redrawwin[SUS-
CURSES]

wgetnstr[SUS-CURSES]

init_color[SUS-
CURSES]

refresh[SUS-CURSES] wgetstr[SUS-CURSES]

init_pair[SUS-CURSES] reset_prog_mode[SUS-
CURSES]

whline[SUS-CURSES]

initscr[SUS-CURSES] reset_shell_mode[SUS-
CURSES]

winch[SUS-CURSES]

innstr[SUS-CURSES] resetty[SUS-CURSES] winchnstr[SUS-
CURSES]

insch[SUS-CURSES] restartterm[SUS-
CURSES]

winchstr[SUS-CURSES]

insdelln[SUS-CURSES] ripoffline[SUS-
CURSES]

winnstr[SUS-CURSES]

insertln[SUS-CURSES] savetty[SUS-CURSES] winsch[SUS-CURSES]

insnstr[SUS-CURSES] scanw[SUS-CURSES] winsdelln[SUS-
CURSES]

insstr[SUS-CURSES] scr_dump[SUS-
CURSES]

winsertln[SUS-
CURSES]

instr[SUS-CURSES] scr_init[SUS-CURSES] winsnstr[SUS-CURSES]

intrflush[SUS-CURSES] scr_restore[SUS-
CURSES]

winsstr[SUS-CURSES]

is_linetouched[SUS-
CURSES]

scr_set[SUS-CURSES] winstr[SUS-CURSES]

is_wintouched[SUS-
CURSES]

scrl[SUS-CURSES] wmove[SUS-CURSES]

isendwin[SUS-CURSES] scroll[SUS-CURSES] wnoutrefresh[SUS-
CURSES]

keyname[SUS-CURSES] scrollok[SUS-CURSES] wprintw[SUS-CURSES]

keypad[SUS-CURSES] set_curterm[SUS-
CURSES]

wredrawln[SUS-
CURSES]

killchar[SUS-CURSES] set_term[SUS-CURSES] wrefresh[SUS-CURSES]

leaveok[SUS-CURSES] setscrreg[SUS-CURSES] wscanw[SUS-CURSES]

longname[SUS-
CURSES]

setupterm[SUS-
CURSES]

wscrl[SUS-CURSES]

meta[SUS-CURSES] slk_attr_set[SUS-
CURSES]

wsetscrreg[SUS-
CURSES]

500 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E)Annex A Alphabetical Listing of Interfaces

move[SUS-CURSES] slk_attroff[SUS-
CURSES]

wstandend[SUS-
CURSES]

mvaddch[SUS-
CURSES]

slk_attron[SUS-
CURSES]

wstandout[SUS-
CURSES]

mvaddchnstr[SUS-
CURSES]

slk_attrset[SUS-
CURSES]

wsyncdown[SUS-
CURSES]

mvaddchstr[SUS-
CURSES]

slk_clear[SUS-CURSES] wsyncup[SUS-CURSES]

mvaddnstr[SUS-
CURSES]

slk_color[SUS-CURSES] wtimeout[SUS-
CURSES]

mvaddstr[SUS-
CURSES]

slk_init[SUS-CURSES] wtouchln[SUS-
CURSES]

mvchgat[SUS-CURSES] slk_label[SUS-CURSES] wvline[SUS-CURSES]

slk_noutrefresh[SUS-
CURSES]

 mvcur[SUS-CURSES]

Table A-8 libncurses Data Interfaces

COLORS[SUS-CURSES] LINES[SUS-CURSES] curscr[SUS-CURSES]

COLOR_PAIRS[SUS-
CURSES]

acs_map[SUS-CURSES] stdscr[SUS-CURSES]

cur_term[SUS-CURSES]
 COLS[SUS-CURSES]

A.6 libpam
The behavior of the interfaces in this library is specified by the following Stan-
dards.

This Specification [LSB]
Table A-9 libpam Function Interfaces

pam_acct_mgmt[LSB] pam_fail_delay[LSB] pam_putenv[LSB]

pam_authenticate[LSB] pam_get_item[LSB] pam_set_item[LSB]

pam_chauthtok[LSB] pam_getenv[LSB] pam_setcred[LSB]

pam_close_session[LSB
]

pam_getenvlist[LSB] pam_start[LSB]

pam_end[LSB] pam_open_session[LSB
]

pam_strerror[LSB]

A.7 libpthread
The behavior of the interfaces in this library is specified by the following Stan-
dards.

Large File Support [LFS]
This Specification [LSB]
ISO POSIX (2003) [SUSv3]

 © 2007 Linux Foundation 501

Annex A Alphabetical Listing of InterfacesISO/IEC 23360 Part 1:2007(E)

Table A-10 libpthread Function Interfaces

_pthread_cleanup_pop[
LSB]

pthread_cond_init[SUS
v3]

pthread_rwlock_timedr
dlock[SUSv3]

_pthread_cleanup_push
[LSB]

pthread_cond_signal[S
USv3]

pthread_rwlock_timed
wrlock[SUSv3]

lseek64[LFS] pthread_cond_timedwa
it[SUSv3]

pthread_rwlock_tryrdlo
ck[SUSv3]

open64[LFS] pthread_cond_wait[SU
Sv3]

pthread_rwlock_trywrl
ock[SUSv3]

pread[SUSv3] pthread_condattr_destr
oy[SUSv3]

pthread_rwlock_unlock
[SUSv3]

pread64[LFS] pthread_condattr_getps
hared[SUSv3]

pthread_rwlock_wrlock
[SUSv3]

pthread_attr_destroy[S
USv3]

pthread_condattr_init[S
USv3]

pthread_rwlockattr_des
troy[SUSv3]

pthread_attr_getdetach
state[SUSv3]

pthread_condattr_setps
hared[SUSv3]

pthread_rwlockattr_get
pshared[SUSv3]

pthread_attr_getguards
ize[SUSv3]

pthread_create[SUSv3] pthread_rwlockattr_init
[SUSv3]

pthread_attr_getinherit
sched[SUSv3]

pthread_detach[SUSv3] pthread_rwlockattr_set
pshared[SUSv3]

pthread_attr_getschedp
aram[SUSv3]

pthread_equal[SUSv3] pthread_self[SUSv3]

pthread_attr_getschedp
olicy[SUSv3]

pthread_exit[SUSv3] pthread_setcancelstate[
SUSv3]

pthread_attr_getscope[
SUSv3]

pthread_getconcurrenc
y[SUSv3]

pthread_setcanceltype[
SUSv3]

pthread_attr_getstack[S
USv3]

pthread_getcpuclockid[
SUSv3]

pthread_setconcurrency
[SUSv3]

pthread_attr_getstacka
ddr[SUSv3]

pthread_getschedpara
m[SUSv3]

pthread_setschedparam
[SUSv3]

pthread_attr_getstacksi
ze[SUSv3]

pthread_getspecific[SU
Sv3]

pthread_setschedprio(G
LIBC_2.3.4)[SUSv3]

pthread_attr_init[SUSv
3]

pthread_join[SUSv3] pthread_setspecific[SUS
v3]

pthread_attr_setdetachs
tate[SUSv3]

pthread_key_create[SU
Sv3]

pthread_sigmask[SUSv
3]

pthread_attr_setguardsi
ze[SUSv3]

pthread_key_delete[SU
Sv3]

pthread_spin_destroy[S
USv3]

pthread_attr_setinherits
ched[SUSv3]

pthread_kill[SUSv3] pthread_spin_init[SUSv
3]

pthread_attr_setschedp pthread_mutex_destroy pthread_spin_lock[SUS

502 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E)Annex A Alphabetical Listing of Interfaces

aram[SUSv3] [SUSv3] v3]

pthread_attr_setschedp
olicy[SUSv3]

pthread_mutex_init[SU
Sv3]

pthread_spin_trylock[S
USv3]

pthread_attr_setscope[S
USv3]

pthread_mutex_lock[S
USv3]

pthread_spin_unlock[S
USv3]

pthread_attr_setstack[S
USv3]

pthread_mutex_timedlo
ck[SUSv3]

pthread_testcancel[SUS
v3]

pthread_attr_setstackad
dr[SUSv3]

pthread_mutex_trylock
[SUSv3]

pwrite[SUSv3]

pthread_attr_setstacksiz
e[SUSv3]

pthread_mutex_unlock[
SUSv3]

pwrite64[LFS]

pthread_barrier_destro
y[SUSv3]

pthread_mutexattr_dest
roy[SUSv3]

sem_close[SUSv3]

pthread_barrier_init[SU
Sv3]

pthread_mutexattr_get
pshared[SUSv3]

sem_destroy[SUSv3]

pthread_barrier_wait[S
USv3]

pthread_mutexattr_gett
ype[SUSv3]

sem_getvalue[SUSv3]

pthread_barrierattr_des
troy[SUSv3]

pthread_mutexattr_init[
SUSv3]

sem_init[SUSv3]

pthread_barrierattr_get
pshared(GLIBC_2.3.3)[S
USv3]

pthread_mutexattr_setp
shared[SUSv3]

sem_open[SUSv3]

pthread_barrierattr_init
[SUSv3]

pthread_mutexattr_sett
ype[SUSv3]

sem_post[SUSv3]

pthread_barrierattr_set
pshared[SUSv3]

pthread_once[SUSv3] sem_timedwait[SUSv3]

pthread_cancel[SUSv3] pthread_rwlock_destro
y[SUSv3]

sem_trywait[SUSv3]

pthread_cond_broadcas
t[SUSv3]

pthread_rwlock_init[SU
Sv3]

sem_unlink[SUSv3]

pthread_cond_destroy[
SUSv3]

pthread_rwlock_rdlock[
SUSv3]

sem_wait[SUSv3]

A.8 librt
The behavior of the interfaces in this library is specified by the following Stan-
dards.

ISO POSIX (2003) [SUSv3]
Table A-11 librt Function Interfaces

clock_getcpuclockid[SU
Sv3]

mq_open(GLIBC_2.3.4)[
SUSv3]

shm_unlink[SUSv3]

clock_getres[SUSv3] mq_receive(GLIBC_2.3.
4)[SUSv3]

timer_create[SUSv3]

 © 2007 Linux Foundation 503

Annex A Alphabetical Listing of InterfacesISO/IEC 23360 Part 1:2007(E)

clock_gettime[SUSv3] mq_send(GLIBC_2.3.4)[
SUSv3]

timer_delete[SUSv3]

clock_nanosleep[SUSv3
]

mq_setattr(GLIBC_2.3.4
)[SUSv3]

timer_getoverrun[SUSv
3]

clock_settime[SUSv3] mq_timedreceive(GLIB
C_2.3.4)[SUSv3]

timer_gettime[SUSv3]

mq_close(GLIBC_2.3.4)[
SUSv3]

mq_timedsend(GLIBC_
2.3.4)[SUSv3]

timer_settime[SUSv3]

mq_unlink(GLIBC_2.3.4
)[SUSv3]

 mq_getattr(GLIBC_2.3.4
)[SUSv3]

shm_open[SUSv3]
 mq_notify(GLIBC_2.3.4

)[SUSv3]

A.9 libutil
The behavior of the interfaces in this library is specified by the following Stan-
dards.

This Specification [LSB]
Table A-12 libutil Function Interfaces

forkpty[LSB] login_tty[LSB] logwtmp[LSB]

login[LSB] logout[LSB] openpty[LSB]

A.10 libz
The behavior of the interfaces in this library is specified by the following Stan-
dards.

This Specification [LSB]
Table A-13 libz Function Interfaces

adler32[LSB] gzclose[LSB] gztell[LSB]

compress[LSB] gzdopen[LSB] gzwrite[LSB]

compress2[LSB] gzeof[LSB] inflate[LSB]

compressBound[LSB] gzerror[LSB] inflateEnd[LSB]

crc32[LSB] gzflush[LSB] inflateInit2_[LSB]

deflate[LSB] gzgetc[LSB] inflateInit_[LSB]

deflateBound[LSB] gzgets[LSB] inflateReset[LSB]

deflateCopy[LSB] gzopen[LSB] inflateSetDictionary[LS
B]

deflateEnd[LSB] gzprintf[LSB] inflateSync[LSB]

deflateInit2_[LSB] gzputc[LSB] inflateSyncPoint[LSB]

deflateInit_[LSB] gzputs[LSB] uncompress[LSB]

504 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E)Annex A Alphabetical Listing of Interfaces

deflateParams[LSB] gzread[LSB] zError[LSB]

deflateReset[LSB] gzrewind[LSB] zlibVersion[LSB]

gzseek[LSB]
 deflateSetDictionary[LS

B]

gzsetparams[LSB]
 get_crc_table[LSB]

 © 2007 Linux Foundation 505

 ISO/IEC 23360 Part 1:2007(E)

Annex B Future Directions (Informative)

B.1 Introduction
This appendix describes interfaces that are under development and aimed at
future releases of this specification. At this stage, such interfaces are at best
recommended practice, and do not constitute normative requirements of this
specification. Applications may not assume that any system provides these
interfaces.

We encourage system implementors and ISVs to provide these interfaces, and to
provide feedback on their specification to lsbspec@freestandards.org
(mailto://lsb-spec@freestandards.org). These interfaces may well be further
modified during the development process, and may be withdrawn if concensus
cannot be reached.

 © 2007 Linux Foundation 506

 ISO/IEC 23360 Part 1:2007(E)Annex B Future Directions (Informative)

B.2 Commands And Utilities

lsbinstall

Name
lsbinstall — installation tool for various types of data

Synopsis
/usr/lib/lsb/lsbinstall [-c | --check | -r | --remove] { -t type | --
type=type } [-p package | --package=package] operand...

Description
The lsbinstall utility may be used to install certain types of files into system
specific locations, repositories, or databases. This command may be used during
a package post installation script to add package specific data to system wide
repositories. A user may need appropriate privilege to invoke lsbinstall.

The operand (or operands) name an object of type type (see below) that belongs
to a package named package. The combination of package name, object type
and object name should be unique amongst all objects installed by lsbinstall.
The lsbinstall utility may rename an object if another package already owns an
object of the same type with the same name.

Note: If a namespace collision is detected by lsbinstall, it is unspecified how the
object is renamed, although typical implementations may prepend the package
name to the object in some way (e.g. package.obj-name). The lsbinstall utility may
maintain a database of the mappings it has performed during installation in order
to ensure that the correct object is removed during a subsequent removal operation.

Scripts installed by lsbinstall should not make use of the script name in order to
decide on their functionality.

Note: It is appropriate for such a script to use the script name in error messages,
usage statements, etc. The only guarantee made by lsbinstall is the effect that an
installation (or removal) should have, not where a script is installed, or how it is
named.

The -p pkg or --package=pkg is required for all object types unless explicitly
noted below.

If the -c or --check option is specified, lsbinstall should test to see if there is an
existing object of the type specified already installed. If there is, lsbinstall
should print a message to its standard output and immediately exit with a
status of zero. If there is no object of the type and name specified already
installed, lsbinstall should exit with a non-zero status and take no further
action.

If the -r or --remove is specified, the named object of the specified type should
be removed or disabled from the system, except as noted below. The behavior is
unspecified if the named object was not previously installed by lsbinstall.

Note: lsbinstall may rename objects during installation in order to prevent name
collisions where another package has already installed an object with the given
name. Using lsbinstall --remove will remove only the object belonging to the
named package, and not the object belonging to another package.

 © 2007 Linux Foundation 507

Annex B Future Directions (Informative)ISO/IEC 23360 Part 1:2007(E)

Also note that the intent of the --remove option is to prevent the effect of the
installed object; it should be sufficient to disable or comment out the addition in
some way, while leaving the content behind. It is not intended that --remove be
required to be the exact reverse of installation.

Object Types
The -t type or --type=type option should support at least the following
types:

profile

 install a profile script into a system specific location. There should be one
operand, that names a profile shell script. The behavior is unspecified if this
name does not have the suffix .sh.

The sh utility should read and execute commands in its current execution
environment from all such installed profile shell scripts when invoked as
an interactive login shell, or if the -l (the letter ell) is specified (see Shell
Invocation).

service

 ensure a service name and number pair is known to the system service
database. When installing, there must be at least two operands. The first
operand should have the format %d/%s with the port number and protocol
values (e.g. 22/tcp), and the second operand should be the name of the
service. Any subsequent operands provide aliases for this service. The -p
pkg or --package=pkg option is not required for service objects, and is
ignored if specified. If any of the -r, --remove, -c or --check options are
specified, there should be a single operand identifying the port and
protocol values (with the same format as above).

It should not be an error to attempt to add a service name to the system
service database if that service name already exists for the same port and
protocol combination. If the port and protocol combination was already
present, but the name unknown, the name should be added as an alias to
the existing entry. It should be an error to attempt to add a second entry for
a given service name and protocol, but where the port number differs from
an existing entry.

If the -r or --remove is specified, the system service database need not be
updated to remove or disable the named service.

inet

 add an entry to the system's network super daemon configuration. If none
of the -r, --remove, -c or --check options are specified, the first operand
should have the format:
"%s:%s:%s:%s:%s:%s"
Otherwise, the first operand should have the format
"%s:%s"
The fields in the first operand have the following meaning, in order:

svc_name

 The name of this service. If the name does not contain a /, this should
match the name of an already installed service (see also
getservbyname()). If the name contains a / character, the behavior is
unspecified.

508 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E)Annex B Future Directions (Informative)

Rationale: This version of the LSB does not specify getrpcbyname() nor the
existence or format of the /etc/rpc file. Therefore, installation of RPC
based services is not specified at this point. A future version of this
specification may require names containing a / character to be Remote
Procedure Call based services.

protocol

 The name of a protocol. The name should be one of those listed in
/etc/protocols. If this attribute is not specified (i.e. a null value is
passed), the system should use an implementation defined default
protocol.

socket_type

 One of the following values:

stream

 the service will use a stream type socket.

dgram

 the service will use a datagram type socket.

seqpacket

 the service will use a sequenced packet type socket.

This field is not required for the -c, --check, -r, or --remove options.

wait_flag

 If the value of this attribute is wait, once the service is started, no
further requests for that service will be handled until the service exits.
If the value is nowait, the network super daemon should continue to
handle further requests for the given service while that service is
running.

Note: If the service has the socket_type attribute set to dgram, the wait_flag
attribute should be set to wait, since such services do not have any
distinction between the socket used for listening and that used for
accepting.

This field is not required for the -c, --check, -r, or --remove options.

user[.group]

 The name of a user from the user login database, optionally followed
by the name of a group from the group database. The service started to
handle this request should run with the privileges of the specified user
and group. This field is not required for the -c, --check, -r, or --
remove options.

server [arg ...]

 The name of a program to run to handle the request, optionally
followed by any arguments required. The server name and each of its
arguments is separated by whitespace. This field is not required for the
-c, --check, -r, or --remove options.

If the implementation supports additional controls over services started
through the inet super daemon, there may be additional, implementation-
defined, operands.

 © 2007 Linux Foundation 509

Annex B Future Directions (Informative)ISO/IEC 23360 Part 1:2007(E)

Rationale: Systems that use the xinetd super daemon may support additional
controls such as IP address restrictions, logging requirements, etc. The LSB
does not require these additional controls. However, it was believed to be of
sufficient benefit that implementations are granted permission to extend this
interface as required.

Examples
lsbinstall --package=myapp --type=profile myco.com-prod.sh

Install the profile shell script for myco.com-prod.sh, part of the myapp package..

lsbinstall --package=myapp --check --type=profile myco.com-
prod.sh

Test to see if the profile shell script for myco.com-prod.sh, as part of the myapp
package, is installed correctly.

Exit Status
If the -c or --check option is specified, lsbinstall should exit with a zero status
if an object of the specified type and name is already installed, or non-zero
otherwise. Otherwise, lsbinstall should exit with a zero status if the object with
the specified type and name was successfully installed (or removed if the -r or
--remove option was specified), and non-zero if the installation (or removal)
failed. On failure, a diagnostic message should be printed to the standard error
file descriptor.

510 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E)

Annex C GNU Free Documentation License (Informative)
This specification is published under the terms of the GNU Free Documentation
License, Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc. 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA Everyone is permitted to copy and distribute verbatim
copies of this license document, but changing it is not allowed.

C.1 PREAMBLE
The purpose of this License is to make a manual, textbook, or other written
document "free" in the sense of freedom: to assure everyone the effective
freedom to copy and redistribute it, with or without modifying it, either
commercially or noncommercially. Secondarily, this License preserves for the
author and publisher a way to get credit for their work, while not being
considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the
document must themselves be free in the same sense. It complements the GNU
General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come
with manuals providing the same freedoms that the software does. But this
License is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or
reference.

C.2 APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work that contains a notice placed
by the copyright holder saying it can be distributed under the terms of this
License. The "Document", below, refers to any such manual or work. Any
member of the public is a licensee, and is addressed as "you".

A "Modified Version" of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with modifications
and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the
Document that deals exclusively with the relationship of the publishers or
authors of the Document to the Document's overall subject (or to related
matters) and contains nothing that could fall directly within that overall subject.
(For example, if the Document is in part a textbook of mathematics, a Secondary
Section may not explain any mathematics.) The relationship could be a matter of
historical connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are
designated, as being those of Invariant Sections, in the notice that says that the
Document is released under this License.

The "Cover Texts" are certain short passages of text that are listed, as Front-
Cover Texts or Back-Cover Texts, in the notice that says that the Document is
released under this License.

 © 2007 Linux Foundation 511

Annex C GNU Free Documentation License (Informative) ISO/IEC 23360 Part 1:2007(E)

A "Transparent" copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the general public,
whose contents can be viewed and edited directly and straightforwardly with
generic text editors or (for images composed of pixels) generic paint programs
or (for drawings) some widely available drawing editor, and that is suitable for
input to text formatters or for automatic translation to a variety of formats
suitable for input to text formatters. A copy made in an otherwise Transparent
file format whose markup has been designed to thwart or discourage
subsequent modification by readers is not Transparent. A copy that is not
"Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII
without markup, Texinfo input format, LaTeX input format, SGML or XML
using a publicly available DTD, and standard-conforming simple HTML
designed for human modification. Opaque formats include PostScript, PDF,
proprietary formats that can be read and edited only by proprietary word
processors, SGML or XML for which the DTD and/or processing tools are not
generally available, and the machine-generated HTML produced by some word
processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such
following pages as are needed to hold, legibly, the material this License requires
to appear in the title page. For works in formats which do not have any title
page as such, "Title Page" means the text near the most prominent appearance
of the work's title, preceding the beginning of the body of the text.

C.3 VERBATIM COPYING
You may copy and distribute the Document in any medium, either
commercially or noncommercially, provided that this License, the copyright
notices, and the license notice saying this License applies to the Document are
reproduced in all copies, and that you add no other conditions whatsoever to
those of this License. You may not use technical measures to obstruct or control
the reading or further copying of the copies you make or distribute. However,
you may accept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you
may publicly display copies.

C.4 COPYING IN QUANTITY
If you publish printed copies of the Document numbering more than 100, and
the Document's license notice requires Cover Texts, you must enclose the copies
in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts
on the front cover, and Back-Cover Texts on the back cover. Both covers must
also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent
and visible. You may add other material on the covers in addition. Copying
with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in
other respects.

If the required texts for either cover are too voluminous to fit legibly, you
should put the first ones listed (as many as fit reasonably) on the actual cover,
and continue the rest onto adjacent pages.

512 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E)Annex C GNU Free Documentation License (Informative)

If you publish or distribute Opaque copies of the Document numbering more
than 100, you must either include a machine-readable Transparent copy along
with each Opaque copy, or state in or with each Opaque copy a publicly-
accessible computer-network location containing a complete Transparent copy
of the Document, free of added material, which the general network-using
public has access to download anonymously at no charge using public-standard
network protocols. If you use the latter option, you must take reasonably
prudent steps, when you begin distribution of Opaque copies in quantity, to
ensure that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document
well before redistributing any large number of copies, to give them a chance to
provide you with an updated version of the Document.

C.5 MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the
conditions of sections 2 and 3 above, provided that you release the Modified
Version under precisely this License, with the Modified Version filling the role
of the Document, thus licensing distribution and modification of the Modified
Version to whoever possesses a copy of it. In addition, you must do these things
in the Modified Version:

 A. Use in the Title Page (and on the covers, if any) a title distinct from that of
the Document, and from those of previous versions (which should, if
there were any, be listed in the History section of the Document). You
may use the same title as a previous version if the original publisher of
that version gives permission.

 B. List on the Title Page, as authors, one or more persons or entities
responsible for authorship of the modifications in the Modified Version,
together with at least five of the principal authors of the Document (all of
its principal authors, if it has less than five).

 C. State on the Title page the name of the publisher of the Modified Version,
as the publisher.

 D. Preserve all the copyright notices of the Document.

 E. Add an appropriate copyright notice for your modifications adjacent to
the other copyright notices.

 F. Include, immediately after the copyright notices, a license notice giving
the public permission to use the Modified Version under the terms of this
License, in the form shown in the Addendum below.

 G. Preserve in that license notice the full lists of Invariant Sections and
required Cover Texts given in the Document's license notice.

 H. Include an unaltered copy of this License.

 I. Preserve the section entitled "History", and its title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified
Version as given on the Title Page. If there is no section entitled "History"
in the Document, create one stating the title, year, authors, and publisher
of the Document as given on its Title Page, then add an item describing
the Modified Version as stated in the previous sentence.

 © 2007 Linux Foundation 513

Annex C GNU Free Documentation License (Informative) ISO/IEC 23360 Part 1:2007(E)

 J. Preserve the network location, if any, given in the Document for public
access to a Transparent copy of the Document, and likewise the network
locations given in the Document for previous versions it was based on.
These may be placed in the "History" section. You may omit a network
location for a work that was published at least four years before the
Document itself, or if the original publisher of the version it refers to gives
permission.

 K. In any section entitled "Acknowledgements" or "Dedications", preserve
the section's title, and preserve in the section all the substance and tone of
each of the contributor acknowledgements and/or dedications given
therein.

 L. Preserve all the Invariant Sections of the Document, unaltered in their text
and in their titles. Section numbers or the equivalent are not considered
part of the section titles.

 M. Delete any section entitled "Endorsements". Such a section may not be
included in the Modified Version.

 N. Do not retitle any existing section as "Endorsements" or to conflict in title
with any Invariant Section.

If the Modified Version includes new front-matter sections or appendices that
qualify as Secondary Sections and contain no material copied from the
Document, you may at your option designate some or all of these sections as
invariant. To do this, add their titles to the list of Invariant Sections in the
Modified Version's license notice. These titles must be distinct from any other
section titles.

You may add a section entitled "Endorsements", provided it contains nothing
but endorsements of your Modified Version by various parties--for example,
statements of peer review or that the text has been approved by an organization
as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover
Texts in the Modified Version. Only one passage of Front-Cover Text and one of
Back-Cover Text may be added by (or through arrangements made by) any one
entity. If the Document already includes a cover text for the same cover,
previously added by you or by arrangement made by the same entity you are
acting on behalf of, you may not add another; but you may replace the old one,
on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give
permission to use their names for publicity for or to assert or imply
endorsement of any Modified Version.

C.6 COMBINING DOCUMENTS
You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified versions,
provided that you include in the combination all of the Invariant Sections of all
of the original documents, unmodified, and list them all as Invariant Sections of
your combined work in its license notice.

The combined work need only contain one copy of this License, and multiple
identical Invariant Sections may be replaced with a single copy. If there are
multiple Invariant Sections with the same name but different contents, make the
title of each such section unique by adding at the end of it, in parentheses, the

514 © 2007 Linux Foundation

 ISO/IEC 23360 Part 1:2007(E)Annex C GNU Free Documentation License (Informative)

name of the original author or publisher of that section if known, or else a
unique number. Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled "History" in the
various original documents, forming one section entitled "History"; likewise
combine any sections entitled "Acknowledgements", and any sections entitled
"Dedications". You must delete all sections entitled "Endorsements."

C.7 COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this License in
the various documents with a single copy that is included in the collection,
provided that you follow the rules of this License for verbatim copying of each
of the documents in all other respects.

You may extract a single document from such a collection, and distribute it
individually under this License, provided you insert a copy of this License into
the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

C.8 AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and
independent documents or works, in or on a volume of a storage or distribution
medium, does not as a whole count as a Modified Version of the Document,
provided no compilation copyright is claimed for the compilation. Such a
compilation is called an "aggregate", and this License does not apply to the
other self-contained works thus compiled with the Document, on account of
their being thus compiled, if they are not themselves derivative works of the
Document.

If the Cover Text requirement of section 3 is applicable to these copies of the
Document, then if the Document is less than one quarter of the entire aggregate,
the Document's Cover Texts may be placed on covers that surround only the
Document within the aggregate. Otherwise they must appear on covers around
the whole aggregate.

C.9 TRANSLATION
Translation is considered a kind of modification, so you may distribute
translations of the Document under the terms of section 4. Replacing Invariant
Sections with translations requires special permission from their copyright
holders, but you may include translations of some or all Invariant Sections in
addition to the original versions of these Invariant Sections. You may include a
translation of this License provided that you also include the original English
version of this License. In case of a disagreement between the translation and
the original English version of this License, the original English version will
prevail.

C.10 TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as
expressly provided for under this License. Any other attempt to copy, modify,
sublicense or distribute the Document is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or

 © 2007 Linux Foundation 515

Annex C GNU Free Documentation License (Informative) ISO/IEC 23360 Part 1:2007(E)

rights, from you under this License will not have their licenses terminated so
long as such parties remain in full compliance.

C.11 FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU
Free Documentation License from time to time. Such new versions will be
similar in spirit to the present version, but may differ in detail to address new
problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the
Document specifies that a particular numbered version of this License "or any
later version" applies to it, you have the option of following the terms and
conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document
does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation.

C.12 How to use this License for your documents
To use this License in a document you have written, include a copy of the
License in the document and put the following copyright and license notices
just after the title page:

Copyright (c) YEAR YOUR NAME. Permission is granted to copy, distribute
and/or modify this document under the terms of the GNU Free Documentation
License, Version 1.1 or any later version published by the Free Software
Foundation; with the Invariant Sections being LIST THEIR TITLES, with the Front-
Cover Texts being LIST, and with the Back-Cover Texts being LIST. A copy of the
license is included in the section entitled "GNU Free Documentation License".

If you have no Invariant Sections, write "with no Invariant Sections" instead of
saying which ones are invariant. If you have no Front-Cover Texts, write "no
Front-Cover Texts" instead of "Front-Cover Texts being LIST"; likewise for Back-
Cover Texts.

If your document contains nontrivial examples of program code, we
recommend releasing these examples in parallel under your choice of free
software license, such as the GNU General Public License, to permit their use in
free software.

516 © 2007 Linux Foundation

	Linux Standard Base Core Specification 3.2
	Contents
	List of Figures
	Foreword
	Introduction
	I Introductory Elements
	1 Scope
	1.1 General
	1.2 Module Specific Scope

	2 References
	2.1 Normative References
	2.2 Informative References/Bibliography

	3 Requirements
	3.1 Relevant Libraries
	3.2 LSB Implementation Conformance
	3.3 LSB Application Conformance

	4 Definitions
	5 Terminology
	6 Documentation Conventions
	7 Relationship To ISO/IEC 9945 POSIX
	8 Relationship To Other Linux Foundation Specifications
	II Executable And Linking Format (ELF)
	9 Introduction
	10 Low Level System Information
	10.1 Operating System Interface
	10.2 Machine Interface
	10.2.1 Data Representation
	10.2.1.1 Fundamental Types

	11 Object Format
	11.1 Object Files
	11.2 Sections
	11.2.1 Introduction
	11.2.2 Sections Types
	11.2.2.1 ELF Section Types
	11.2.2.2 Additional Section Types

	11.3 Special Sections
	11.3.1 Special Sections
	11.3.1.1 ELF Special Sections
	11.3.1.2 Additional Special Sections

	11.4 Symbol Mapping
	11.4.1 Introduction
	11.4.1.1 C Language

	11.5 DWARF Extensions
	11.5.1 DWARF Exception Header Encoding
	11.5.2 DWARF CFI Extensions

	11.6 Exception Frames
	11.6.1 The .eh_frame section
	11.6.1.1 The Common Information Entry Format
	11.6.1.1.1 Augmentation String Format

	11.6.1.2 The Frame Description Entry Format

	11.6.2 The .eh_frame_hdr section

	11.7 Symbol Versioning
	11.7.1 Introduction
	11.7.2 Symbol Version Table
	11.7.3 Version Definitions
	11.7.4 Version Requirements
	11.7.5 Startup Sequence
	11.7.6 Symbol Resolution

	11.8 ABI note tag

	12 Dynamic Linking
	12.1 Program Loading and Dynamic Linking
	12.2 Program Header
	12.3 Dynamic Entries
	12.3.1 Introduction
	12.3.2 Dynamic Entries
	12.3.2.1 ELF Dynamic Entries
	12.3.2.2 Additional Dynamic Entries

	III Base Libraries
	13 Base Libraries
	13.1 Introduction
	13.2 Program Interpreter
	13.3 Interfaces for libc
	13.3.1 RPC
	13.3.1.1 Interfaces for RPC

	13.3.2 System Calls
	13.3.2.1 Interfaces for System Calls

	13.3.3 Standard I/O
	13.3.3.1 Interfaces for Standard I/O

	13.3.4 Signal Handling
	13.3.4.1 Interfaces for Signal Handling

	13.3.5 Localization Functions
	13.3.5.1 Interfaces for Localization Functions

	13.3.6 Posix Spawn Option
	13.3.6.1 Interfaces for Posix Spawn Option

	13.3.7 Posix Advisory Option
	13.3.7.1 Interfaces for Posix Advisory Option

	13.3.8 Socket Interface
	13.3.8.1 Interfaces for Socket Interface

	13.3.9 Wide Characters
	13.3.9.1 Interfaces for Wide Characters

	13.3.10 String Functions
	13.3.10.1 Interfaces for String Functions

	13.3.11 IPC Functions
	13.3.11.1 Interfaces for IPC Functions

	13.3.12 Regular Expressions
	13.3.12.1 Interfaces for Regular Expressions

	13.3.13 Character Type Functions
	13.3.13.1 Interfaces for Character Type Functions

	13.3.14 Time Manipulation
	13.3.14.1 Interfaces for Time Manipulation

	13.3.15 Terminal Interface Functions
	13.3.15.1 Interfaces for Terminal Interface Functions

	13.3.16 System Database Interface
	13.3.16.1 Interfaces for System Database Interface

	13.3.17 Language Support
	13.3.17.1 Interfaces for Language Support

	13.3.18 Large File Support
	13.3.18.1 Interfaces for Large File Support

	13.3.19 Standard Library
	13.3.19.1 Interfaces for Standard Library

	13.4 Data Definitions for libc
	13.4.1 arpa/inet.h
	13.4.2 assert.h
	13.4.3 ctype.h
	13.4.4 dirent.h
	13.4.5 err.h
	13.4.6 errno.h
	13.4.7 fcntl.h
	13.4.8 fmtmsg.h
	13.4.9 fnmatch.h
	13.4.10 ftw.h
	13.4.11 getopt.h
	13.4.12 glob.h
	13.4.13 grp.h
	13.4.14 iconv.h
	13.4.15 inttypes.h
	13.4.16 langinfo.h
	13.4.17 libgen.h
	13.4.18 libintl.h
	13.4.19 limits.h
	13.4.20 locale.h
	13.4.21 monetary.h
	13.4.22 net/if.h
	13.4.23 netdb.h
	13.4.24 netinet/in.h
	13.4.25 netinet/ip.h
	13.4.26 netinet/tcp.h
	13.4.27 netinet/udp.h
	13.4.28 nl_types.h
	13.4.29 poll.h
	13.4.30 pty.h
	13.4.31 pwd.h
	13.4.32 regex.h
	13.4.33 rpc/auth.h
	13.4.34 rpc/clnt.h
	13.4.35 rpc/pmap_clnt.h
	13.4.36 rpc/rpc_msg.h
	13.4.37 rpc/svc.h
	13.4.38 rpc/types.h
	13.4.39 rpc/xdr.h
	13.4.40 sched.h
	13.4.41 search.h
	13.4.42 setjmp.h
	13.4.43 signal.h
	13.4.44 spawn.h
	13.4.45 stddef.h
	13.4.46 stdint.h
	13.4.47 stdio.h
	13.4.48 stdlib.h
	13.4.49 string.h
	13.4.50 strings.h
	13.4.51 sys/file.h
	13.4.52 sys/ioctl.h
	13.4.53 sys/ipc.h
	13.4.54 sys/mman.h
	13.4.55 sys/msg.h
	13.4.56 sys/param.h
	13.4.57 sys/poll.h
	13.4.58 sys/resource.h
	13.4.59 sys/select.h
	13.4.60 sys/sem.h
	13.4.61 sys/shm.h
	13.4.62 sys/socket.h
	13.4.63 sys/stat.h
	13.4.64 sys/statfs.h
	13.4.65 sys/statvfs.h
	13.4.66 sys/time.h
	13.4.67 sys/timeb.h
	13.4.68 sys/times.h
	13.4.69 sys/types.h
	13.4.70 sys/uio.h
	13.4.71 sys/un.h
	13.4.72 sys/utsname.h
	13.4.73 sys/wait.h
	13.4.74 syslog.h
	13.4.75 termios.h
	13.4.76 time.h
	13.4.77 ucontext.h
	13.4.78 ulimit.h
	13.4.79 unistd.h
	13.4.80 utime.h
	13.4.81 utmp.h
	13.4.82 utmpx.h
	13.4.83 wchar.h
	13.4.84 wctype.h
	13.4.85 wordexp.h

	13.5 Interface Definitions for libc
	_IO_feof
	Name
	Synopsis
	Description

	_IO_getc
	Name
	Synopsis
	Description

	_IO_putc
	Name
	Synopsis
	Description

	_IO_puts
	Name
	Synopsis
	Description

	__assert_fail
	Name
	Synopsis
	Description

	__ctype_b_loc
	Name
	Synopsis
	Description
	Return Value

	__ctype_get_mb_cur_max
	Name
	Synopsis
	Description

	__ctype_tolower_loc
	Name
	Synopsis
	Description
	Return Value

	__ctype_toupper_loc
	Name
	Synopsis
	Description
	Return Value

	__cxa_atexit
	Name
	Synopsis
	Description

	__cxa_finalize
	Name
	Synopsis
	Description

	__daylight
	Name
	Synopsis
	Description

	__environ
	Name
	Synopsis
	Description

	__errno_location
	Name
	Synopsis
	Description

	__fpending
	Name
	Synopsis
	Description

	__getpagesize
	Name
	Synopsis
	Description

	__getpgid
	Name
	Synopsis
	Description

	__h_errno_location
	Name
	Synopsis
	Description

	__isinf
	Name
	Synopsis
	Description

	__isinff
	Name
	Synopsis
	Description

	__isinfl
	Name
	Synopsis
	Description

	__isnan
	Name
	Synopsis
	Description

	__isnanf
	Name
	Synopsis
	Description

	__isnanl
	Name
	Synopsis
	Description

	__libc_current_sigrtmax
	Name
	Synopsis
	Description

	__libc_current_sigrtmin
	Name
	Synopsis
	Description

	__libc_start_main
	Name
	Synopsis
	Description
	See Also

	__lxstat
	Name
	Synopsis
	Description

	__mempcpy
	Name
	Synopsis
	Description

	__rawmemchr
	Name
	Synopsis
	Description

	__register_atfork
	Name
	Synopsis
	Description

	__sigsetjmp
	Name
	Synopsis
	Description

	__stpcpy
	Name
	Synopsis
	Description

	__strdup
	Name
	Synopsis
	Description

	__strtod_internal
	Name
	Synopsis
	Description

	__strtof_internal
	Name
	Synopsis
	Description

	__strtok_r
	Name
	Synopsis
	Description

	__strtol_internal
	Name
	Synopsis
	Description

	__strtold_internal
	Name
	Synopsis
	Description

	__strtoll_internal
	Name
	Synopsis
	Description

	__strtoul_internal
	Name
	Synopsis
	Description

	__strtoull_internal
	Name
	Synopsis
	Description

	__sysconf
	Name
	Synopsis
	Description

	__sysv_signal
	Name
	Synopsis
	Description

	__timezone
	Name
	Synopsis
	Description

	__tzname
	Name
	Synopsis
	Description

	__wcstod_internal
	Name
	Synopsis
	Description

	__wcstof_internal
	Name
	Synopsis
	Description

	__wcstol_internal
	Name
	Synopsis
	Description

	__wcstold_internal
	Name
	Synopsis
	Description

	__wcstoul_internal
	Name
	Synopsis
	Description

	__xmknod
	Name
	Synopsis
	Description

	__xpg_basename
	Name
	Synopsis
	Description
	Return Value

	__xpg_sigpause
	Name
	Synopsis
	Description
	Return Value

	__xpg_strerror_r
	Name
	Synopsis
	Description
	Return Value

	__xstat
	Name
	Synopsis
	Description

	__xstat64
	Name
	Synopsis
	Description

	_environ
	Name
	Synopsis
	Description

	_nl_msg_cat_cntr
	Name
	Synopsis
	Description

	_sys_errlist
	Name
	Synopsis
	Description

	_sys_siglist
	Name
	Synopsis
	Description

	acct
	Name
	Synopsis
	Description
	Return Value
	Errors

	adjtime
	Name
	Synopsis
	Description
	Return Value
	Errors

	asprintf
	Name
	Synopsis
	Description
	Return Value
	Errors

	basename
	Name
	Synopsis
	Description
	Return Value
	See Also

	bind_textdomain_codeset
	Name
	Synopsis
	Description
	Parameters
	Return Value
	Errors
	See Also

	bindresvport
	Name
	Synopsis
	Description
	Return Value
	Errors

	bindtextdomain
	Name
	Synopsis
	Description
	Return Value
	Errors
	See Also

	cfmakeraw
	Name
	Synopsis
	Description

	cfsetspeed
	Name
	Synopsis
	Description
	Return Value
	Errors

	daemon
	Name
	Synopsis
	Description
	Return Value

	dcgettext
	Name
	Synopsis
	Description
	Return Value
	Errors
	See Also

	dcngettext
	Name
	Synopsis
	Description
	Return Value
	Errors
	See Also

	dgettext
	Name
	Synopsis
	Description
	Return Value
	Errors
	See Also

	dngettext
	Name
	Synopsis
	Description
	See Also

	duplocale
	Name
	Synopsis
	Description
	Return Value
	Errors
	See Also

	endutent
	Name
	Synopsis
	Description

	err
	Name
	Synopsis
	Description
	See Also
	Return Value
	Errors

	error
	Name
	Synopsis
	Description
	See Also

	errx
	Name
	Synopsis
	Description
	Return Value
	Errors
	See Also

	fcntl
	Name
	Description
	Implementation may set O_LARGEFILE

	fflush_unlocked
	Name
	Description

	fgetwc_unlocked
	Name
	Description

	flock
	Name
	Synopsis
	Description
	Return Value
	Errors

	freelocale
	Name
	Synopsis
	Description
	Return Value
	Errors
	See Also

	fscanf
	Name
	Description
	Differences

	fstatfs
	Name
	Synopsis
	Description
	Return Value
	Errors

	fstatfs64
	Name
	Synopsis
	Description
	Return Value
	Errors

	fwscanf
	Name
	Description
	Differences

	getdomainname
	Name
	Synopsis
	Description
	Return Value
	Errors
	Future Directions

	getdtablesize
	Name
	Synopsis
	Description
	Return Value
	Errors

	getgrouplist
	Name
	Synopsis
	Description
	Return Value
	Errors
	See Also

	gethostbyaddr_r
	Name
	Synopsis
	Description
	Return Value

	gethostbyname2
	Name
	Synopsis
	Description
	Return Value

	gethostbyname2_r
	Name
	Synopsis
	Description
	Return Value

	gethostbyname_r
	Name
	Synopsis
	Description
	Return Value

	getloadavg
	Name
	Synopsis
	Description

	getopt
	Name
	Synopsis
	Description
	Argument Ordering
	Option Characteristics
	Extensions
	Return Values
	Environment Variables

	getopt_long
	Name
	Synopsis
	Description
	Return Value

	getopt_long_only
	Name
	Synopsis
	Description
	Return Value

	getpagesize
	Name
	Synopsis
	Description
	Return Value
	Errors

	getsockopt
	Name
	Synopsis
	Description
	IP Protocol Level Options

	gettext
	Name
	Synopsis
	Description
	Return Value
	Errors
	See Also

	getutent
	Name
	Synopsis
	Description
	Return Value
	Errors

	getutent_r
	Name
	Synopsis
	Description
	Return Value

	glob64
	Name
	Synopsis
	Description
	Return Value

	globfree64
	Name
	Synopsis
	Description

	inet_aton
	Name
	Synopsis
	Description

	initgroups
	Name
	Synopsis
	Description
	Return Value
	Errors
	See Also

	ioctl
	Name
	Synopsis
	Description
	Return Value
	Errors
	Relationship to POSIX (Informative)

	sockio
	Name
	Synopsis
	Description
	Return Value
	Errors

	ttyio
	Name
	Synopsis
	Description
	Return Value
	Errors

	kill
	Name
	Synopsis
	Description
	Process ID -1 doesn't affect calling process

	link
	Name
	Synopsis
	Description
	Need Not Follow Symlinks

	mbsnrtowcs
	Name
	Synopsis
	Description
	Return Value
	Notes

	memmem
	Name
	Synopsis
	Description
	Return Value
	Notes

	memrchr
	Name
	Synopsis
	Description
	Return Value
	Errors
	See Also

	mremap
	Name
	Synopsis
	Description
	Return Value
	Errors

	newlocale
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage (Informative)
	See Also

	ngettext
	Name
	Synopsis
	Description
	Return Value
	Errors
	See Also

	pmap_getport
	Name
	Synopsis
	Description
	Return Value

	pmap_set
	Name
	Synopsis
	Description
	Return Value

	pmap_unset
	Name
	Synopsis
	Description
	Return Value

	posix_fadvise64
	Name
	Synopsis
	Description
	Return Value

	posix_fallocate64
	Name
	Synopsis
	Description
	Return Value
	Errors

	psignal
	Name
	Synopsis
	Description
	Return Value

	readdir64_r
	Name
	Synopsis
	Description
	Return Value
	Errors

	regexec
	Name
	Description
	Differences

	scanf
	Name
	Description
	Differences

	sched_setscheduler
	Name
	Synopsis
	Description
	Return Value

	setbuffer
	Name
	Synopsis
	Description

	setgroups
	Name
	Synopsis
	Description
	Return Value
	Errors

	sethostname
	Name
	Synopsis
	Description
	Return Value
	Errors
	Rationale

	setsockopt
	Name
	Synopsis
	Description
	IP Protocol Level Options

	Return Value
	Errors

	setutent
	Name
	Synopsis
	Description
	Return Value

	sigandset
	Name
	Synopsis
	Description
	Return Value
	See Also

	sigisemptyset
	Name
	Synopsis
	Description
	Return Value

	sigorset
	Name
	Synopsis
	Description
	Return Value
	See Also

	sigpause
	Name
	Synopsis
	Description
	See Also

	sigreturn
	Name
	Synopsis
	Description
	Return Value

	sscanf
	Name
	Description
	Differences

	statfs
	Name
	Synopsis
	Description
	Return Value
	Errors

	statfs64
	Name
	Synopsis
	Description
	Return Value
	Errors

	stime
	Name
	Synopsis
	Description
	Return Value
	Errors

	stpcpy
	Name
	Synopsis
	Description
	Return Value
	Example

	stpncpy
	Name
	Synopsis
	Description
	Return Value

	strcasestr
	Name
	Synopsis
	Description
	Return Value

	strerror_r
	Name
	Synopsis
	Description
	Return Value
	See Also

	strndup
	Name
	Synopsis
	Description
	Return Value
	Errors

	strnlen
	Name
	Synopsis
	Description
	Return Value
	Errors

	strptime
	Name
	Description
	Number of leading zeroes may be limited

	Rationale

	strsep
	Name
	Synopsis
	Description
	Return Value
	Notes
	See Also

	strsignal
	Name
	Synopsis
	Description
	Return Value

	strtoq
	Name
	Synopsis
	Description
	Return Value
	Errors

	strtouq
	Name
	Synopsis
	Description
	Return Value
	Errors

	svc_register
	Name
	Synopsis
	Description
	Return Value

	svc_run
	Name
	Synopsis
	Description

	svc_sendreply
	Name
	Synopsis
	Description

	svctcp_create
	Name
	Synopsis
	Description
	Return Value

	svcudp_create
	Name
	Synopsis
	Description
	Return Value

	swscanf
	Name
	Description
	Differences

	sysconf
	Name
	Synopsis
	DESCRIPTION
	Extra Variables

	system
	Name
	Synopsis
	Description
	Notes

	textdomain
	Name
	Synopsis
	Description
	Return
	Errors

	unlink
	Name
	Synopsis
	Description
	May return EISDIR on directories

	uselocale
	Name
	Synopsis
	Description
	Return Value
	Errors
	See Also

	utmpname
	Name
	Synopsis
	Description
	Return Value
	Errors

	vasprintf
	Name
	Synopsis
	Description
	Return Value
	Errors

	vdprintf
	Name
	Synopsis
	Description
	Return Value
	Errors

	verrx
	Name
	Synopsis
	Description
	Return Value
	Errors

	vfscanf
	Name
	Description
	Differences

	vfwscanf
	Name
	Description
	Differences

	vscanf
	Name
	Description
	Differences

	vsscanf
	Name
	Description
	Differences

	vswscanf
	Name
	Description
	Differences

	vsyslog
	Name
	Synopsis
	Description

	vwscanf
	Name
	Description
	Differences

	wait4
	Name
	Synopsis
	Description
	Return Value
	Errors

	waitpid
	Name
	Description
	Need not support WCONTINUED or WIFCONTINUED

	warn
	Name
	Synopsis
	Description
	Return Value
	Errors

	warnx
	Name
	Synopsis
	Description
	Return Value
	Errors

	wcpcpy
	Name
	Synopsis
	Description
	Return Value

	wcpncpy
	Name
	Synopsis
	Description
	Return Value

	wcscasecmp
	Name
	Synopsis
	Description
	Return Value
	Notes

	wcsdup
	Name
	Synopsis
	Description
	Return Value
	Errors

	wcsncasecmp
	Name
	Synopsis
	Description
	Return Value
	Notes

	wcsnlen
	Name
	Synopsis
	Description
	Return Value

	wcsnrtombs
	Name
	Synopsis
	Description
	Return Value
	Notes

	wcstoq
	Name
	Synopsis
	Description
	Return Value
	Errors

	wcstouq
	Name
	Synopsis
	Description
	Return Value
	Errors

	wscanf
	Name
	Description
	Differences

	xdr_u_int
	Name
	Synopsis
	Description
	Return Value

	xdrstdio_create
	Name
	Synopsis
	Description
	Return Value

	13.6 Interfaces for libm
	13.6.1 Math
	13.6.1.1 Interfaces for Math

	13.7 Data Definitions for libm
	13.7.1 complex.h
	13.7.2 fenv.h
	13.7.3 math.h

	13.8 Interface Definitions for libm
	__finite
	Name
	Synopsis
	Description

	__finitef
	Name
	Synopsis
	Description

	__finitel
	Name
	Synopsis
	Description

	__fpclassify
	Name
	Synopsis
	Description

	__fpclassifyf
	Name
	Synopsis
	Description

	__signbit
	Name
	Synopsis
	Description

	__signbitf
	Name
	Synopsis
	Description

	clog10
	Name
	Synopsis
	Description
	Return Value

	clog10f
	Name
	Synopsis
	Description
	Return Value

	clog10l
	Name
	Synopsis
	Description
	Return Value

	drem
	Name
	Synopsis
	Description
	Returns
	See Also

	dremf
	Name
	Synopsis
	Description
	Returns
	See Also

	dreml
	Name
	Synopsis
	Description
	Returns
	See Also

	exp10
	Name
	Synopsis
	Description
	Returns
	See Also

	exp10f
	Name
	Synopsis
	Description
	Returns
	See Also

	exp10l
	Name
	Synopsis
	Description
	Returns
	See Also

	fedisableexcept
	Name
	Synopsis
	Description
	Return Value
	Errors

	feenableexcept
	Name
	Synopsis
	Description
	Return Value
	Errors

	fegetexcept
	Name
	Synopsis
	Description
	Return Value
	Errors

	finite
	Name
	Synopsis
	Description
	Returns
	See Also

	finitef
	Name
	Synopsis
	Description
	Returns
	See Also

	finitel
	Name
	Synopsis
	Description
	Returns
	See Also

	gamma
	Name
	Synopsis
	Description
	Returns
	See Also

	gammaf
	Name
	Synopsis
	Description
	Returns
	See Also

	gammal
	Name
	Synopsis
	Description
	Returns
	See Also

	j0f
	Name
	Synopsis
	Description
	Returns
	See Also

	j0l
	Name
	Synopsis
	Description
	Returns
	See Also

	j1f
	Name
	Synopsis
	Description
	Returns
	See Also

	j1l
	Name
	Synopsis
	Description
	Returns
	See Also

	jnf
	Name
	Synopsis
	Description
	Returns
	See Also

	jnl
	Name
	Synopsis
	Description
	Returns
	See Also

	lgamma_r
	Name
	Synopsis
	Description
	Returns
	See Also

	lgammaf_r
	Name
	Synopsis
	Description
	Returns
	See Also

	lgammal_r
	Name
	Synopsis
	Description
	Returns
	See Also

	pow10
	Name
	Synopsis
	Description
	Returns
	See Also

	pow10f
	Name
	Synopsis
	Description
	Returns
	See Also

	pow10l
	Name
	Synopsis
	Description
	Returns
	See Also

	significand
	Name
	Synopsis
	Description
	Returns
	See Also

	significandf
	Name
	Synopsis
	Description
	Returns
	See Also

	significandl
	Name
	Synopsis
	Description
	Returns
	See Also

	sincos
	Name
	Synopsis
	Description
	Returns
	See Also

	sincosf
	Name
	Synopsis
	Description
	Returns
	See Also

	sincosl
	Name
	Synopsis
	Description
	Returns
	See Also

	y0f
	Name
	Synopsis
	Description
	Returns
	See Also

	y0l
	Name
	Synopsis
	Description
	Returns
	See Also

	y1f
	Name
	Synopsis
	Description
	Returns
	See Also

	y1l
	Name
	Synopsis
	Description
	Returns
	See Also

	ynf
	Name
	Synopsis
	Description
	Returns
	See Also

	ynl
	Name
	Synopsis
	Description
	Returns
	See Also

	13.9 Interfaces for libpthread
	13.9.1 Realtime Threads
	13.9.1.1 Interfaces for Realtime Threads

	13.9.2 Advanced Realtime Threads
	13.9.2.1 Interfaces for Advanced Realtime Threads

	13.9.3 Posix Threads
	13.9.3.1 Interfaces for Posix Threads

	13.9.4 Thread aware versions of libc interfaces
	13.9.4.1 Interfaces for Thread aware versions of libc interfaces

	13.10 Data Definitions for libpthread
	13.10.1 pthread.h
	13.10.2 semaphore.h

	13.11 Interface Definitions for libpthread
	_pthread_cleanup_pop
	Name
	Synopsis
	Description

	_pthread_cleanup_push
	Name
	Synopsis
	Description

	13.12 Interfaces for libgcc_s
	13.12.1 Unwind Library
	13.12.1.1 Interfaces for Unwind Library

	13.13 Data Definitions for libgcc_s
	13.13.1 unwind.h

	13.14 Interfaces for libdl
	13.14.1 Dynamic Loader
	13.14.1.1 Interfaces for Dynamic Loader

	13.15 Data Definitions for libdl
	13.15.1 dlfcn.h

	13.16 Interface Definitions for libdl
	dladdr
	Name
	Synopsis
	Description
	Return Value
	Errors
	Environment

	dlopen
	Name
	Synopsis
	Description

	dlsym
	Name
	Description
	The special purpose value for handle RTLD_NEXT

	13.17 Interfaces for librt
	13.17.1 Shared Memory Objects
	13.17.1.1 Interfaces for Shared Memory Objects

	13.17.2 Clock
	13.17.2.1 Interfaces for Clock

	13.17.3 Timers
	13.17.3.1 Interfaces for Timers

	13.17.4 Message Queues
	13.17.4.1 Interfaces for Message Queues

	13.18 Data Definitions for librt
	13.18.1 mqueue.h

	13.19 Interfaces for libcrypt
	13.19.1 Encryption
	13.19.1.1 Interfaces for Encryption

	13.20 Interfaces for libpam
	13.20.1 Pluggable Authentication API
	13.20.1.1 Interfaces for Pluggable Authentication API

	13.21 Data Definitions for libpam
	13.21.1 security/pam_appl.h

	13.22 Interface Definitions for libpam
	pam_acct_mgmt
	Name
	Synopsis
	Description
	Return Value

	pam_authenticate
	Name
	Synopsis
	Description
	Return Value

	pam_chauthtok
	Name
	Synopsis
	Description
	RETURN VALUE

	pam_close_session
	Name
	Synopsis
	Description
	Return Value

	pam_end
	Name
	Synopsis
	Description
	Return Value

	pam_fail_delay
	Name
	Synopsis
	Description
	Return Value

	pam_get_item
	Name
	Synopsis
	Description
	Return Value

	pam_getenv
	Name
	Synopsis
	Description
	Return Value

	pam_getenvlist
	Name
	Synopsis
	Description
	Return Value

	pam_open_session
	Name
	Synopsis
	Description
	Return Value

	pam_putenv
	Name
	Synopsis
	Description
	Return Value

	pam_set_item
	Name
	Synopsis
	Description
	Return Value

	pam_setcred
	Name
	Synopsis
	Description
	Return Value

	pam_start
	Name
	Synopsis
	Description
	Return Value
	ERRORS

	pam_strerror
	Name
	Synopsis
	Description
	Return Value

	IV Utility Libraries
	14 Utility Libraries
	14.1 Introduction
	14.2 Interfaces for libz
	14.2.1 Compression Library
	14.2.1.1 Interfaces for Compression Library

	14.3 Data Definitions for libz
	14.3.1 zlib.h

	14.4 Interface Definitions for libz
	adler32
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage (informative)

	compress
	Name
	Synopsis
	Description
	Return Value
	Errors

	compress2
	Name
	Synopsis
	Description
	Return Value
	Errors

	compressBound
	Name
	Synopsis
	Description
	Return Value
	Errors

	crc32
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage (informative)

	deflate
	Name
	Synopsis
	Description
	Flush Operation

	Return Value
	Errors

	deflateBound
	Name
	Synopsis
	Description
	Return Value
	Errors

	deflateCopy
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage (informative)

	deflateEnd
	Name
	Synopsis
	Description
	Return Value
	Errors

	deflateInit2_
	Name
	Synopsis
	Description
	Return Value
	Errors

	deflateInit_
	Name
	Synopsis
	Description
	Return Value
	Errors

	deflateParams
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage (Informative)

	deflateReset
	Name
	Synopsis
	Description
	Return Value
	Errors

	deflateSetDictionary
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage (informative)

	get_crc_table
	Name
	Synopsis
	Description
	Return Value
	Errors

	gzclose
	Name
	Synopsis
	Description
	Return Value
	Errors

	gzdopen
	Name
	Synopsis
	Description
	Example
	Return Value
	Errors

	gzeof
	Name
	Synopsis
	Description
	Return Value
	Errors

	gzerror
	Name
	Synopsis
	Description
	Return Value
	Errors

	gzflush
	Name
	Synopsis
	Description
	Flush Operation

	Return Value
	Errors

	gzgetc
	Name
	Synopsis
	Description
	Return Value
	Errors

	gzgets
	Name
	Synopsis
	Description
	Return Value
	Errors

	gzopen
	Name
	Synopsis
	Description
	Example
	Return Value
	Errors

	gzprintf
	Name
	Synopsis
	Description
	Return Value
	Errors

	gzputc
	Name
	Synopsis
	Description
	Return Value
	Errors

	gzputs
	Name
	Synopsis
	Description
	Return Value
	Errors

	gzread
	Name
	Synopsis
	Description
	Return Value
	Errors

	gzrewind
	Name
	Synopsis
	Description
	Return Value
	Errors

	gzseek
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage (informative)

	gzsetparams
	Name
	Synopsis
	Description
	Return Value
	Errors

	gztell
	Name
	Synopsis
	Description
	Return Value
	Errors

	gzwrite
	Name
	Synopsis
	Description
	Return Value
	Errors

	inflate
	Name
	Synopsis
	Description
	Flush Operation

	Return Value
	Errors

	inflateEnd
	Name
	Synopsis
	Description
	Return Value
	Errors

	inflateInit2_
	Name
	Synopsis
	Description
	Return Value
	Errors

	inflateInit_
	Name
	Synopsis
	Description
	Return Value
	Errors

	inflateReset
	Name
	Synopsis
	Description
	Return Value
	Errors

	inflateSetDictionary
	Name
	Synopsis
	Description
	Return Value
	Errors
	Application Usage (informative)

	inflateSync
	Name
	Synopsis
	Description
	Return Value
	Errors

	inflateSyncPoint
	Name
	Synopsis
	Description
	Return Value
	Errors

	uncompress
	Name
	Synopsis
	Description
	Return Value
	Errors

	zError
	Name
	Synopsis
	Description
	Return Value
	Errors

	zlibVersion
	Name
	Synopsis
	Description
	Return Value
	Errors

	14.5 Interfaces for libncurses
	14.5.1 Curses
	14.5.1.1 Interfaces for Curses

	14.6 Data Definitions for libncurses
	14.6.1 curses.h
	14.6.2 term.h

	14.7 Interfaces for libutil
	14.7.1 Utility Functions
	14.7.1.1 Interfaces for Utility Functions

	14.8 Interface Definitions for libutil
	forkpty
	Name
	Synopsis
	Description
	Return Value
	Errors

	login
	Name
	Synopsis
	Description
	Return Value
	Errors

	login_tty
	Name
	Synopsis
	Description
	Return Value
	Errors

	logout
	Name
	Synopsis
	Description
	Return Value

	logwtmp
	Name
	Synopsis
	Description
	Return Value

	openpty
	Name
	Synopsis
	Description
	Return Value
	Errors

	V Commands and Utilities
	15 Commands and Utilities
	15.1 Commands and Utilities
	15.2 Command Behavior
	ar
	Name
	Description
	Differences

	at
	Name
	Description
	Differences
	Options
	Optional Control Files

	awk
	Name
	Description
	Differences

	batch
	Name
	Description
	Optional Control Files

	bc
	Name
	Description
	Extensions

	chfn
	Name
	Synopsis
	Description
	Standard Options
	Future Directions

	chsh
	Name
	Synopsis
	Description
	Standard Options

	col
	Name
	Description
	Differences

	cpio
	Name
	Description
	Differences

	crontab
	Name
	Synopsis
	Description
	Optional Control Files

	cut
	Name
	Description
	Differences

	df
	Name
	Description
	Differences
	Options
	Operand May Identify Special File

	dmesg
	Name
	Synopsis
	Description
	Standard Options

	du
	Name
	Description
	Differences

	echo
	Name
	Synopsis
	Description
	Application Usage

	egrep
	Name
	Description

	fgrep
	Name
	Description

	file
	Name
	Description
	Differences

	find
	Name
	Description
	Differences
	Pattern Matching
	Option and Operand Handling

	fuser
	Name
	Description
	Differences
	Option Differences

	gettext
	Name
	Synopsis
	Description
	Options
	Operands
	Environment Variables
	Exit Status

	grep
	Name
	Description
	LSB Differences

	groupadd
	Name
	Synopsis
	Description
	Options

	groupdel
	Name
	Synopsis
	Description

	groupmod
	Name
	Synopsis
	Description
	Options

	groups
	Name
	Synopsis
	Description

	gunzip
	Name
	Description

	gzip
	Name
	Synopsis
	Description
	Options
	LSB Deprecated Options

	hostname
	Name
	Synopsis
	Description

	install
	Name
	Synopsis
	Description
	Standard Options

	install_initd
	Name
	Synopsis
	Description

	ipcrm
	Name
	Synopsis
	Description
	Future Directions

	ipcs
	Name
	Synopsis
	Description
	Resource display options
	Output format options
	Application Usage

	killall
	Name
	Synopsis
	Description
	Standard Options
	LSB Deprecated Options

	lpr
	Name
	Synopsis
	Description
	Standard Options

	ls
	Name
	Description
	Extensions

	lsb_release
	Name
	Synopsis
	Description
	Options
	Example

	m4
	Name
	Description
	Extensions

	md5sum
	Name
	Synopsis
	Description
	Options
	Exit Status

	mknod
	Name
	Synopsis
	Description
	Options
	Future Directions

	mktemp
	Name
	Synopsis
	Description
	Options

	more
	Name
	Description
	Differences
	Rationale

	mount
	Name
	Synopsis
	Description
	Options
	LSB Deprecated Options

	msgfmt
	Name
	Synopsis
	Description
	Options
	Operands
	Standard Input
	Environment Variables
	Standard Output
	Extended Description
	Comment Handling
	Plurals

	Exit Status
	Application Usage
	Examples

	newgrp
	Name
	Synopsis
	Description
	Differences

	od
	Name
	Synopsis
	Description
	Extensions and Differences
	Pre-POSIX and XSI Specifications
	Traditional Usage

	passwd
	Name
	Synopsis
	Description
	Options

	patch
	Name
	Description
	Extensions

	pidof
	Name
	Synopsis
	Description
	Options

	remove_initd
	Name
	Synopsis
	Description

	renice
	Name
	Description
	Differences

	sed
	Name
	Description
	LSB Differences

	sendmail
	Name
	Synopsis
	Description
	Options
	Exit status

	sh
	Name
	Description
	Shell Invocation

	shutdown
	Name
	Synopsis
	Description
	Standard Options
	Access Control

	su
	Name
	Synopsis
	Description
	Standard Options

	sync
	Name
	Synopsis
	Description

	tar
	Name
	Description
	Differences

	umount
	Name
	Synopsis
	Description
	Standard Options
	LSB Deprecated Options

	useradd
	Name
	Synopsis
	Description
	Standard Options
	Change Default Options
	Application Usage

	userdel
	Name
	Synopsis
	Description
	Options

	usermod
	Name
	Synopsis
	Description
	Options

	xargs
	Name
	Description
	Differences

	zcat
	Name
	Description
	Differences

	VI Execution Environment
	16 File System Hierarchy
	16.1 /dev: Device Files
	16.2 /etc: Host-specific system configuration
	16.2.1 File Naming Conventions

	16.3 User Accounting Databases
	16.4 Path For System Administration Utilities

	17 Additional Recommendations
	17.1 Recommendations for applications on ownership and permissions
	17.1.1 Directory Write Permissions
	17.1.2 File Write Permissions
	17.1.3 File Read and execute Permissions
	17.1.4 SUID and SGID Permissions
	17.1.5 Privileged users
	17.1.6 Changing permissions
	17.1.7 Removable Media (Cdrom, Floppy, etc.)
	17.1.8 Installable applications

	18 Additional Behaviors
	18.1 Mandatory Optional Behaviors
	18.1.1 Special Requirements

	19 Localization
	19.1 Introduction
	19.2 Regular Expressions
	19.3 Pattern Matching Notation

	VII System Initialization
	20 System Initialization
	20.1 Cron Jobs
	20.2 Init Script Actions
	20.3 Comment Conventions for Init Scripts
	20.4 Installation and Removal of Init Scripts
	20.5 Run Levels
	20.6 Facility Names
	20.7 Script Names
	20.8 Init Script Functions

	VIII Users & Groups
	21 Users & Groups
	21.1 User and Group Database
	21.2 User & Group Names
	21.3 User ID Ranges
	21.4 Rationale

	IX Package Format and Installation
	22 Software Installation
	22.1 Introduction
	22.2 Package File Format
	22.2.1 Lead Section
	22.2.2 Header Structure
	22.2.2.1 Header Record
	22.2.2.2 Index Record
	22.2.2.2.1 Index Type Values
	22.2.2.2.2 Index Tag Values

	22.2.2.3 Header Store

	22.2.3 Signature Section
	22.2.4 Header Section
	22.2.4.1 Package Information
	22.2.4.2 Installation Information
	22.2.4.3 File Information
	22.2.4.3.1 File Flags

	22.2.4.4 Dependency Information
	22.2.4.4.1 Package Dependency Values
	22.2.4.4.2 Package Dependencies Attributes

	22.2.4.5 Other Information

	22.2.5 Payload Section

	22.3 Package Script Restrictions
	22.4 Package Tools
	22.5 Package Naming
	22.6 Package Dependencies
	22.7 Package Architecture Considerations

	Annex A Alphabetical Listing of Interfaces
	A.1 libc
	A.2 libcrypt
	A.3 libdl
	A.4 libm
	A.5 libncurses
	A.6 libpam
	A.7 libpthread
	A.8 librt
	A.9 libutil
	A.10 libz

	Annex B Future Directions (Informative)
	B.1 Introduction
	B.2 Commands And Utilities
	lsbinstall
	Name
	Synopsis
	Description
	Object Types
	Examples
	Exit Status

	Annex C GNU Free Documentation License (Informative)
	C.1 PREAMBLE
	C.2 APPLICABILITY AND DEFINITIONS
	C.3 VERBATIM COPYING
	C.4 COPYING IN QUANTITY
	C.5 MODIFICATIONS
	C.6 COMBINING DOCUMENTS
	C.7 COLLECTIONS OF DOCUMENTS
	C.8 AGGREGATION WITH INDEPENDENT WORKS
	C.9 TRANSLATION
	C.10 TERMINATION
	C.11 FUTURE REVISIONS OF THIS LICENSE
	C.12 How to use this License for your documents

