

Linux Standard Base Core Specification for IA64 3.0

Linux Standard Base Core Specification for IA64 3.0
Copyright © 2004, 2005 Free Standards Group

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.1; with no Invariant Sections, with no Front-Cover Texts, and with no Back-Cover
Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Portions of the text are copyrighted by the following parties:

• The Regents of the University of California

• Free Software Foundation

• Ian F. Darwin

• Paul Vixie

• BSDI (now Wind River)

• Andrew G Morgan

• Jean-loup Gailly and Mark Adler

• Massachusetts Institute of Technology
These excerpts are being used in accordance with their respective licenses.
Linux is a trademark of Linus Torvalds.
UNIX a registered trademark of the Open Group in the United States and other countries.
LSB is a trademark of the Free Standards Group in the USA and other countries.
AMD is a trademark of Advanced Micro Devices, Inc.
Intel and Itanium are registered trademarks and Intel386 is a trademarks of Intel Corporation.
PowerPC and PowerPC Architecture are trademarks of the IBM Corporation.
OpenGL is a registered trademark of Silicon Graphics, Inc.

Contents
Foreword..vi
Introduction .. vii
I Introductory Elements ... 8

1 Scope.. 8
1.1 General.. 8
1.2 Module Specific Scope.. 8

2 Normative References... 9
3 Requirements ... 13

3.1 Relevant Libraries ... 13
3.2 LSB Implementation Conformance .. 13
3.3 LSB Application Conformance.. 14

4 Definitions .. 15
5 Terminology ... 16
6 Documentation Conventions ... 18

II Executable and Linking Format (ELF)... 19
7 Introduction.. 19
8 Low Level System Information.. 20

8.1 Machine Interface.. 20
8.2 Function Calling Sequence... 24
8.3 Operating System Interface ... 25
8.4 Process Initialization... 26
8.5 Coding Examples .. 28
8.6 C Stack Frame .. 29
8.7 Debug Information ... 29

9 Object Format... 30
9.1 Introduction ... 30
9.2 ELF Header .. 30
9.3 Sections ... 31
9.4 Symbol Table ... 33
9.5 Relocation... 33

10 Program Loading and Dynamic Linking ... 34
10.1 Introduction ... 34
10.2 Program Header.. 34
10.3 Program Loading .. 34
10.4 Dynamic Linking... 34

III Base Libraries ... 36
11 Libraries .. 36

11.1 Program Interpreter/Dynamic Linker ... 36
11.2 Interfaces for libc ... 36
11.3 Data Definitions for libc ... 52
11.4 Interfaces for libm ... 59
11.5 Data Definitions for libm.. 63
11.6 Interfaces for libpthread... 64
11.7 Interfaces for libgcc_s ... 66
11.8 Interface Definitions for libgcc_s... 67
11.9 Interfaces for libdl ... 67
11.10 Interfaces for libcrypt.. 68

 iii

IV Utility Libraries.. 69
12 Libraries .. 69

12.1 Interfaces for libz... 69
12.2 Interfaces for libncurses.. 69
12.3 Interfaces for libutil... 69

V Package Format and Installation.. 71
13 Software Installation ... 71

13.1 Package Dependencies ... 71
13.2 Package Architecture Considerations .. 71

A Alphabetical Listing of Interfaces.. 72
A.1 libgcc_s.. 72
A.2 libm.. 72

B GNU Free Documentation License .. 73
B.1 PREAMBLE... 73
B.2 APPLICABILITY AND DEFINITIONS... 73
B.3 VERBATIM COPYING.. 74
B.4 COPYING IN QUANTITY.. 74
B.5 MODIFICATIONS ... 75
B.6 COMBINING DOCUMENTS... 76
B.7 COLLECTIONS OF DOCUMENTS... 77
B.8 AGGREGATION WITH INDEPENDENT WORKS...................................... 77
B.9 TRANSLATION ... 77
B.10 TERMINATION ... 77
B.11 FUTURE REVISIONS OF THIS LICENSE .. 77
B.12 How to use this License for your documents... 78

iv

List of Figures
8-1 Structure Smaller Than A Word .. 22
8-2 No Padding... 22
8-3 Internal and Tail Padding... 23
8-4 Bit-Field Ranges ... 23

 v

Foreword
This is version 3.0 of the Linux Standard Base Core Specification for IA64. This
specification is part of a family of specifications under the general title "Linux
Standard Base". Developers of applications or implementations interested in using
the LSB trademark should see the Free Standards Group Certification Policy for
details.

 vi

Introduction
The LSB defines a binary interface for application programs that are compiled and
packaged for LSB-conforming implementations on many different hardware
architectures. Since a binary specification shall include information specific to the
computer processor architecture for which it is intended, it is not possible for a
single document to specify the interface for all possible LSB-conforming
implementations. Therefore, the LSB is a family of specifications, rather than a
single one.

This document should be used in conjunction with the documents it references.
This document enumerates the system components it includes, but descriptions of
those components may be included entirely or partly in this document, partly in
other documents, or entirely in other reference documents. For example, the section
that describes system service routines includes a list of the system routines
supported in this interface, formal declarations of the data structures they use that
are visible to applications, and a pointer to the underlying referenced specification
for information about the syntax and semantics of each call. Only those routines not
described in standards referenced by this document, or extensions to those
standards, are described in the detail. Information referenced in this way is as much
a part of this document as is the information explicitly included here.

The specification carries a version number of either the form x.y or x.y.z. This
version number carries the following meaning:

• The first number (x) is the major version number. All versions with the same
major version number should share binary compatibility. Any addition or
deletion of a new library results in a new version number. Interfaces marked as
deprecated may be removed from the specification at a major version change.

• The second number (y) is the minor version number. Individual interfaces may be
added if all certified implementations already had that (previously
undocumented) interface. Interfaces may be marked as deprecated at a minor
version change. Other minor changes may be permitted at the discretion of the
LSB workgroup.

• The third number (z), if present, is the editorial level. Only editorial changes
should be included in such versions.

 vii

1 Scope

1.1 General
The Linux Standard Base (LSB) defines a system interface for compiled applications
and a minimal environment for support of installation scripts. Its purpose is to
enable a uniform industry standard environment for high-volume applications
conforming to the LSB.

These specifications are composed of two basic parts: A common specification
("LSB-generic") describing those parts of the interface that remain constant across all
implementations of the LSB, and an architecture-specific specification ("LSB-arch")
describing the parts of the interface that vary by processor architecture. Together,
the LSB-generic and the architecture-specific supplement for a single hardware
architecture provide a complete interface specification for compiled application
programs on systems that share a common hardware architecture.

The LSB-generic document shall be used in conjunction with an architecture-
specific supplement. Whenever a section of the LSB-generic specification shall be
supplemented by architecture-specific information, the LSB-generic document
includes a reference to the architecture supplement. Architecture supplements may
also contain additional information that is not referenced in the LSB-generic
document.

The LSB contains both a set of Application Program Interfaces (APIs) and
Application Binary Interfaces (ABIs). APIs may appear in the source code of
portable applications, while the compiled binary of that application may use the
larger set of ABIs. A conforming implementation shall provide all of the ABIs listed
here. The compilation system may replace (e.g. by macro definition) certain APIs
with calls to one or more of the underlying binary interfaces, and may insert calls to
binary interfaces as needed.

The LSB is primarily a binary interface definition. Not all of the source level APIs
available to applications may be contained in this specification.

1.2 Module Specific Scope
This is the Itanium architecture specific Core module of the Linux Standards Base
(LSB). This module supplements the generic LSB Core module with those interfaces
that differ between architectures.

Interfaces described in this module are mandatory except where explicitly listed
otherwise. Core interfaces may be supplemented by other modules; all modules are
built upon the core.

 8

2 Normative References
The specifications listed below are referenced in whole or in part by the Linux
Standard Base. In this specification, where only a particular section of one of these
references is identified, then the normative reference is to that section alone, and the
rest of the referenced document is informative.

Table 2-1 Normative References

Name Title URL

DWARF Debugging
Information Format,
Revision 2.0.0

DWARF Debugging
Information Format,
Revision 2.0.0 (July 27,
1993)

http://refspecs.freestand
ards.org/dwarf/dwarf-
2.0.0.pdf

DWARF Debugging
Information Format,
Revision 3.0.0 (Draft)

DWARF Debugging
Information Format,
Revision 3.0.0 (Draft)

http://refspecs.freestand
ards.org/dwarf/

Filesystem Hierarchy
Standard

Filesystem Hierarchy
Standard (FHS) 2.3

http://www.pathname.c
om/fhs/

IEC 559/IEEE 754
Floating Point

IEC 559:1989 Binary
floating-point arithmetic
for microprocessor
systems

http://www.ieee.org/

Intel® Itanium ™
Processor-specific
Application Binary
Interface

Intel® Itanium ™
Processor-specific
Application Binary
Interface

http://refspecs.freestand
ards.org/elf/IA64-SysV-
psABI.pdf

ISO C (1999) ISO/IEC 9899: 1999,
Programming Languages
--C

ISO POSIX (2003) ISO/IEC 9945-1:2003
Information technology -
- Portable Operating
System Interface (POSIX)
-- Part 1: Base Definitions

ISO/IEC 9945-2:2003
Information technology -
- Portable Operating
System Interface (POSIX)
-- Part 2: System
Interfaces

ISO/IEC 9945-3:2003
Information technology -
- Portable Operating
System Interface (POSIX)
-- Part 3: Shell and
Utilities

http://www.unix.org/v
ersion3/

 9

2 Normative References

Name Title URL

ISO/IEC 9945-4:2003
Information technology -
- Portable Operating
System Interface (POSIX)
-- Part 4: Rationale

Including Technical Cor.
1: 2004

ISO/IEC TR14652 ISO/IEC Technical
Report 14652:2002
Specification method for
cultural conventions

Itanium ™ Architecture
Software Developer's
Manual Volume 1

Itanium ™ Architecture
Software Developer's
Manual Volume 1:
Application Architecture

http://refspecs.freestand
ards.org/IA64-
softdevman-vol1.pdf

Itanium ™ Architecture
Software Developer's
Manual Volume 2

Itanium ™ Architecture
Software Developer's
Manual Volume 2:
System Architecture

http://refspecs.freestand
ards.org/IA64-
softdevman-vol2.pdf

Itanium ™ Architecture
Software Developer's
Manual Volume 3

Itanium ™ Architecture
Software Developer's
Manual Volume 3:
Instruction Set Reference

http://refspecs.freestand
ards.org/IA64-
softdevman-vol3.pdf

Itanium ™ Architecture
Software Developer's
Manual Volume 4

IA-64 Processor
Reference: Intel®
Itanium ™ Processor
Reference Manual for
Software Development

http://refspecs.freestand
ards.org/IA64-
softdevman-vol4.pdf

Itanium ™ Software
Conventions and
Runtime Guide

Itanium ™ Software
Conventions & Runtime
Architecture Guide,
September 2000

http://refspecs.freestand
ards.org/IA64conventio
ns.pdf

ITU-T V.42 International
Telecommunication
Union Recommendation
V.42 (2002): Error-
correcting procedures for
DCEs using
asynchronous-to-
synchronous
conversionITUV

http://www.itu.int/rec/
recommendation.asp?typ
e=folders&lang=e&paren
t=T-REC-V.42

Large File Support Large File Support http://www.UNIX-
systems.org/version2/w
hatsnew/lfs20mar.html

Li18nux Globalization LI18NUX 2000 http://www.li18nux.org

10

 2 Normative References

Name Title URL
Specification Globalization

Specification, Version 1.0
with Amendment 4

/docs/html/LI18NUX-
2000-amd4.htm

Linux Allocated Device
Registry

LINUX ALLOCATED
DEVICES

http://www.lanana.org
/docs/device-
list/devices.txt

PAM Open Software
Foundation, Request For
Comments: 86.0 ,
October 1995, V. Samar
& R.Schemers (SunSoft)

http://www.opengroup.
org/tech/rfc/mirror-
rfc/rfc86.0.txt

RFC 1321: The MD5
Message-Digest
Algorithm

IETF RFC 1321: The MD5
Message-Digest
Algorithm

http://www.ietf.org/rfc
/rfc1321.txt

RFC 1833: Binding
Protocols for ONC RPC
Version 2

IETF RFC 1833: Binding
Protocols for ONC RPC
Version 2

http://www.ietf.org/rfc
/rfc1833.txt

RFC 1950: ZLIB
Compressed Data
Format Specication

IETF RFC 1950: ZLIB
Compressed Data
Format Specification

http://www.ietf.org/rfc
/rfc1950.txt

RFC 1951: DEFLATE
Compressed Data
Format Specification

IETF RFC 1951:
DEFLATE Compressed
Data Format
Specification version 1.3

http://www.ietf.org/rfc
/rfc1951.txt

RFC 1952: GZIP File
Format Specification

IETF RFC 1952: GZIP file
format specification
version 4.3

http://www.ietf.org/rfc
/rfc1952.txt

RFC 2440: OpenPGP
Message Format

IETF RFC 2440:
OpenPGP Message
Format

http://www.ietf.org/rfc
/rfc2440.txt

RFC 2821:Simple Mail
Transfer Protocol

IETF RFC 2821: Simple
Mail Transfer Protocol

http://www.ietf.org/rfc
/rfc2821.txt

RFC 2822:Internet
Message Format

IETF RFC 2822: Internet
Message Format

http://www.ietf.org/rfc
/rfc2822.txt

RFC 791:Internet
Protocol

IETF RFC 791: Internet
Protocol Specification

http://www.ietf.org/rfc
/rfc791.txt

SUSv2 CAE Specification,
January 1997, System
Interfaces and Headers
(XSH),Issue 5 (ISBN: 1-
85912-181-0, C606)

http://www.opengroup.
org/publications/catalo
g/un.htm

SUSv2 Commands and
Utilities

The Single UNIX®
Specification(SUS)
Version 2, Commands

http://www.opengroup.
org/publications/catalo

 11

2 Normative References

Name Title URL
and Utilities (XCU), Issue
5 (ISBN: 1-85912-191-8,
C604)

g/un.htm

SVID Issue 3 American Telephone and
Telegraph Company,
System V Interface
Definition, Issue 3 ;
Morristown, NJ, UNIX
Press, 1989.(ISBN
0201566524)

SVID Issue 4 System V Interface
Definition,Fourth Edition

System V ABI System V Application
Binary Interface, Edition
4.1

http://www.caldera.co
m/developers/devspecs
/gabi41.pdf

System V ABI Update System V Application
Binary Interface - DRAFT
- 17 December 2003

http://www.caldera.co
m/developers/gabi/200
3-12-17/contents.html

this specification Linux Standard Base http://www.linuxbase.o
rg/spec/

X/Open Curses CAE Specification, May
1996, X/Open Curses,
Issue 4, Version 2 (ISBN:
1-85912-171-3, C610),
plus Corrigendum U018

http://www.opengroup.
org/publications/catalo
g/un.htm

12

3 Requirements

3.1 Relevant Libraries
The libraries listed in Table 3-1 shall be available on IA64 Linux Standard Base
systems, with the specified runtime names. These names override or supplement
the names specified in the generic LSB specification. The specified program
interpreter, referred to as proginterp in this table, shall be used to load the shared
libraries specified by DT_NEEDED entries at run time.

Table 3-1 Standard Library Names

Library Runtime Name

libm libm.so.6.1

libdl libdl.so.2

libcrypt libcrypt.so.1

libz libz.so.1

libncurses libncurses.so.5

libutil libutil.so.1

libc libc.so.6.1

libpthread libpthread.so.0

proginterp /lib/ld-lsb-ia64.so.3

libgcc_s libgcc_s.so.1
These libraries will be in an implementation-defined directory which the dynamic
linker shall search by default.

3.2 LSB Implementation Conformance
A conforming implementation shall satisfy the following requirements:

• The implementation shall implement fully the architecture described in the
hardware manual for the target processor architecture.

• The implementation shall be capable of executing compiled applications having
the format and using the system interfaces described in this document.

• The implementation shall provide libraries containing the interfaces specified by
this document, and shall provide a dynamic linking mechanism that allows these
interfaces to be attached to applications at runtime. All the interfaces shall behave
as specified in this document.

• The map of virtual memory provided by the implementation shall conform to the
requirements of this document.

• The implementation's low-level behavior with respect to function call linkage,
system traps, signals, and other such activities shall conform to the formats
described in this document.

• The implementation shall provide all of the mandatory interfaces in their entirety.

 13

3 Requirements

• The implementation may provide one or more of the optional interfaces. Each
optional interface that is provided shall be provided in its entirety. The product
documentation shall state which optional interfaces are provided.

• The implementation shall provide all files and utilities specified as part of this
document in the format defined here and in other referenced documents. All
commands and utilities shall behave as required by this document. The
implementation shall also provide all mandatory components of an application's
runtime environment that are included or referenced in this document.

• The implementation, when provided with standard data formats and values at a
named interface, shall provide the behavior defined for those values and data
formats at that interface. However, a conforming implementation may consist of
components which are separately packaged and/or sold. For example, a vendor
of a conforming implementation might sell the hardware, operating system, and
windowing system as separately packaged items.

• The implementation may provide additional interfaces with different names. It
may also provide additional behavior corresponding to data values outside the
standard ranges, for standard named interfaces.

3.3 LSB Application Conformance
A conforming application shall satisfy the following requirements:

• Its executable files are either shell scripts or object files in the format defined for
the Object File Format system interface.

• Its object files participate in dynamic linking as defined in the Program Loading
and Linking System interface.

• It employs only the instructions, traps, and other low-level facilities defined in
the Low-Level System interface as being for use by applications.

• If it requires any optional interface defined in this document in order to be
installed or to execute successfully, the requirement for that optional interface is
stated in the application's documentation.

• It does not use any interface or data format that is not required to be provided by
a conforming implementation, unless:

• If such an interface or data format is supplied by another application through
direct invocation of that application during execution, that application is in
turn an LSB conforming application.

• The use of that interface or data format, as well as its source, is identified in the
documentation of the application.

• It shall not use any values for a named interface that are reserved for vendor
extensions.

A strictly conforming application does not require or use any interface, facility, or
implementation-defined extension that is not defined in this document in order to
be installed or to execute successfully.

14

4 Definitions
For the purposes of this document, the following definitions, as specified in the
ISO/IEC Directives, Part 2, 2001, 4th Edition, apply:

can

 be able to; there is a possibility of; it is possible to

cannot

 be unable to; there is no possibilty of; it is not possible to

may

 is permitted; is allowed; is permissible

need not

 it is not required that; no...is required

shall

 is to; is required to; it is required that; has to; only...is permitted; it is necessary

shall not

 is not allowed [permitted] [acceptable] [permissible]; is required to be not; is
required that...be not; is not to be

should

 it is recommended that; ought to

should not

 it is not recommended that; ought not to

 15

5 Terminology
For the purposes of this document, the following terms apply:

archLSB

 The architectural part of the LSB Specification which describes the specific
parts of the interface that are platform specific. The archLSB is complementary
to the gLSB.

Binary Standard

 The total set of interfaces that are available to be used in the compiled binary
code of a conforming application.

gLSB

 The common part of the LSB Specification that describes those parts of the
interface that remain constant across all hardware implementations of the LSB.

implementation-defined

 Describes a value or behavior that is not defined by this document but is
selected by an implementor. The value or behavior may vary among
implementations that conform to this document. An application should not
rely on the existence of the value or behavior. An application that relies on such
a value or behavior cannot be assured to be portable across conforming
implementations. The implementor shall document such a value or behavior so
that it can be used correctly by an application.

Shell Script

 A file that is read by an interpreter (e.g., awk). The first line of the shell script
includes a reference to its interpreter binary.

Source Standard

 The set of interfaces that are available to be used in the source code of a
conforming application.

undefined

 Describes the nature of a value or behavior not defined by this document
which results from use of an invalid program construct or invalid data input.
The value or behavior may vary among implementations that conform to this
document. An application should not rely on the existence or validity of the
value or behavior. An application that relies on any particular value or
behavior cannot be assured to be portable across conforming implementations.

unspecified

 Describes the nature of a value or behavior not specified by this document
which results from use of a valid program construct or valid data input. The
value or behavior may vary among implementations that conform to this
document. An application should not rely on the existence or validity of the
value or behavior. An application that relies on any particular value or
behavior cannot be assured to be portable across conforming implementations.

 16

 5 Terminology

Other terms and definitions used in this document shall have the same meaning as
defined in Chapter 3 of the Base Definitions volume of ISO POSIX (2003).

 17

6 Documentation Conventions
Throughout this document, the following typographic conventions are used:

function()

 the name of a function

command

 the name of a command or utility

CONSTANT

 a constant value

parameter

 a parameter

variable

 a variable

Throughout this specification, several tables of interfaces are presented. Each entry
in these tables has the following format:

name

 the name of the interface

(symver)

 An optional symbol version identifier, if required.

[refno]

 A reference number indexing the table of referenced specifications that follows
this table.

For example,

forkpty(GLIBC_2.0) [1]
refers to the interface named forkpty() with symbol version GLIBC_2.0 that is
defined in the first of the listed references below the table.

 18

7 Introduction
Executable and Linking Format (ELF) defines the object format for compiled
applications. This specification supplements the information found in System V ABI
Update and Intel® Itanium ™ Processor-specific Application Binary Interface, and
is intended to document additions made since the publication of that document.

 19

8 Low Level System Information

8.1 Machine Interface

8.1.1 Processor Architecture
The Itanium™ Architecture is specified by the following documents

• Itanium ™ Architecture Software Developer's Manual Volume 1

• Itanium ™ Architecture Software Developer's Manual Volume 2

• Itanium ™ Architecture Software Developer's Manual Volume 3

• Itanium ™ Architecture Software Developer's Manual Volume 4

• Itanium ™ Software Conventions and Runtime Guide

• Intel® Itanium ™ Processor-specific Application Binary Interface

Only the features of the Itanium™ processor instruction set may be assumed to be
present. An application should determine if any additional instruction set features
are available before using those additional features. If a feature is not present, then
the application may not use it.

Only instructions which do not require elevated privileges may be used by the
application.

Applications may not make system calls directly. The interfaces in the
implementation base libraries must be used instead.

There are some features of the Itanium™ processor architecture that need not be
supported by a conforming implementation. These are described in this chapter. A
conforming application shall not rely on these features.

Applications conforming to this specification must provide feedback to the user if a
feature that is required for correct execution of the application is not present.
Applications conforming to this specification should attempt to execute in a
diminished capacity if a required feature is not present.

This specfication does not provide any performance guarantees of a conforming
system. A system conforming to this specification may be implemented in either
hardware or software.

This specification describes only LP64 (i.e. 32-bit integers, 64-bit longs and pointers)
based implementations. Implementations may also provide ILP32 (32-bit integers,
longs, and pointers), but conforming applications shall not rely on support for
ILP32. See section 1.2 of the Intel® Itanium ™ Processor-specific Application Binary
Interface for further information.

8.1.2 Data Representation
The following sections, in conjunction with section 4 of Itanium ™ Software
Conventions and Runtime Guide, define the size, alignment requirements, and
hardware representation of the standard C data types.

Within this specification, the term byte refers to an 8-bit object, the term halfword
refers to a 16-bit object, the term word refers to a 32-bit object, the term doubleword
refers to a 64-bit object, and the term quadword refers to a 128-bit object.

 20

 8 Low Level System Information

8.1.2.1 Byte Ordering
LSB-conforming applications shall use little-endian byte ordering. LSB-conforming
implementations may support big-endian applications.

8.1.2.2 Fundamental Types
Table 8-1 describes how fundemental C language data types shall be represented:

Table 8-1 Scalar Types

Type C sizeof Alignment
(bytes)

Hardware
Representa-
tion

_Bool 1 1 byte (sign un-
specified)

char 1 1 signed byte

signed char

unsigned char signed byte

short 2 2 signed half-
word

signed short

unsigned
short

 unsigned
halfword

int 4 4 signed word

signed int

unsigned int unsigned
word

long 8 8 signed dou-
bleword

signed long

unsigned
long

 unsigned
doubleword

long long 8 8 signed dou-
bleword

signed long
long

Integral

unsigned
long long

 unsigned
doubleword

any-type * 8 8 unsigned
doubleword

Pointer

any-type
(*)()

Floating-Point float 4 4 IEEE Single-

 21

8 Low Level System Information

Type C sizeof Alignment
(bytes)

Hardware
Representa-
tion
precision

double 8 8 IEEE Double-
precision

long double 16 16 IEEE Double-
extended

A null pointer (for all types) shall have the value zero.

8.1.2.3 Aggregates and Unions
Aggregates (structures and arrays) and unions assume the alignment of their most
strictly aligned component. The size of any object, including aggregates and unions,
shall always be a multiple of the object's alignment. An array uses the same
alignment as its elements. Structure and union objects may require padding to meet
size and element constraints. The contents of such padding is undefined.

• An entire structure or union object shall be aligned on the same boundary as its
most strictly aligned member.

• Each member shall be assigned to the lowest available offset with the appropriate
alignment. This may require internal padding, depending on the previous member.

• A structure's size shall be increased, if necessary, to make it a multiple of the
alignment. This may require tail padding, depending on the last member.

A conforming application shall not read padding.

 struct {
 char c;
 }

 Byte aligned, sizeof is 1
Offset Byte 0

0 c0

Figure 8-1 Structure Smaller Than A Word

 struct {
 char c;
 char d;
 short s;
 int i;
 long l;
 }

Doubleword Aligned, sizeof is 16
Offset Byte 3 Byte 2 Byte 1 Byte 0

0 s2 d1 c0

4 i0

22

 8 Low Level System Information

Offset Byte 3 Byte 2 Byte 1 Byte 0

8 l0

12

Figure 8-2 No Padding

 struct {
 char c;
 long l;
 int i;
 short s;
 }

Doubleword Aligned, sizeof is 24
Offset Byte 3 Byte 2 Byte 1 Byte 0

0 pad1 c0

4 pad1

8 l0

12

16 i0

20 pad2 s0

Figure 8-3 Internal and Tail Padding

8.1.2.4 Bit Fields
C struct and union definitions may have bit-fields, which define integral objects
with a specified number of bits.

Bit fields that are declared with neither signed nor unsigned specifier shall always
be treated as unsigned. Bit fields obey the same size and alignment rules as other
structure and union members, with the following additional properties:

• Bit-fields are allocated from right to left (least to most significant).

• A bit-field must entirely reside in a storage unit for its appropriate type. A bit
field shall never cross its unit boundary.

• Bit-fields may share a storage unit with other struct/union members, including
members that are not bit fields. Such other struct/union members shall occupy
different parts of the storage unit.

• The type of unnamed bit-fields shall not affect the alignment of a structure or un-
ion, although individual bit-field member offsets shall obey the alignment con-
straints.

Bit-field Type Width w Range
signed char
char
unsigned char

1 to 8
-2w-1 to 2w-1-1
0 to 2w-1
0 to 2w-1

 23

8 Low Level System Information

Bit-field Type Width w Range
signed short
short
unsigned short

1 to 16
-2w-1 to 2w-1-1
0 to 2w-1
0 to 2w-1

signed int
int
unsigned int

1 to 32
-2w-1 to 2w-1-1
0 to 2w-1
0 to 2w-1

signed long
long
unsigned long

1 to 64
-2w-1 to 2w-1-1
0 to 2w-1
0 to 2w-1

Figure 8-4 Bit-Field Ranges

8.2 Function Calling Sequence
LSB-conforming applications shall use the procedure linkage and function calling
sequence as defined in Chapter 8.4 of the Itanium ™ Software Conventions and
Runtime Guide.

8.2.1 Registers
The CPU general and other registers are as defined in the Itanium ™ Architecture
Software Developer's Manual Volume 1 Section 3.1.

8.2.2 Floating Point Registers
The floating point registers are as defined in the Itanium ™ Architecture Software
Developer's Manual Volume 1 Section 3.1.

8.2.3 Stack Frame
The stackframe layout is as described in the Itanium ™ Software Conventions and
Runtime Guide Chapter 8.4.

8.2.4 Arguments

8.2.4.1 Introduction
The procedure parameter passing mechanism is as described in the Itanium ™
Software Conventions and Runtime Guide Chapter 8.5. The following subsections
provide additional information.

8.2.4.2 Integral/Pointer
See Itanium ™ Software Conventions and Runtime Guide Chapter 8.5.

8.2.4.3 Floating Point
See Itanium ™ Software Conventions and Runtime Guide Chapter 8.5.

8.2.4.4 Struct and Union Point
See Itanium ™ Software Conventions and Runtime Guide Chapter 8.5.

24

 8 Low Level System Information

8.2.4.5 Variable Arguments
See Itanium ™ Software Conventions and Runtime Guide Chapter 8.5.4.

8.2.5 Return Values

8.2.5.1 Introduction
Values are returned from functions as described in Itanium ™ Software
Conventions and Runtime Guide Chapter 8.6, and as further described here.

8.2.5.2 Void
Functions that return no value (void functions) are not required to put any
particular value in any general register.

8.2.5.3 Integral/Pointer
See Itanium ™ Software Conventions and Runtime Guide Chapter 8.6.

8.2.5.4 Floating Point
See Itanium ™ Software Conventions and Runtime Guide Chapter 8.6.

8.2.5.5 Struct and Union
See Itanium ™ Software Conventions and Runtime Guide Chapter 8.6 (aggregate
return values). Depending on the size (including any padding), aggregate data
types may be passed in one or more general registers, or in memory.

8.3 Operating System Interface
LSB-conforming applications shall use the Operating System Interfaces as defined
in Chapter 3 of the Intel® Itanium ™ Processor-specific Application Binary
Interface.

8.3.1 Processor Execution Mode
Applications must assume that they will execute in the least privileged user mode
(i.e. level 3). Other privilege levels are reserved for the Operating System.

8.3.2 Exception Interface

8.3.2.1 Introduction
LSB-conforming implementations shall support the exception interface as specified
in Intel® Itanium ™ Processor-specific Application Binary Interface, section 3.3.1.

8.3.2.2 Hardware Exception Types
See Intel® Itanium ™ Processor-specific Application Binary Interface, section 3.3.1.

8.3.2.3 Software Trap Types
See Intel® Itanium ™ Processor-specific Application Binary Interface, section 3.3.1.

8.3.3 Signal Delivery
LSB-conforming systems shall deliver signals as specified in Intel® Itanium ™
Processor-specific Application Binary Interface, section 3.3.2.

 25

8 Low Level System Information

8.3.3.1 Signal Handler Interface
The signal handler interface shall be as specified in Intel® Itanium ™ Processor-
specific Application Binary Interface, section 3.3.3.

8.3.4 Debugging Support
The LSB does not specify debugging information.

8.3.5 Process Startup
LSB-conforming systems shall initialize processes as specified in Intel® Itanium ™
Processor-specific Application Binary Interface, section 3.3.5.

8.4 Process Initialization
LSB-conforming applications shall use the Process Startup as defined in Section
3.3.5 of the Intel® Itanium ™ Processor-specific Application Binary Interface.

8.4.1 Special Registers
Intel® Itanium ™ Processor-specific Application Binary Interface, section 3.3.5,
defines required register initializations for process startup.

8.4.2 Process Stack (on entry)
As defined in Intel® Itanium ™ Processor-specific Application Binary Interface,
section 3.3.5, the return pointer register (rp) shall contain a valid return address,
such that if the application program returns from the main entry routine, the
implementation shall cause the application to exit normally, using the returned
value as the exit status. Further, the unwind information for this "bottom of stack"
routine in the implementation shall provide a mechanism for recognizing the
bottom of the stack during a stack unwind.

8.4.3 Auxiliary Vector
The auxiliary vector conveys information from the operating system to the
application. Only the terminating null auxiliary vector entry is required, but if any
other entries are present, they shall be interpreted as follows. This vector is an array
of the following structures.

typedef struct
{
 long int a_type; /* Entry type */
 union
 {
 long int a_val; /* Integer value */
 void *a_ptr; /* Pointer value */
 void (*a_fcn) (void); /* Function pointer value */
 } a_un;
} auxv_t;

The application shall interpret the a_un value according to the a_type. Other
auxiliary vector types are reserved.

The a_type field shall contain one of the following values:

AT_NULL

 The last entry in the array has type AT_NULL. The value in a_un is undefined.

26

 8 Low Level System Information

AT_IGNORE

 The value in a_un is undefined, and should be ignored.

AT_EXECFD

 File descriptor of program

AT_PHDR

 Program headers for program

AT_PHENT

 Size of program header entry

AT_PHNUM

 Number of program headers

AT_PAGESZ

 System page size

AT_BASE

 Base address of interpreter

AT_FLAGS

 Flags

AT_ENTRY

 Entry point of program

AT_NOTELF

 Program is not ELF

AT_UID

 Real uid

AT_EUID

 Effective uid

AT_GID

 Real gid

AT_EGID

 Effective gid

AT_CLKTCK

 Frequency of times()

AT_PLATFORM

 String identifying platform.

 27

8 Low Level System Information

AT_HWCAP

 Machine dependent hints about processor capabilities.

AT_FPUCW

 Used FPU control word

AT_DCACHEBSIZE

 Data cache block size

AT_ICACHEBSIZE

 Instruction cache block size

AT_UCACHEBSIZE

 Unified cache block size

Note: The auxiliary vector is intended for passing information from the operating
system to the program interpreter.

8.4.4 Environment
Although a pointer to the environment vector should be available as a third
argument to the main() entry point, conforming applications should use getenv()
to access the environment. (See ISO POSIX (2003), Section exec()).

8.5 Coding Examples

8.5.1 Introduction
LSB-conforming applications may implement fundamental operations using the
Coding Examples as shown below.

Sample code sequences and coding conventions can be found in Itanium ™
Software Conventions and Runtime Guide, Chapter 9.

8.5.2 Code Model Overview/Architecture Constraints
As defined in Intel® Itanium ™ Processor-specific Application Binary Interface,
relocatable files, executable files, and shared object files that are supplied as part of
an application shall use Position Independent Code, as described in Itanium ™
Software Conventions and Runtime Guide, Chapter 12.

8.5.3 Position-Independent Function Prologue
See Itanium ™ Software Conventions and Runtime Guide, Chapter 8.4.

8.5.4 Data Objects
See Intel® Itanium ™ Processor-specific Application Binary Interface, Chapter 5.3.4,
and Itanium ™ Software Conventions and Runtime Guide, Chapter 12.3.

8.5.4.1 Absolute Load & Store
Conforming applications shall not use absolute addressing.

8.5.4.2 Position Relative Load & Store
See Intel® Itanium ™ Processor-specific Application Binary Interface, Chapter 5.3.4.

28

 8 Low Level System Information

8.5.5 Function Calls
See Itanium ™ Software Conventions and Runtime Guide, Chapter 8.4.

Four types of procedure call are defined in Itanium ™ Software Conventions and
Runtime Guide, Chapter 8.3. Although special calling conventions are permitted,
provided that the compiler and runtime library agree on these conventions, none
are defined for this standard. Consequently, no application shall depend on a type
of procedure call other than Direct Calls, Direct Dynamically Linked Calls, or
Indirect Calls, as defined in Itanium ™ Software Conventions and Runtime Guide,
Chapter 8.3.

8.5.5.1 Absolute Direct Function Call
Conforming applications shall not use absolute addressing.

8.5.5.2 Absolute Indirect Function Call
Conforming applications shall not use absolute addressing.

8.5.5.3 Position-Independent Direct Function Call
See Itanium ™ Software Conventions and Runtime Guide, Chapter 8.4.1.

8.5.5.4 Position-Independent Indirect Function Call
See Itanium ™ Software Conventions and Runtime Guide, Chapter 8.4.2.

8.5.6 Branching
Branching is described in Itanium ™ Architecture Software Developer's Manual
Volume 4, Chapter 4.5.

8.5.6.1 Branch Instruction
See Itanium ™ Architecture Software Developer's Manual Volume 4, Chapter 4.5.

8.5.6.2 Absolute switch() code
Conforming applications shall not use absolute addressing.

8.5.6.3 Position-Independent switch() code
Where there are several possible targets for a branch, the compiler may use a
number of different code generation strategies. See Itanium ™ Software
Conventions and Runtime Guide, Chapter 9.1.7.

8.6 C Stack Frame

8.6.1 Variable Argument List
See Itanium ™ Software Conventions and Runtime Guide, Chapter 8.5.2, and 8.5.4.

8.6.2 Dynamic Allocation of Stack Space
The C library alloca() function should be used to dynamically allocate stack
space.

8.7 Debug Information
The LSB does not currently specify the format of Debug information.

 29

9 Object Format

9.1 Introduction
LSB-conforming implementations shall support an object file , called Executable
and Linking Format (ELF) as defined by the System V ABI, Intel® Itanium ™
Processor-specific Application Binary Interface and as supplemented by the Linux
Standard Base Specification and this document.

9.2 ELF Header

9.2.1 Machine Information
LSB-conforming applications shall use the Machine Information as defined in
Intel® Itanium ™ Processor-specific Application Binary Interface, Chapter 4.
Implementations shall support the LP64 model. It is unspecified whether or not the
ILP32 model shall also be supported.

9.2.1.1 File Class
For LP64 relocatable objects, the file class value in e_ident[EI_CLASS] may be
either ELFCLASS32 or ELFCLASS64, and a conforming linker must be able to
process either or both classes.

9.2.1.2 Data Encoding
Implementations shall support 2's complement, little endian data encoding. The
data encoding value in e_ident[EI_DATA] shall contain the value ELFDATA2LSB.

9.2.1.3 OS Identification
The OS Identification field e_ident[EI_OSABI] shall contain the value
ELFOSABI_NONE.

9.2.1.4 Processor Identification
The processor identification value held in e_machine shall contain the value
EM_IA_64.

9.2.1.5 Processor Specific Flags
The flags field e_flags shall be as described in Intel® Itanium ™ Processor-specific
Application Binary Interface, Chapter 4.1.1.6.

The following additional processor-specific flags are defined:

Table 9-1 Additional Processor-Specific Flags

Name Value

EF_IA_64_LINUX_EXECUTABLE_ST
ACK

0x00000001

EF_IA_64_LINUX_EXECUTABLE_STACK

 The stack and heap sections are executable. If this flag is not set, code can not
be executed from the stack or heap.

 30

 9 Object Format

9.3 Sections
The Itanium™ architecture defines two processor-specific section types, as
described in Intel® Itanium ™ Processor-specific Application Binary Interface,
Chapter 4.

9.3.1 Special Sections
The following sections are defined in the Intel® Itanium ™ Processor-specific
Application Binary Interface.

Table 9-2 ELF Special Sections

Name Type Attributes

.got SHT_PROGBITS SHF_ALLOC+SHF_WRI
TE+SHF_IA_64_SHORT

.IA_64.archext SHT_IA_64_EXT 0

.IA_64.pltoff SHT_PROGBITS SHF_ALLOC+SHF_WRI
TE+SHF_IA_64_SHORT

.IA_64.unwind SHT_IA_64_UNWIND SHF_ALLOC+SHF_LIN
K_ORDER

.IA_64.unwind_info SHT_PROGBITS SHF_ALLOC

.plt SHT_PROGBITS SHF_ALLOC+SHF_EXE
CINSTR

.sbss SHT_NOBITS SHF_ALLOC+SHF_WRI
TE+SHF_IA_64_SHORT

.sdata SHT_PROGBITS SHF_ALLOC+SHF_WRI
TE+SHF_IA_64_SHORT

.sdata1 SHT_PROGBITS SHF_ALLOC+SHF_WRI
TE+SHF_IA_64_SHORT

.got

 This section holds the Global Offset Table. See `Coding Examples' in Chapter 3,
`Special Sections' in Chapter 4, and `Global Offset Table' in Chapter 5 of the
processor supplement for more information.

.IA_64.archext

 This section holds product-specific extension bits. The link editor will perform
a logical "or" of the extension bits of each object when creating an executable so
that it creates only a single .IA_64.archext section in the executable.

.IA_64.pltoff

 This section holds local function descriptor entries.

.IA_64.unwind

 This section holds the unwind function table. The contents are described in the
Intel (r) Itanium (tm) Processor Specific ABI.

 31

9 Object Format

.IA_64.unwind_info

 This section holds stack unwind and and exception handling information. The
exception handling information is programming language specific, and is
unspecified.

.plt

 This section holds the Procedure Linkage Table.

.sbss

 This section holds uninitialized data that contribute to the program''s memory
image. Data objects contained in this section are recommended to be eight
bytes or less in size. The system initializes the data with zeroes when the
program begins to run. The section occupies no file space, as indicated by the
section type SHT_NOBITS. The .sbss section is placed so it may be accessed
using short direct addressing (22 bit offset from gp).

.sdata

 This section and the .sdata1 section hold initialized data that contribute to the
program''s memory image. Data objects contained in this section are
recommended to be eight bytes or less in size. The .sdata and .sdata1 sections
are placed so they may be accessed using short direct addressing (22 bit offset
from gp).

.sdata1

 See .sdata.

9.3.2 Linux Special Sections
The following Linux IA-64 specific sections are defined here.

Table 9-3 Additional Special Sections

Name Type Attributes

.opd SHT_PROGBITS SHF_ALLOC

.rela.dyn SHT_RELA SHF_ALLOC

.rela.IA_64.pltoff SHT_RELA SHF_ALLOC
.opd

 This section holds function descriptors

.rela.dyn

 This section holds relocation information, as described in `Relocation'. These
relocations are applied to the .dyn section.

.rela.IA_64.pltoff

 This section holds relocation information, as described in `Relocation'. These
relocations are applied to the .IA_64.pltoff section.

32

 9 Object Format

9.3.3 Section Types
Section Types are described in the Intel® Itanium ™ Processor-specific Application
Binary Interface, Chapter 4.2. LSB conforming implementations are not required to
use any sections in the range from SHT_IA_64_LOPSREG to SHT_IA_64_HIPSREG.
Additionally, LSB conforming implementations are not required to support the
SHT_IA_64_PRIORITY_INIT section, beyond the gABI requirements for the
handling of unrecognized section types, linking them into a contiguous section in
the object file created by the static linker.

9.3.4 Section Attribute Flags
LSB-conforming implementations shall support the section attribute flags specified
in Intel® Itanium ™ Processor-specific Application Binary Interface, Chapter 4.2.2.

9.3.5 Special Section Types
The special section types SHT_IA64_EXT and SHT_IA64_UNWIND are defined in
Intel® Itanium ™ Processor-specific Application Binary Interface, Chapter 4.2.1.

9.4 Symbol Table
If an executable file contains a reference to a function defined in one of its
associated shared objects, the symbol table section for that file shall contain an entry
for that symbol. The st_shndx member of that symbol table entry contains
SHN_UNDEF. This signals to the dynamic linker that the symbol definition for that
function is not contained in the executable file itself. If that symbol has been
allocated a procedure linkage table entry in the executable file, and the st_value
member for that symbol table entry is non-zero, the value shall contain the virtual
address of the first instruction of that procedure linkage table entry. Otherwise, the
st_value member contains zero. This procedure linkage table entry address is used
by the dynamic linker in resolving references to the address of the function.

9.5 Relocation

9.5.1 Relocation Types
LSB-conforming systems shall support the relocation types described in Intel®
Itanium ™ Processor-specific Application Binary Interface, Chapter 4.3.

 33

10 Program Loading and Dynamic Linking

10.1 Introduction
LSB-conforming implementations shall support the object file information and
system actions that create running programs as specified in the System V ABI,
Intel® Itanium ™ Processor-specific Application Binary Interface and as
supplemented by the Linux Standard Base Specification and this document.

10.2 Program Header
The program header shall be as defined in the Intel® Itanium ™ Processor-specific
Application Binary Interface, Chapter 5.

10.2.1 Types
See Intel® Itanium ™ Processor-specific Application Binary Interface, Chapter 5.1.

10.2.2 Flags
See Intel® Itanium ™ Processor-specific Application Binary Interface, Chapter 5.1.

10.3 Program Loading
See Intel® Itanium ™ Processor-specific Application Binary Interface, Chapter 5.2.

10.4 Dynamic Linking
See Intel® Itanium ™ Processor-specific Application Binary Interface, Chapter 5.3.

10.4.1 Dynamic Entries

10.4.1.1 ELF Dynamic Entries
The following dynamic entries are defined in the Intel® Itanium ™ Processor-
specific Application Binary Interface, Chapter 5.3.2.

DT_PLTGOT

 This entry's d_ptr member gives the address of the first byte in the procedure
linkage table

10.4.1.2 Additional Dynamic Entries
The following dynamic entries are defined here.

DT_RELACOUNT

 The number of relative relocations in .rela.dyn

10.4.2 Global Offset Table
See Intel® Itanium ™ Processor-specific Application Binary Interface, Chapter 5.3.4.

10.4.3 Shared Object Dependencies
See Intel® Itanium ™ Processor-specific Application Binary Interface, Chapter 5.3.3.

 34

 10 Program Loading and Dynamic Linking

10.4.4 Function Addresses
See Intel® Itanium ™ Processor-specific Application Binary Interface, Chapter 5.3.5.

10.4.5 Procedure Linkage Table
See Intel® Itanium ™ Processor-specific Application Binary Interface, Chapter 5.3.6.

10.4.6 Initialization and Termination Functions
See Intel® Itanium ™ Processor-specific Application Binary Interface, Chapter 5.3.7.

 35

11 Libraries
An LSB-conforming implementation shall support base libraries which provide
interfaces for accessing the operating system, processor and other hardware in the
system.

Only those interfaces that are unique to the Itanium™ platform are defined here.
This section should be used in conjunction with the corresponding section in the
Linux Standard Base Specification.

11.1 Program Interpreter/Dynamic Linker
The LSB specifies the Program Interpreter to be /lib/ld-lsb-ia64.so.3.

11.2 Interfaces for libc
Table 11-1 defines the library name and shared object name for the libc library

Table 11-1 libc Definition

Library: libc

SONAME: libc.so.6.1
The behavior of the interfaces in this library is specified by the following specifica-
tions:

Large File Support
this specification
SUSv2
ISO POSIX (2003)
SVID Issue 3
SVID Issue 4

11.2.1 RPC

11.2.1.1 Interfaces for RPC
An LSB conforming implementation shall provide the architecture specific
functions for RPC specified in Table 11-2, with the full mandatory functionality as
described in the referenced underlying specification.

Table 11-2 libc - RPC Function Interfaces

authnone_cre
ate(GLIBC_2.
2) [1]

svc_getreqset(
GLIBC_2.2)
[2]

svcudp_creat
e(GLIBC_2.2)
[3]

xdr_int(GLIB
C_2.2) [2]

xdr_u_long(G
LIBC_2.2) [2]

clnt_create(G
LIBC_2.2) [1]

svc_register(
GLIBC_2.2)
[3]

xdr_accepted
_reply(GLIBC
_2.2) [2]

xdr_long(GLI
BC_2.2) [2]

xdr_u_short(
GLIBC_2.2)
[2]

clnt_pcreateer
ror(GLIBC_2.
2) [1]

svc_run(GLIB
C_2.2) [3]

xdr_array(GL
IBC_2.2) [2]

xdr_opaque(
GLIBC_2.2)
[2]

xdr_union(GL
IBC_2.2) [2]

clnt_perrno(G svc_sendrepl xdr_bool(GLI xdr_opaque_a xdr_vector(G

 36

 11 Libraries

LIBC_2.2) [1] y(GLIBC_2.2)
[3]

BC_2.2) [2] uth(GLIBC_2.
2) [2]

LIBC_2.2) [2]

clnt_perror(G
LIBC_2.2) [1]

svcerr_auth(G
LIBC_2.2) [2]

xdr_bytes(GL
IBC_2.2) [2]

xdr_pointer(G
LIBC_2.2) [2]

xdr_void(GLI
BC_2.2) [2]

clnt_spcreatee
rror(GLIBC_2
.2) [1]

svcerr_decod
e(GLIBC_2.2)
[2]

xdr_callhdr(G
LIBC_2.2) [2]

xdr_reference
(GLIBC_2.2)
[2]

xdr_wrapstri
ng(GLIBC_2.2
) [2]

clnt_sperrno(
GLIBC_2.2)
[1]

svcerr_noproc
(GLIBC_2.2)
[2]

xdr_callmsg(
GLIBC_2.2)
[2]

xdr_rejected_
reply(GLIBC_
2.2) [2]

xdrmem_crea
te(GLIBC_2.2)
[2]

clnt_sperror(
GLIBC_2.2)
[1]

svcerr_nopro
g(GLIBC_2.2)
[2]

xdr_char(GLI
BC_2.2) [2]

xdr_replymsg
(GLIBC_2.2)
[2]

xdrrec_create(
GLIBC_2.2)
[2]

key_decrypts
ession(GLIBC
_2.2) [2]

svcerr_progv
ers(GLIBC_2.
2) [2]

xdr_double(G
LIBC_2.2) [2]

xdr_short(GLI
BC_2.2) [2]

xdrrec_eof(G
LIBC_2.2) [2]

pmap_getport
(GLIBC_2.2)
[3]

svcerr_system
err(GLIBC_2.
2) [2]

xdr_enum(GL
IBC_2.2) [2]

xdr_string(GL
IBC_2.2) [2]

pmap_set(GL
IBC_2.2) [3]

svcerr_weaka
uth(GLIBC_2.
2) [2]

xdr_float(GLI
BC_2.2) [2]

xdr_u_char(G
LIBC_2.2) [2]

pmap_unset(
GLIBC_2.2)
[3]

svctcp_create(
GLIBC_2.2)
[3]

xdr_free(GLI
BC_2.2) [2]

xdr_u_int(GL
IBC_2.2) [3]

Referenced Specification(s)

[1]. SVID Issue 4

[2]. SVID Issue 3

[3]. this specification

11.2.2 System Calls

11.2.2.1 Interfaces for System Calls
An LSB conforming implementation shall provide the architecture specific
functions for System Calls specified in Table 11-3, with the full mandatory
functionality as described in the referenced underlying specification.

Table 11-3 libc - System Calls Function Interfaces

__fxstat(GLIB
C_2.2) [1]

fchmod(GLIB
C_2.2) [2]

getwd(GLIBC
_2.2) [2]

read(GLIBC_
2.2) [2]

setrlimit(GLI
BC_2.2) [2]

__getpgid(GL
IBC_2.2) [1]

fchown(GLIB
C_2.2) [2]

initgroups(GL
IBC_2.2) [1]

readdir(GLIB
C_2.2) [2]

setrlimit64(G
LIBC_2.2) [3]

__lxstat(GLIB
C_2.2) [1]

fcntl(GLIBC_2
.2) [1]

ioctl(GLIBC_2
.2) [1]

readdir_r(GLI
BC_2.2) [2]

setsid(GLIBC
_2.2) [2]

 37

11 Libraries

__xmknod(G
LIBC_2.2) [1]

fdatasync(GLI
BC_2.2) [2]

kill(GLIBC_2.
2) [1]

readlink(GLI
BC_2.2) [2]

setuid(GLIBC
_2.2) [2]

__xstat(GLIB
C_2.2) [1]

flock(GLIBC_
2.2) [1]

killpg(GLIBC
_2.2) [2]

readv(GLIBC
_2.2) [2]

sleep(GLIBC_
2.2) [2]

access(GLIBC
_2.2) [2]

fork(GLIBC_2
.2) [2]

lchown(GLIB
C_2.2) [2]

rename(GLIB
C_2.2) [2]

statvfs(GLIBC
_2.2) [2]

acct(GLIBC_2.
2) [1]

fstatvfs(GLIB
C_2.2) [2]

link(GLIBC_2.
2) [1]

rmdir(GLIBC
_2.2) [2]

stime(GLIBC_
2.2) [1]

alarm(GLIBC
_2.2) [2]

fsync(GLIBC_
2.2) [2]

lockf(GLIBC_
2.2) [2]

sbrk(GLIBC_2
.2) [4]

symlink(GLIB
C_2.2) [2]

brk(GLIBC_2.
2) [4]

ftime(GLIBC_
2.2) [2]

lseek(GLIBC_
2.2) [2]

sched_get_pri
ority_max(GL
IBC_2.2) [2]

sync(GLIBC_
2.2) [2]

chdir(GLIBC_
2.2) [2]

ftruncate(GLI
BC_2.2) [2]

mkdir(GLIBC
_2.2) [2]

sched_get_pri
ority_min(GL
IBC_2.2) [2]

sysconf(GLIB
C_2.2) [2]

chmod(GLIB
C_2.2) [2]

getcontext(GL
IBC_2.2) [2]

mkfifo(GLIBC
_2.2) [2]

sched_getpar
am(GLIBC_2.
2) [2]

time(GLIBC_
2.2) [2]

chown(GLIB
C_2.2) [2]

getegid(GLIB
C_2.2) [2]

mlock(GLIBC
_2.2) [2]

sched_getsche
duler(GLIBC_
2.2) [2]

times(GLIBC_
2.2) [2]

chroot(GLIBC
_2.2) [4]

geteuid(GLIB
C_2.2) [2]

mlockall(GLI
BC_2.2) [2]

sched_rr_get_
interval(GLIB
C_2.2) [2]

truncate(GLIB
C_2.2) [2]

clock(GLIBC_
2.2) [2]

getgid(GLIBC
_2.2) [2]

mmap(GLIBC
_2.2) [2]

sched_setpara
m(GLIBC_2.2)
[2]

ulimit(GLIBC
_2.2) [2]

close(GLIBC_
2.2) [2]

getgroups(GL
IBC_2.2) [2]

mprotect(GLI
BC_2.2) [2]

sched_setsche
duler(GLIBC_
2.2) [2]

umask(GLIBC
_2.2) [2]

closedir(GLIB
C_2.2) [2]

getitimer(GLI
BC_2.2) [2]

msync(GLIBC
_2.2) [2]

sched_yield(
GLIBC_2.2)
[2]

uname(GLIB
C_2.2) [2]

creat(GLIBC_
2.2) [2]

getloadavg(G
LIBC_2.2) [1]

munlock(GLI
BC_2.2) [2]

select(GLIBC_
2.2) [2]

unlink(GLIBC
_2.2) [1]

dup(GLIBC_2
.2) [2]

getpagesize(G
LIBC_2.2) [4]

munlockall(G
LIBC_2.2) [2]

setcontext(GL
IBC_2.2) [2]

utime(GLIBC
_2.2) [2]

dup2(GLIBC_
2.2) [2]

getpgid(GLIB
C_2.2) [2]

munmap(GLI
BC_2.2) [2]

setegid(GLIB
C_2.2) [2]

utimes(GLIB
C_2.2) [2]

execl(GLIBC_
2.2) [2]

getpgrp(GLIB
C_2.2) [2]

nanosleep(GL
IBC_2.2) [2]

seteuid(GLIB
C_2.2) [2]

vfork(GLIBC_
2.2) [2]

execle(GLIBC getpid(GLIBC nice(GLIBC_2 setgid(GLIBC wait(GLIBC_2

38

 11 Libraries

_2.2) [2] _2.2) [2] .2) [2] _2.2) [2] .2) [2]

execlp(GLIBC
_2.2) [2]

getppid(GLIB
C_2.2) [2]

open(GLIBC_
2.2) [2]

setitimer(GLI
BC_2.2) [2]

wait4(GLIBC_
2.2) [1]

execv(GLIBC
_2.2) [2]

getpriority(G
LIBC_2.2) [2]

opendir(GLIB
C_2.2) [2]

setpgid(GLIB
C_2.2) [2]

waitpid(GLIB
C_2.2) [1]

execve(GLIBC
_2.2) [2]

getrlimit(GLI
BC_2.2) [2]

pathconf(GLI
BC_2.2) [2]

setpgrp(GLIB
C_2.2) [2]

write(GLIBC_
2.2) [2]

execvp(GLIB
C_2.2) [2]

getrusage(GL
IBC_2.2) [2]

pause(GLIBC
_2.2) [2]

setpriority(GL
IBC_2.2) [2]

writev(GLIBC
_2.2) [2]

exit(GLIBC_2.
2) [2]

getsid(GLIBC
_2.2) [2]

pipe(GLIBC_2
.2) [2]

setregid(GLIB
C_2.2) [2]

fchdir(GLIBC
_2.2) [2]

getuid(GLIBC
_2.2) [2]

poll(GLIBC_2
.2) [2]

setreuid(GLIB
C_2.2) [2]

Referenced Specification(s)

[1]. this specification

[2]. ISO POSIX (2003)

[3]. Large File Support

[4]. SUSv2

11.2.3 Standard I/O

11.2.3.1 Interfaces for Standard I/O
An LSB conforming implementation shall provide the architecture specific
functions for Standard I/O specified in Table 11-4, with the full mandatory
functionality as described in the referenced underlying specification.

Table 11-4 libc - Standard I/O Function Interfaces

_IO_feof(GLI
BC_2.2) [1]

fgetpos(GLIB
C_2.2) [2]

fsetpos(GLIB
C_2.2) [2]

putchar(GLIB
C_2.2) [2]

sscanf(GLIBC
_2.2) [1]

_IO_getc(GLI
BC_2.2) [1]

fgets(GLIBC_
2.2) [2]

ftell(GLIBC_2.
2) [2]

putchar_unlo
cked(GLIBC_
2.2) [2]

telldir(GLIBC
_2.2) [2]

_IO_putc(GLI
BC_2.2) [1]

fgetwc_unloc
ked(GLIBC_2.
2) [1]

ftello(GLIBC_
2.2) [2]

puts(GLIBC_2
.2) [2]

tempnam(GLI
BC_2.2) [2]

_IO_puts(GLI
BC_2.2) [1]

fileno(GLIBC
_2.2) [2]

fwrite(GLIBC
_2.2) [2]

putw(GLIBC_
2.2) [3]

ungetc(GLIB
C_2.2) [2]

asprintf(GLIB
C_2.2) [1]

flockfile(GLIB
C_2.2) [2]

getc(GLIBC_2
.2) [2]

remove(GLIB
C_2.2) [2]

vasprintf(GLI
BC_2.2) [1]

clearerr(GLIB
C_2.2) [2]

fopen(GLIBC
_2.2) [2]

getc_unlocke
d(GLIBC_2.2)
[2]

rewind(GLIB
C_2.2) [2]

vdprintf(GLI
BC_2.2) [1]

 39

11 Libraries

ctermid(GLIB
C_2.2) [2]

fprintf(GLIBC
_2.2) [2]

getchar(GLIB
C_2.2) [2]

rewinddir(GL
IBC_2.2) [2]

vfprintf(GLIB
C_2.2) [2]

fclose(GLIBC
_2.2) [2]

fputc(GLIBC_
2.2) [2]

getchar_unloc
ked(GLIBC_2.
2) [2]

scanf(GLIBC_
2.2) [1]

vprintf(GLIB
C_2.2) [2]

fdopen(GLIB
C_2.2) [2]

fputs(GLIBC_
2.2) [2]

getw(GLIBC_
2.2) [3]

seekdir(GLIB
C_2.2) [2]

vsnprintf(GLI
BC_2.2) [2]

feof(GLIBC_2.
2) [2]

fread(GLIBC_
2.2) [2]

pclose(GLIBC
_2.2) [2]

setbuf(GLIBC
_2.2) [2]

vsprintf(GLIB
C_2.2) [2]

ferror(GLIBC
_2.2) [2]

freopen(GLIB
C_2.2) [2]

popen(GLIBC
_2.2) [2]

setbuffer(GLI
BC_2.2) [1]

fflush(GLIBC
_2.2) [2]

fscanf(GLIBC
_2.2) [1]

printf(GLIBC
_2.2) [2]

setvbuf(GLIB
C_2.2) [2]

fflush_unlock
ed(GLIBC_2.2
) [1]

fseek(GLIBC_
2.2) [2]

putc(GLIBC_2
.2) [2]

snprintf(GLIB
C_2.2) [2]

fgetc(GLIBC_
2.2) [2]

fseeko(GLIBC
_2.2) [2]

putc_unlocke
d(GLIBC_2.2)
[2]

sprintf(GLIBC
_2.2) [2]

Referenced Specification(s)

[1]. this specification

[2]. ISO POSIX (2003)

[3]. SUSv2

An LSB conforming implementation shall provide the architecture specific data
interfaces for Standard I/O specified in Table 11-5, with the full mandatory
functionality as described in the referenced underlying specification.

Table 11-5 libc - Standard I/O Data Interfaces

stderr(GLIBC
_2.2) [1]

stdin(GLIBC_
2.2) [1]

stdout(GLIBC
_2.2) [1]

Referenced Specification(s)

[1]. ISO POSIX (2003)

11.2.4 Signal Handling

11.2.4.1 Interfaces for Signal Handling
An LSB conforming implementation shall provide the architecture specific
functions for Signal Handling specified in Table 11-6, with the full mandatory
functionality as described in the referenced underlying specification.

Table 11-6 libc - Signal Handling Function Interfaces

__libc_current
_sigrtmax(GL

sigaction(GLI
BC_2.2) [2]

sighold(GLIB
C_2.2) [2]

sigorset(GLIB
C_2.2) [1]

sigset(GLIBC
_2.2) [2]

40

 11 Libraries

IBC_2.2) [1]

__libc_current
_sigrtmin(GLI
BC_2.2) [1]

sigaddset(GLI
BC_2.2) [2]

sigignore(GLI
BC_2.2) [2]

sigpause(GLI
BC_2.2) [2]

sigsuspend(G
LIBC_2.2) [2]

__sigsetjmp(G
LIBC_2.2) [1]

sigaltstack(G
LIBC_2.2) [2]

siginterrupt(
GLIBC_2.2)
[2]

sigpending(G
LIBC_2.2) [2]

sigtimedwait(
GLIBC_2.2)
[2]

__sysv_signal
(GLIBC_2.2)
[1]

sigandset(GLI
BC_2.2) [1]

sigisemptyset
(GLIBC_2.2)
[1]

sigprocmask(
GLIBC_2.2)
[2]

sigwait(GLIB
C_2.2) [2]

bsd_signal(G
LIBC_2.2) [2]

sigdelset(GLI
BC_2.2) [2]

sigismember(
GLIBC_2.2)
[2]

sigqueue(GLI
BC_2.2) [2]

sigwaitinfo(G
LIBC_2.2) [2]

psignal(GLIB
C_2.2) [1]

sigemptyset(
GLIBC_2.2)
[2]

siglongjmp(G
LIBC_2.2) [2]

sigrelse(GLIB
C_2.2) [2]

raise(GLIBC_
2.2) [2]

sigfillset(GLI
BC_2.2) [2]

signal(GLIBC
_2.2) [2]

sigreturn(GLI
BC_2.2) [1]

Referenced Specification(s)

[1]. this specification

[2]. ISO POSIX (2003)

An LSB conforming implementation shall provide the architecture specific data
interfaces for Signal Handling specified in Table 11-7, with the full mandatory
functionality as described in the referenced underlying specification.

Table 11-7 libc - Signal Handling Data Interfaces

_sys_siglist(G
LIBC_2.3.3)
[1]

Referenced Specification(s)

[1]. this specification

11.2.5 Localization Functions

11.2.5.1 Interfaces for Localization Functions
An LSB conforming implementation shall provide the architecture specific
functions for Localization Functions specified in Table 11-8, with the full mandatory
functionality as described in the referenced underlying specification.

Table 11-8 libc - Localization Functions Function Interfaces

bind_textdom
ain_codeset(G
LIBC_2.2) [1]

catopen(GLIB
C_2.2) [2]

dngettext(GLI
BC_2.2) [1]

iconv_open(G
LIBC_2.2) [2]

setlocale(GLI
BC_2.2) [2]

bindtextdoma dcgettext(GLI gettext(GLIB localeconv(G textdomain(G
 41

11 Libraries

in(GLIBC_2.2)
[1]

BC_2.2) [1] C_2.2) [1] LIBC_2.2) [2] LIBC_2.2) [1]

catclose(GLIB
C_2.2) [2]

dcngettext(G
LIBC_2.2) [1]

iconv(GLIBC_
2.2) [2]

ngettext(GLIB
C_2.2) [1]

catgets(GLIB
C_2.2) [2]

dgettext(GLIB
C_2.2) [1]

iconv_close(G
LIBC_2.2) [2]

nl_langinfo(G
LIBC_2.2) [2]

Referenced Specification(s)

[1]. this specification

[2]. ISO POSIX (2003)

An LSB conforming implementation shall provide the architecture specific data
interfaces for Localization Functions specified in Table 11-9, with the full
mandatory functionality as described in the referenced underlying specification.

Table 11-9 libc - Localization Functions Data Interfaces

_nl_msg_cat_
cntr(GLIBC_2
.2) [1]

Referenced Specification(s)

[1]. this specification

11.2.6 Socket Interface

11.2.6.1 Interfaces for Socket Interface
An LSB conforming implementation shall provide the architecture specific
functions for Socket Interface specified in Table 11-10, with the full mandatory
functionality as described in the referenced underlying specification.

Table 11-10 libc - Socket Interface Function Interfaces

__h_errno_loc
ation(GLIBC_
2.2) [1]

gethostname(
GLIBC_2.2)
[2]

if_nameindex
(GLIBC_2.2)
[2]

send(GLIBC_
2.2) [2]

socket(GLIBC
_2.2) [2]

accept(GLIBC
_2.2) [2]

getpeername(
GLIBC_2.2)
[2]

if_nametoind
ex(GLIBC_2.2
) [2]

sendmsg(GLI
BC_2.2) [2]

socketpair(GL
IBC_2.2) [2]

bind(GLIBC_
2.2) [2]

getsockname(
GLIBC_2.2)
[2]

listen(GLIBC_
2.2) [2]

sendto(GLIBC
_2.2) [2]

bindresvport(
GLIBC_2.2)
[1]

getsockopt(G
LIBC_2.2) [1]

recv(GLIBC_2
.2) [2]

setsockopt(G
LIBC_2.2) [1]

connect(GLIB
C_2.2) [2]

if_freenamein
dex(GLIBC_2.
2) [2]

recvfrom(GLI
BC_2.2) [2]

shutdown(GL
IBC_2.2) [2]

gethostid(GLI if_indextona recvmsg(GLI sockatmark(G

42

 11 Libraries

BC_2.2) [2] me(GLIBC_2.
2) [2]

BC_2.2) [2] LIBC_2.2.4)
[2]

Referenced Specification(s)

[1]. this specification

[2]. ISO POSIX (2003)

11.2.7 Wide Characters

11.2.7.1 Interfaces for Wide Characters
An LSB conforming implementation shall provide the architecture specific
functions for Wide Characters specified in Table 11-11, with the full mandatory
functionality as described in the referenced underlying specification.

Table 11-11 libc - Wide Characters Function Interfaces

__wcstod_int
ernal(GLIBC_
2.2) [1]

mbsinit(GLIB
C_2.2) [2]

vwscanf(GLIB
C_2.2) [1]

wcsnlen(GLIB
C_2.2) [1]

wcstoumax(G
LIBC_2.2) [2]

__wcstof_inte
rnal(GLIBC_2
.2) [1]

mbsnrtowcs(
GLIBC_2.2)
[1]

wcpcpy(GLIB
C_2.2) [1]

wcsnrtombs(
GLIBC_2.2)
[1]

wcstouq(GLI
BC_2.2) [1]

__wcstol_inte
rnal(GLIBC_2
.2) [1]

mbsrtowcs(G
LIBC_2.2) [2]

wcpncpy(GLI
BC_2.2) [1]

wcspbrk(GLI
BC_2.2) [2]

wcswcs(GLIB
C_2.2) [2]

__wcstold_int
ernal(GLIBC_
2.2) [1]

mbstowcs(GL
IBC_2.2) [2]

wcrtomb(GLI
BC_2.2) [2]

wcsrchr(GLIB
C_2.2) [2]

wcswidth(GL
IBC_2.2) [2]

__wcstoul_int
ernal(GLIBC_
2.2) [1]

mbtowc(GLIB
C_2.2) [2]

wcscasecmp(
GLIBC_2.2)
[1]

wcsrtombs(G
LIBC_2.2) [2]

wcsxfrm(GLI
BC_2.2) [2]

btowc(GLIBC
_2.2) [2]

putwc(GLIBC
_2.2) [2]

wcscat(GLIBC
_2.2) [2]

wcsspn(GLIB
C_2.2) [2]

wctob(GLIBC
_2.2) [2]

fgetwc(GLIBC
_2.2) [2]

putwchar(GLI
BC_2.2) [2]

wcschr(GLIB
C_2.2) [2]

wcsstr(GLIBC
_2.2) [2]

wctomb(GLIB
C_2.2) [2]

fgetws(GLIBC
_2.2) [2]

swprintf(GLI
BC_2.2) [2]

wcscmp(GLIB
C_2.2) [2]

wcstod(GLIB
C_2.2) [2]

wctrans(GLIB
C_2.2) [2]

fputwc(GLIB
C_2.2) [2]

swscanf(GLIB
C_2.2) [1]

wcscoll(GLIB
C_2.2) [2]

wcstof(GLIBC
_2.2) [2]

wctype(GLIB
C_2.2) [2]

fputws(GLIB
C_2.2) [2]

towctrans(GL
IBC_2.2) [2]

wcscpy(GLIB
C_2.2) [2]

wcstoimax(G
LIBC_2.2) [2]

wcwidth(GLI
BC_2.2) [2]

fwide(GLIBC
_2.2) [2]

towlower(GLI
BC_2.2) [2]

wcscspn(GLI
BC_2.2) [2]

wcstok(GLIB
C_2.2) [2]

wmemchr(GL
IBC_2.2) [2]

fwprintf(GLI
BC_2.2) [2]

towupper(GL
IBC_2.2) [2]

wcsdup(GLIB
C_2.2) [1]

wcstol(GLIBC
_2.2) [2]

wmemcmp(G
LIBC_2.2) [2]

 43

11 Libraries

fwscanf(GLIB
C_2.2) [1]

ungetwc(GLI
BC_2.2) [2]

wcsftime(GLI
BC_2.2) [2]

wcstold(GLIB
C_2.2) [2]

wmemcpy(G
LIBC_2.2) [2]

getwc(GLIBC
_2.2) [2]

vfwprintf(GLI
BC_2.2) [2]

wcslen(GLIB
C_2.2) [2]

wcstoll(GLIB
C_2.2) [2]

wmemmove(
GLIBC_2.2)
[2]

getwchar(GLI
BC_2.2) [2]

vfwscanf(GLI
BC_2.2) [1]

wcsncasecmp
(GLIBC_2.2)
[1]

wcstombs(GL
IBC_2.2) [2]

wmemset(GL
IBC_2.2) [2]

mblen(GLIBC
_2.2) [2]

vswprintf(GL
IBC_2.2) [2]

wcsncat(GLIB
C_2.2) [2]

wcstoq(GLIB
C_2.2) [1]

wprintf(GLIB
C_2.2) [2]

mbrlen(GLIB
C_2.2) [2]

vswscanf(GLI
BC_2.2) [1]

wcsncmp(GLI
BC_2.2) [2]

wcstoul(GLIB
C_2.2) [2]

wscanf(GLIB
C_2.2) [1]

mbrtowc(GLI
BC_2.2) [2]

vwprintf(GLI
BC_2.2) [2]

wcsncpy(GLI
BC_2.2) [2]

wcstoull(GLI
BC_2.2) [2]

Referenced Specification(s)

[1]. this specification

[2]. ISO POSIX (2003)

11.2.8 String Functions

11.2.8.1 Interfaces for String Functions
An LSB conforming implementation shall provide the architecture specific
functions for String Functions specified in Table 11-12, with the full mandatory
functionality as described in the referenced underlying specification.

Table 11-12 libc - String Functions Function Interfaces

__mempcpy(
GLIBC_2.2)
[1]

bzero(GLIBC_
2.2) [2]

strcasestr(GLI
BC_2.2) [1]

strncat(GLIB
C_2.2) [2]

strtok(GLIBC
_2.2) [2]

__rawmemch
r(GLIBC_2.2)
[1]

ffs(GLIBC_2.2
) [2]

strcat(GLIBC_
2.2) [2]

strncmp(GLIB
C_2.2) [2]

strtok_r(GLIB
C_2.2) [2]

__stpcpy(GLI
BC_2.2) [1]

index(GLIBC
_2.2) [2]

strchr(GLIBC
_2.2) [2]

strncpy(GLIB
C_2.2) [2]

strtold(GLIBC
_2.2) [2]

__strdup(GLI
BC_2.2) [1]

memccpy(GLI
BC_2.2) [2]

strcmp(GLIB
C_2.2) [2]

strndup(GLIB
C_2.2) [1]

strtoll(GLIBC
_2.2) [2]

__strtod_inter
nal(GLIBC_2.
2) [1]

memchr(GLIB
C_2.2) [2]

strcoll(GLIBC
_2.2) [2]

strnlen(GLIB
C_2.2) [1]

strtoq(GLIBC
_2.2) [1]

__strtof_inter
nal(GLIBC_2.
2) [1]

memcmp(GLI
BC_2.2) [2]

strcpy(GLIBC
_2.2) [2]

strpbrk(GLIB
C_2.2) [2]

strtoull(GLIB
C_2.2) [2]

__strtok_r(GL memcpy(GLI strcspn(GLIB strptime(GLI strtoumax(GL

44

 11 Libraries

IBC_2.2) [1] BC_2.2) [2] C_2.2) [2] BC_2.2) [1] IBC_2.2) [2]

__strtol_inter
nal(GLIBC_2.
2) [1]

memmove(G
LIBC_2.2) [2]

strdup(GLIBC
_2.2) [2]

strrchr(GLIBC
_2.2) [2]

strtouq(GLIB
C_2.2) [1]

__strtold_inte
rnal(GLIBC_2
.2) [1]

memrchr(GLI
BC_2.2) [1]

strerror(GLIB
C_2.2) [2]

strsep(GLIBC
_2.2) [1]

strxfrm(GLIB
C_2.2) [2]

__strtoll_inter
nal(GLIBC_2.
2) [1]

memset(GLIB
C_2.2) [2]

strerror_r(GLI
BC_2.2) [1]

strsignal(GLI
BC_2.2) [1]

swab(GLIBC_
2.2) [2]

__strtoul_inte
rnal(GLIBC_2
.2) [1]

rindex(GLIBC
_2.2) [2]

strfmon(GLIB
C_2.2) [2]

strspn(GLIBC
_2.2) [2]

__strtoull_int
ernal(GLIBC_
2.2) [1]

stpcpy(GLIBC
_2.2) [1]

strftime(GLIB
C_2.2) [2]

strstr(GLIBC_
2.2) [2]

bcmp(GLIBC
_2.2) [2]

stpncpy(GLIB
C_2.2) [1]

strlen(GLIBC
_2.2) [2]

strtof(GLIBC_
2.2) [2]

bcopy(GLIBC
_2.2) [2]

strcasecmp(G
LIBC_2.2) [2]

strncasecmp(
GLIBC_2.2)
[2]

strtoimax(GLI
BC_2.2) [2]

Referenced Specification(s)

[1]. this specification

[2]. ISO POSIX (2003)

11.2.9 IPC Functions

11.2.9.1 Interfaces for IPC Functions
An LSB conforming implementation shall provide the architecture specific
functions for IPC Functions specified in Table 11-13, with the full mandatory
functionality as described in the referenced underlying specification.

Table 11-13 libc - IPC Functions Function Interfaces

ftok(GLIBC_2
.2) [1]

msgrcv(GLIB
C_2.2) [1]

semget(GLIB
C_2.2) [1]

shmctl(GLIBC
_2.2) [1]

msgctl(GLIBC
_2.2) [1]

msgsnd(GLIB
C_2.2) [1]

semop(GLIBC
_2.2) [1]

shmdt(GLIBC
_2.2) [1]

msgget(GLIB
C_2.2) [1]

semctl(GLIBC
_2.2) [1]

shmat(GLIBC
_2.2) [1]

shmget(GLIB
C_2.2) [1]

Referenced Specification(s)

[1]. ISO POSIX (2003)

 45

11 Libraries

11.2.10 Regular Expressions

11.2.10.1 Interfaces for Regular Expressions
An LSB conforming implementation shall provide the architecture specific
functions for Regular Expressions specified in Table 11-14, with the full mandatory
functionality as described in the referenced underlying specification.

Table 11-14 libc - Regular Expressions Function Interfaces

regcomp(GLI
BC_2.2) [1]

regerror(GLIB
C_2.2) [1]

regexec(GLIB
C_2.3.4) [2]

regfree(GLIB
C_2.2) [1]

Referenced Specification(s)

[1]. ISO POSIX (2003)

[2]. this specification

11.2.11 Character Type Functions

11.2.11.1 Interfaces for Character Type Functions
An LSB conforming implementation shall provide the architecture specific
functions for Character Type Functions specified in Table 11-15, with the full
mandatory functionality as described in the referenced underlying specification.

Table 11-15 libc - Character Type Functions Function Interfaces

__ctype_get_
mb_cur_max(
GLIBC_2.2)
[1]

isdigit(GLIBC
_2.2) [2]

iswalnum(GL
IBC_2.2) [2]

iswlower(GLI
BC_2.2) [2]

toascii(GLIBC
_2.2) [2]

_tolower(GLI
BC_2.2) [2]

isgraph(GLIB
C_2.2) [2]

iswalpha(GLI
BC_2.2) [2]

iswprint(GLI
BC_2.2) [2]

tolower(GLIB
C_2.2) [2]

_toupper(GLI
BC_2.2) [2]

islower(GLIB
C_2.2) [2]

iswblank(GLI
BC_2.2) [2]

iswpunct(GLI
BC_2.2) [2]

toupper(GLIB
C_2.2) [2]

isalnum(GLIB
C_2.2) [2]

isprint(GLIBC
_2.2) [2]

iswcntrl(GLIB
C_2.2) [2]

iswspace(GLI
BC_2.2) [2]

isalpha(GLIB
C_2.2) [2]

ispunct(GLIB
C_2.2) [2]

iswctype(GLI
BC_2.2) [2]

iswupper(GLI
BC_2.2) [2]

isascii(GLIBC
_2.2) [2]

isspace(GLIB
C_2.2) [2]

iswdigit(GLIB
C_2.2) [2]

iswxdigit(GLI
BC_2.2) [2]

iscntrl(GLIBC
_2.2) [2]

isupper(GLIB
C_2.2) [2]

iswgraph(GLI
BC_2.2) [2]

isxdigit(GLIB
C_2.2) [2]

Referenced Specification(s)

[1]. this specification

[2]. ISO POSIX (2003)

46

 11 Libraries

11.2.12 Time Manipulation

11.2.12.1 Interfaces for Time Manipulation
An LSB conforming implementation shall provide the architecture specific
functions for Time Manipulation specified in Table 11-16, with the full mandatory
functionality as described in the referenced underlying specification.

Table 11-16 libc - Time Manipulation Function Interfaces

adjtime(GLIB
C_2.2) [1]

ctime(GLIBC_
2.2) [2]

gmtime(GLIB
C_2.2) [2]

localtime_r(G
LIBC_2.2) [2]

ualarm(GLIB
C_2.2) [2]

asctime(GLIB
C_2.2) [2]

ctime_r(GLIB
C_2.2) [2]

gmtime_r(GL
IBC_2.2) [2]

mktime(GLIB
C_2.2) [2]

asctime_r(GLI
BC_2.2) [2]

difftime(GLIB
C_2.2) [2]

localtime(GLI
BC_2.2) [2]

tzset(GLIBC_
2.2) [2]

Referenced Specification(s)

[1]. this specification

[2]. ISO POSIX (2003)

An LSB conforming implementation shall provide the architecture specific data
interfaces for Time Manipulation specified in Table 11-17, with the full mandatory
functionality as described in the referenced underlying specification.

Table 11-17 libc - Time Manipulation Data Interfaces

__daylight(G
LIBC_2.2) [1]

__tzname(GLI
BC_2.2) [1]

timezone(GLI
BC_2.2) [2]

__timezone(G
LIBC_2.2) [1]

daylight(GLI
BC_2.2) [2]

tzname(GLIB
C_2.2) [2]

Referenced Specification(s)

[1]. this specification

[2]. ISO POSIX (2003)

11.2.13 Terminal Interface Functions

11.2.13.1 Interfaces for Terminal Interface Functions
An LSB conforming implementation shall provide the architecture specific
functions for Terminal Interface Functions specified in Table 11-18, with the full
mandatory functionality as described in the referenced underlying specification.

Table 11-18 libc - Terminal Interface Functions Function Interfaces

cfgetispeed(G
LIBC_2.2) [1]

cfsetispeed(G
LIBC_2.2) [1]

tcdrain(GLIB
C_2.2) [1]

tcgetattr(GLIB
C_2.2) [1]

tcsendbreak(
GLIBC_2.2)
[1]

cfgetospeed(
GLIBC_2.2)
[1]

cfsetospeed(G
LIBC_2.2) [1]

tcflow(GLIBC
_2.2) [1]

tcgetpgrp(GLI
BC_2.2) [1]

tcsetattr(GLIB
C_2.2) [1]

 47

11 Libraries

cfmakeraw(G
LIBC_2.2) [2]

cfsetspeed(GL
IBC_2.2) [2]

tcflush(GLIB
C_2.2) [1]

tcgetsid(GLIB
C_2.2) [1]

tcsetpgrp(GLI
BC_2.2) [1]

Referenced Specification(s)

[1]. ISO POSIX (2003)

[2]. this specification

11.2.14 System Database Interface

11.2.14.1 Interfaces for System Database Interface
An LSB conforming implementation shall provide the architecture specific
functions for System Database Interface specified in Table 11-19, with the full
mandatory functionality as described in the referenced underlying specification.

Table 11-19 libc - System Database Interface Function Interfaces

endgrent(GLI
BC_2.2) [1]

getgrgid_r(G
LIBC_2.2) [1]

getprotoent(G
LIBC_2.2) [1]

getservent(GL
IBC_2.2) [1]

setgroups(GL
IBC_2.2) [2]

endprotoent(
GLIBC_2.2)
[1]

getgrnam(GLI
BC_2.2) [1]

getpwent(GLI
BC_2.2) [1]

getutent(GLIB
C_2.2) [2]

setprotoent(G
LIBC_2.2) [1]

endpwent(GL
IBC_2.2) [1]

getgrnam_r(G
LIBC_2.2) [1]

getpwnam(G
LIBC_2.2) [1]

getutent_r(GL
IBC_2.2) [2]

setpwent(GLI
BC_2.2) [1]

endservent(G
LIBC_2.2) [1]

getgrouplist(
GLIBC_2.2.4)
[2]

getpwnam_r(
GLIBC_2.2)
[1]

getutxent(GLI
BC_2.2) [1]

setservent(GL
IBC_2.2) [1]

endutent(GLI
BC_2.2) [3]

gethostbyadd
r(GLIBC_2.2)
[1]

getpwuid(GL
IBC_2.2) [1]

getutxid(GLI
BC_2.2) [1]

setutent(GLIB
C_2.2) [2]

endutxent(GL
IBC_2.2) [1]

gethostbynam
e(GLIBC_2.2)
[1]

getpwuid_r(G
LIBC_2.2) [1]

getutxline(GL
IBC_2.2) [1]

setutxent(GLI
BC_2.2) [1]

getgrent(GLI
BC_2.2) [1]

getprotobyna
me(GLIBC_2.
2) [1]

getservbynam
e(GLIBC_2.2)
[1]

pututxline(GL
IBC_2.2) [1]

utmpname(G
LIBC_2.2) [2]

getgrgid(GLI
BC_2.2) [1]

getprotobynu
mber(GLIBC_
2.2) [1]

getservbyport
(GLIBC_2.2)
[1]

setgrent(GLIB
C_2.2) [1]

Referenced Specification(s)

[1]. ISO POSIX (2003)

[2]. this specification

[3]. SUSv2

48

 11 Libraries

11.2.15 Language Support

11.2.15.1 Interfaces for Language Support
An LSB conforming implementation shall provide the architecture specific
functions for Language Support specified in Table 11-20, with the full mandatory
functionality as described in the referenced underlying specification.

Table 11-20 libc - Language Support Function Interfaces

__libc_start_
main(GLIBC_
2.2) [1]

Referenced Specification(s)

[1]. this specification

11.2.16 Large File Support

11.2.16.1 Interfaces for Large File Support
An LSB conforming implementation shall provide the architecture specific
functions for Large File Support specified in Table 11-21, with the full mandatory
functionality as described in the referenced underlying specification.

Table 11-21 libc - Large File Support Function Interfaces

__fxstat64(GL
IBC_2.2) [1]

fopen64(GLIB
C_2.2) [2]

ftello64(GLIB
C_2.2) [2]

mkstemp64(G
LIBC_2.2) [2]

tmpfile64(GLI
BC_2.2) [2]

__lxstat64(GL
IBC_2.2) [1]

freopen64(GL
IBC_2.2) [2]

ftruncate64(G
LIBC_2.2) [2]

mmap64(GLI
BC_2.2) [2]

truncate64(G
LIBC_2.2) [2]

__xstat64(GLI
BC_2.2) [1]

fseeko64(GLI
BC_2.2) [2]

ftw64(GLIBC
_2.2) [2]

nftw64(GLIB
C_2.3.3) [2]

creat64(GLIB
C_2.2) [2]

fsetpos64(GLI
BC_2.2) [2]

getrlimit64(G
LIBC_2.2) [2]

readdir64(GLI
BC_2.2) [2]

fgetpos64(GLI
BC_2.2) [2]

fstatvfs64(GLI
BC_2.2) [2]

lockf64(GLIB
C_2.2) [2]

statvfs64(GLI
BC_2.2) [2]

Referenced Specification(s)

[1]. this specification

[2]. Large File Support

11.2.17 Standard Library

11.2.17.1 Interfaces for Standard Library
An LSB conforming implementation shall provide the architecture specific
functions for Standard Library specified in Table 11-22, with the full mandatory
functionality as described in the referenced underlying specification.

Table 11-22 libc - Standard Library Function Interfaces

Exit(GLIBC dirname(GLI gettimeofday(lrand48(GLIB srand(GLIBC

 49

11 Libraries

2.2) [1] BC_2.2) [1] GLIBC_2.2)
[1]

C_2.2) [1] _2.2) [1]

__assert_fail(
GLIBC_2.2)
[2]

div(GLIBC_2.
2) [1]

glob(GLIBC_2
.2) [1]

lsearch(GLIB
C_2.2) [1]

srand48(GLIB
C_2.2) [1]

__cxa_atexit(
GLIBC_2.2)
[2]

drand48(GLI
BC_2.2) [1]

glob64(GLIBC
_2.2) [2]

makecontext(
GLIBC_2.2)
[1]

srandom(GLI
BC_2.2) [1]

__errno_locati
on(GLIBC_2.2
) [2]

ecvt(GLIBC_2
.2) [1]

globfree(GLIB
C_2.2) [1]

malloc(GLIBC
_2.2) [1]

strtod(GLIBC
_2.2) [1]

__fpending(G
LIBC_2.2) [2]

erand48(GLIB
C_2.2) [1]

globfree64(GL
IBC_2.2) [2]

memmem(GL
IBC_2.2) [2]

strtol(GLIBC_
2.2) [1]

__getpagesize
(GLIBC_2.2)
[2]

err(GLIBC_2.
2) [2]

grantpt(GLIB
C_2.2) [1]

mkstemp(GLI
BC_2.2) [1]

strtoul(GLIBC
_2.2) [1]

__isinf(GLIBC
_2.2) [2]

error(GLIBC_
2.2) [2]

hcreate(GLIB
C_2.2) [1]

mktemp(GLI
BC_2.2) [1]

swapcontext(
GLIBC_2.2)
[1]

__isinff(GLIB
C_2.2) [2]

errx(GLIBC_2
.2) [2]

hdestroy(GLI
BC_2.2) [1]

mrand48(GLI
BC_2.2) [1]

syslog(GLIBC
_2.2) [1]

__isinfl(GLIB
C_2.2) [2]

fcvt(GLIBC_2.
2) [1]

hsearch(GLIB
C_2.2) [1]

nftw(GLIBC_
2.3.3) [1]

system(GLIB
C_2.2) [2]

__isnan(GLIB
C_2.2) [2]

fmtmsg(GLIB
C_2.2) [1]

htonl(GLIBC_
2.2) [1]

nrand48(GLIB
C_2.2) [1]

tdelete(GLIB
C_2.2) [1]

__isnanf(GLI
BC_2.2) [2]

fnmatch(GLIB
C_2.2.3) [1]

htons(GLIBC_
2.2) [1]

ntohl(GLIBC_
2.2) [1]

tfind(GLIBC_
2.2) [1]

__isnanl(GLIB
C_2.2) [2]

fpathconf(GLI
BC_2.2) [1]

imaxabs(GLIB
C_2.2) [1]

ntohs(GLIBC_
2.2) [1]

tmpfile(GLIB
C_2.2) [1]

__sysconf(GL
IBC_2.2) [2]

free(GLIBC_2.
2) [1]

imaxdiv(GLIB
C_2.2) [1]

openlog(GLIB
C_2.2) [1]

tmpnam(GLI
BC_2.2) [1]

exit(GLIBC
2.2) [1]

freeaddrinfo(
GLIBC_2.2)
[1]

inet_addr(GLI
BC_2.2) [1]

perror(GLIBC
_2.2) [1]

tsearch(GLIB
C_2.2) [1]

_longjmp(GLI
BC_2.2) [1]

ftrylockfile(G
LIBC_2.2) [1]

inet_ntoa(GLI
BC_2.2) [1]

posix_memali
gn(GLIBC_2.2
) [1]

ttyname(GLIB
C_2.2) [1]

_setjmp(GLIB
C_2.2) [1]

ftw(GLIBC_2.
2) [1]

inet_ntop(GLI
BC_2.2) [1]

posix_openpt
(GLIBC_2.2.1)
[1]

ttyname_r(GL
IBC_2.2) [1]

a64l(GLIBC_2
.2) [1]

funlockfile(G
LIBC_2.2) [1]

inet_pton(GLI
BC_2.2) [1]

ptsname(GLI
BC_2.2) [1]

twalk(GLIBC
_2.2) [1]

abort(GLIBC_ gai_strerror(G initstate(GLIB putenv(GLIB unlockpt(GLI

50

 11 Libraries

2.2) [1] LIBC_2.2) [1] C_2.2) [1] C_2.2) [1] BC_2.2) [1]

abs(GLIBC_2.
2) [1]

gcvt(GLIBC_2
.2) [1]

insque(GLIBC
_2.2) [1]

qsort(GLIBC_
2.2) [1]

unsetenv(GLI
BC_2.2) [1]

atof(GLIBC_2.
2) [1]

getaddrinfo(G
LIBC_2.2) [1]

isatty(GLIBC_
2.2) [1]

rand(GLIBC_
2.2) [1]

usleep(GLIBC
_2.2) [1]

atoi(GLIBC_2.
2) [1]

getcwd(GLIB
C_2.2) [1]

isblank(GLIB
C_2.2) [1]

rand_r(GLIB
C_2.2) [1]

verrx(GLIBC_
2.2) [2]

atol(GLIBC_2.
2) [1]

getdate(GLIB
C_2.2) [1]

jrand48(GLIB
C_2.2) [1]

random(GLIB
C_2.2) [1]

vfscanf(GLIB
C_2.2) [2]

atoll(GLIBC_2
.2) [1]

getenv(GLIB
C_2.2) [1]

l64a(GLIBC_2
.2) [1]

realloc(GLIBC
_2.2) [1]

vscanf(GLIBC
_2.2) [2]

basename(GL
IBC_2.2) [1]

getlogin(GLIB
C_2.2) [1]

labs(GLIBC_2
.2) [1]

realpath(GLIB
C_2.3) [1]

vsscanf(GLIB
C_2.2) [2]

bsearch(GLIB
C_2.2) [1]

getlogin_r(GL
IBC_2.2) [1]

lcong48(GLIB
C_2.2) [1]

remque(GLIB
C_2.2) [1]

vsyslog(GLIB
C_2.2) [2]

calloc(GLIBC
_2.2) [1]

getnameinfo(
GLIBC_2.2)
[1]

ldiv(GLIBC_2
.2) [1]

seed48(GLIB
C_2.2) [1]

warn(GLIBC_
2.2) [2]

closelog(GLIB
C_2.2) [1]

getopt(GLIBC
_2.2) [2]

lfind(GLIBC_
2.2) [1]

setenv(GLIBC
_2.2) [1]

warnx(GLIBC
_2.2) [2]

confstr(GLIB
C_2.2) [1]

getopt_long(
GLIBC_2.2)
[2]

llabs(GLIBC_
2.2) [1]

sethostname(
GLIBC_2.2)
[2]

wordexp(GLI
BC_2.2.2) [1]

cuserid(GLIB
C_2.2) [3]

getopt_long_
only(GLIBC_2
.2) [2]

lldiv(GLIBC_
2.2) [1]

setlogmask(G
LIBC_2.2) [1]

wordfree(GLI
BC_2.2) [1]

daemon(GLIB
C_2.2) [2]

getsubopt(GL
IBC_2.2) [1]

longjmp(GLI
BC_2.2) [1]

setstate(GLIB
C_2.2) [1]

Referenced Specification(s)

[1]. ISO POSIX (2003)

[2]. this specification

[3]. SUSv2

An LSB conforming implementation shall provide the architecture specific data
interfaces for Standard Library specified in Table 11-23, with the full mandatory
functionality as described in the referenced underlying specification.

Table 11-23 libc - Standard Library Data Interfaces

__environ(GL
IBC_2.2) [1]

_sys_errlist(G
LIBC_2.3) [1]

getdate_err(G
LIBC_2.2) [2]

opterr(GLIBC
_2.2) [2]

optopt(GLIBC
_2.2) [2]

_environ(GLI
BC_2.2) [1]

environ(GLIB
C_2.2) [2]

optarg(GLIBC
_2.2) [2]

optind(GLIBC
_2.2) [2]

 51

11 Libraries

Referenced Specification(s)

[1]. this specification

[2]. ISO POSIX (2003)

11.3 Data Definitions for libc
This section defines global identifiers and their values that are associated with
interfaces contained in libc. These definitions are organized into groups that
correspond to system headers. This convention is used as a convenience for the
reader, and does not imply the existence of these headers, or their content.

These definitions are intended to supplement those provided in the referenced
underlying specifications.

This specification uses ISO/IEC 9899 C Language as the reference programming
language, and data definitions are specified in ISO C format. The C language is
used here as a convenient notation. Using a C language description of these data
objects does not preclude their use by other programming languages.

11.3.1 errno.h

#define EDEADLOCK EDEADLK

11.3.2 fcntl.h

#define F_GETLK64 5
#define F_SETLK64 6
#define F_SETLKW64 7

11.3.3 inttypes.h

typedef long int intmax_t;
typedef unsigned long int uintmax_t;
typedef unsigned long int uintptr_t;
typedef unsigned long int uint64_t;

11.3.4 limits.h

#define LONG_MAX 0x7FFFFFFFFFFFFFFFL
#define ULONG_MAX 0xFFFFFFFFFFFFFFFFUL

#define CHAR_MAX SCHAR_MAX
#define CHAR_MIN SCHAR_MIN

#define PTHREAD_STACK_MIN 196608

11.3.5 setjmp.h

typedef long int __jmp_buf[70] __attribute__ ((aligned (16)));

11.3.6 signal.h

#define SIGEV_PAD_SIZE ((SIGEV_MAX_SIZE/sizeof(int))-4)

52

 11 Libraries

#define SI_PAD_SIZE ((SI_MAX_SIZE/sizeof(int))-4)

struct sigaction
{
 union
 {
 sighandler_t _sa_handler;
 void (*_sa_sigaction) (int, siginfo_t *, void *);
 }
 __sigaction_handler;
 unsigned long int sa_flags;
 sigset_t sa_mask;
}
 ;
#define MINSIGSTKSZ 131027
#define SIGSTKSZ 262144

struct ia64_fpreg
{
 union
 {
 unsigned long int bits[2];
 long double __dummy;
 }
 u;
}
 ;

struct sigcontext
{
 unsigned long int sc_flags;
 unsigned long int sc_nat;
 stack_t sc_stack;
 unsigned long int sc_ip;
 unsigned long int sc_cfm;
 unsigned long int sc_um;
 unsigned long int sc_ar_rsc;
 unsigned long int sc_ar_bsp;
 unsigned long int sc_ar_rnat;
 unsigned long int sc_ar_ccv;
 unsigned long int sc_ar_unat;
 unsigned long int sc_ar_fpsr;
 unsigned long int sc_ar_pfs;
 unsigned long int sc_ar_lc;
 unsigned long int sc_pr;
 unsigned long int sc_br[8];
 unsigned long int sc_gr[32];
 struct ia64_fpreg sc_fr[128];
 unsigned long int sc_rbs_base;
 unsigned long int sc_loadrs;
 unsigned long int sc_ar25;
 unsigned long int sc_ar26;
 unsigned long int sc_rsvd[12];
 unsigned long int sc_mask;
}
 ;

11.3.7 stddef.h

typedef long int ptrdiff_t;
typedef unsigned long int size_t;

 53

11 Libraries

11.3.8 stdio.h

#define __IO_FILE_SIZE 216

11.3.9 sys/ioctl.h

#define TIOCGWINSZ 0x5413
#define FIONREAD 0x541B
#define TIOCNOTTY 0x5422

11.3.10 sys/ipc.h

struct ipc_perm
{
 key_t __key;
 uid_t uid;
 gid_t gid;
 uid_t cuid;
 uid_t cgid;
 mode_t mode;
 unsigned short __seq;
 unsigned short __pad1;
 unsigned long int __unused1;
 unsigned long int __unused2;
}
 ;

11.3.11 sys/mman.h

#define MCL_CURRENT 1
#define MCL_FUTURE 2

11.3.12 sys/msg.h

struct msqid_ds
{
 struct ipc_perm msg_perm;
 time_t msg_stime;
 time_t msg_rtime;
 time_t msg_ctime;
 unsigned long int __msg_cbytes;
 unsigned long int msg_qnum;
 unsigned long int msg_qbytes;
 pid_t msg_lspid;
 pid_t msg_lrpid;
 unsigned long int __unused1;
 unsigned long int __unused2;
}
 ;

11.3.13 sys/sem.h

struct semid_ds
{
 struct ipc_perm sem_perm;
 time_t sem_otime;

54

 11 Libraries

 time_t sem_ctime;
 unsigned long int sem_nsems;
 unsigned long int __unused1;
 unsigned long int __unused2;
}
 ;

11.3.14 sys/shm.h

#define SHMLBA (1024*1024)

struct shmid_ds
{
 struct ipc_perm shm_perm;
 size_t shm_segsz;
 time_t shm_atime;
 time_t shm_dtime;
 time_t shm_ctime;
 pid_t shm_cpid;
 pid_t shm_lpid;
 unsigned long int shm_nattch;
 unsigned long int __unused1;
 unsigned long int __unused2;
}
 ;

11.3.15 sys/socket.h

typedef uint64_t __ss_aligntype;

#define SO_RCVLOWAT 18
#define SO_SNDLOWAT 19
#define SO_RCVTIMEO 20
#define SO_SNDTIMEO 21

11.3.16 sys/stat.h

#define _STAT_VER 1

struct stat
{
 dev_t st_dev;
 ino_t st_ino;
 nlink_t st_nlink;
 mode_t st_mode;
 uid_t st_uid;
 gid_t st_gid;
 unsigned int pad0;
 dev_t st_rdev;
 off_t st_size;
 struct timespec st_atim;
 struct timespec st_mtim;
 struct timespec st_ctim;
 blksize_t st_blksize;
 blkcnt_t st_blocks;
 unsigned long int __unused[3];
}
 ;
struct stat64
{

 55

11 Libraries

 dev_t st_dev;
 ino64_t st_ino;
 nlink_t st_nlink;
 mode_t st_mode;
 uid_t st_uid;
 gid_t st_gid;
 unsigned int pad0;
 dev_t st_rdev;
 off_t st_size;
 struct timespec st_atim;
 struct timespec st_mtim;
 struct timespec st_ctim;
 blksize_t st_blksize;
 blkcnt64_t st_blocks;
 unsigned long int __unused[3];
}
 ;

11.3.17 sys/statvfs.h

struct statvfs
{
 unsigned long int f_bsize;
 unsigned long int f_frsize;
 fsblkcnt64_t f_blocks;
 fsblkcnt64_t f_bfree;
 fsblkcnt64_t f_bavail;
 fsfilcnt64_t f_files;
 fsfilcnt64_t f_ffree;
 fsfilcnt64_t f_favail;
 unsigned long int f_fsid;
 unsigned long int f_flag;
 unsigned long int f_namemax;
 unsigned int __f_spare[6];
}
 ;
struct statvfs64
{
 unsigned long int f_bsize;
 unsigned long int f_frsize;
 fsblkcnt64_t f_blocks;
 fsblkcnt64_t f_bfree;
 fsblkcnt64_t f_bavail;
 fsfilcnt64_t f_files;
 fsfilcnt64_t f_ffree;
 fsfilcnt64_t f_favail;
 unsigned long int f_fsid;
 unsigned long int f_flag;
 unsigned long int f_namemax;
 unsigned int __f_spare[6];
}
 ;

11.3.18 sys/types.h

typedef long int int64_t;

typedef int64_t ssize_t;

#define __FDSET_LONGS 16

56

 11 Libraries

11.3.19 termios.h

#define OLCUC 0000002
#define ONLCR 0000004
#define XCASE 0000004
#define NLDLY 0000400
#define CR1 0001000
#define IUCLC 0001000
#define CR2 0002000
#define CR3 0003000
#define CRDLY 0003000
#define TAB1 0004000
#define TAB2 0010000
#define TAB3 0014000
#define TABDLY 0014000
#define BS1 0020000
#define BSDLY 0020000
#define VT1 0040000
#define VTDLY 0040000
#define FF1 0100000
#define FFDLY 0100000

#define VSUSP 10
#define VEOL 11
#define VREPRINT 12
#define VDISCARD 13
#define VWERASE 14
#define VEOL2 16
#define VMIN 6
#define VSWTC 7
#define VSTART 8
#define VSTOP 9

#define IXON 0002000
#define IXOFF 0010000

#define CS6 0000020
#define CS7 0000040
#define CS8 0000060
#define CSIZE 0000060
#define CSTOPB 0000100
#define CREAD 0000200
#define PARENB 0000400
#define PARODD 0001000
#define HUPCL 0002000
#define CLOCAL 0004000
#define VTIME 5

#define ISIG 0000001
#define ICANON 0000002
#define ECHOE 0000020
#define ECHOK 0000040
#define ECHONL 0000100
#define NOFLSH 0000200
#define TOSTOP 0000400
#define ECHOCTL 0001000
#define ECHOPRT 0002000
#define ECHOKE 0004000
#define FLUSHO 0010000
#define PENDIN 0040000
#define IEXTEN 0100000

 57

11 Libraries

11.3.20 ucontext.h

#define _SC_GR0_OFFSET (((char *) & ((struct sigcontext *) 0)-
>sc_gr[0]) - (char *) 0)

typedef struct sigcontext mcontext_t;

typedef struct ucontext
{
 union
 {
 mcontext_t _mc;
 struct
 {
 unsigned long int _pad[_SC_GR0_OFFSET / 8];
 struct ucontext *_link;
 }
 _uc;
 }
 _u;
}
ucontext_t;

11.3.21 unistd.h

typedef long int intptr_t;

11.3.22 utmp.h

struct lastlog
{
 time_t ll_time;
 char ll_line[UT_LINESIZE];
 char ll_host[UT_HOSTSIZE];
}
 ;

struct utmp
{
 short ut_type;
 pid_t ut_pid;
 char ut_line[UT_LINESIZE];
 char ut_id[4];
 char ut_user[UT_NAMESIZE];
 char ut_host[UT_HOSTSIZE];
 struct exit_status ut_exit;
 long int ut_session;
 struct timeval ut_tv;
 int32_t ut_addr_v6[4];
 char __unused[20];
}
 ;

11.3.23 utmpx.h

struct utmpx
{
 short ut_type;
 pid_t ut_pid;

58

 11 Libraries

 char ut_line[UT_LINESIZE];
 char ut_id[4];
 char ut_user[UT_NAMESIZE];
 char ut_host[UT_HOSTSIZE];
 struct exit_status ut_exit;
 long int ut_session;
 struct timeval ut_tv;
 int32_t ut_addr_v6[4];
 char __unused[20];
}
 ;

11.4 Interfaces for libm
Table 11-24 defines the library name and shared object name for the libm library

Table 11-24 libm Definition

Library: libm

SONAME: libm.so.6.1
The behavior of the interfaces in this library is specified by the following specifica-
tions:

ISO C (1999)
this specification
SUSv2
ISO POSIX (2003)

11.4.1 Math

11.4.1.1 Interfaces for Math
An LSB conforming implementation shall provide the architecture specific
functions for Math specified in Table 11-25, with the full mandatory functionality as
described in the referenced underlying specification.

Table 11-25 libm - Math Function Interfaces

__finite(GLIB
C_2.2) [1]

ccoshl(GLIBC
_2.2) [2]

exp(GLIBC_2.
2) [2]

j1l(GLIBC_2.2
) [1]

powl(GLIBC_
2.2) [2]

__finitef(GLIB
C_2.2) [1]

ccosl(GLIBC_
2.2) [2]

exp2(GLIBC_
2.2) [2]

jn(GLIBC_2.2)
[2]

remainder(GL
IBC_2.2) [2]

__finitel(GLIB
C_2.2) [1]

ceil(GLIBC_2.
2) [2]

exp2f(GLIBC_
2.2) [2]

jnf(GLIBC_2.2
) [1]

remainderf(G
LIBC_2.2) [2]

__fpclassify(G
LIBC_2.2) [3]

ceilf(GLIBC_2
.2) [2]

exp2l(GLIBC_
2.2) [2]

jnl(GLIBC_2.2
) [1]

remainderl(G
LIBC_2.2) [2]

__fpclassifyf(
GLIBC_2.2)
[3]

ceill(GLIBC_2
.2) [2]

expf(GLIBC_2
.2) [2]

ldexp(GLIBC
_2.2) [2]

remquo(GLIB
C_2.2) [2]

__fpclassifyl(
GLIBC_2.2)
[1]

cexp(GLIBC_
2.2) [2]

expl(GLIBC_2
.2) [2]

ldexpf(GLIBC
_2.2) [2]

remquof(GLI
BC_2.2) [2]

 59

11 Libraries

__signbit(GLI
BC_2.2) [1]

cexpf(GLIBC_
2.2) [2]

expm1(GLIB
C_2.2) [2]

ldexpl(GLIBC
_2.2) [2]

remquol(GLI
BC_2.2) [2]

__signbitf(GL
IBC_2.2) [1]

cexpl(GLIBC_
2.2) [2]

expm1f(GLIB
C_2.2) [2]

lgamma(GLIB
C_2.2) [2]

rint(GLIBC_2.
2) [2]

__signbitl(GL
IBC_2.2) [1]

cimag(GLIBC
_2.2) [2]

expm1l(GLIB
C_2.2) [2]

lgamma_r(GL
IBC_2.2) [1]

rintf(GLIBC_2
.2) [2]

acos(GLIBC_2
.2) [2]

cimagf(GLIB
C_2.2) [2]

fabs(GLIBC_2
.2) [2]

lgammaf(GLI
BC_2.2) [2]

rintl(GLIBC_2
.2) [2]

acosf(GLIBC_
2.2) [2]

cimagl(GLIBC
_2.2) [2]

fabsf(GLIBC_
2.2) [2]

lgammaf_r(G
LIBC_2.2) [1]

round(GLIBC
_2.2) [2]

acosh(GLIBC
_2.2) [2]

clog(GLIBC_2
.2) [2]

fabsl(GLIBC_
2.2) [2]

lgammal(GLI
BC_2.2) [2]

roundf(GLIB
C_2.2) [2]

acoshf(GLIBC
_2.2) [2]

clog10(GLIBC
_2.2) [1]

fdim(GLIBC_
2.2) [2]

lgammal_r(G
LIBC_2.2) [1]

roundl(GLIB
C_2.2) [2]

acoshl(GLIBC
_2.2) [2]

clog10f(GLIB
C_2.2) [1]

fdimf(GLIBC_
2.2) [2]

llrint(GLIBC_
2.2) [2]

scalb(GLIBC_
2.2) [2]

acosl(GLIBC_
2.2) [2]

clog10l(GLIB
C_2.2) [1]

fdiml(GLIBC_
2.2) [2]

llrintf(GLIBC
_2.2) [2]

scalbf(GLIBC
_2.2) [1]

asin(GLIBC_2
.2) [2]

clogf(GLIBC_
2.2) [2]

feclearexcept(
GLIBC_2.2)
[2]

llrintl(GLIBC_
2.2) [2]

scalbl(GLIBC
_2.2) [1]

asinf(GLIBC_
2.2) [2]

clogl(GLIBC_
2.2) [2]

fegetenv(GLI
BC_2.2) [2]

llround(GLIB
C_2.2) [2]

scalbln(GLIB
C_2.2) [2]

asinh(GLIBC_
2.2) [2]

conj(GLIBC_2
.2) [2]

fegetexceptfla
g(GLIBC_2.2)
[2]

llroundf(GLIB
C_2.2) [2]

scalblnf(GLIB
C_2.2) [2]

asinhf(GLIBC
_2.2) [2]

conjf(GLIBC_
2.2) [2]

fegetround(G
LIBC_2.2) [2]

llroundl(GLIB
C_2.2) [2]

scalblnl(GLIB
C_2.2) [2]

asinhl(GLIBC
_2.2) [2]

conjl(GLIBC_
2.2) [2]

feholdexcept(
GLIBC_2.2)
[2]

log(GLIBC_2.
2) [2]

scalbn(GLIBC
_2.2) [2]

asinl(GLIBC_
2.2) [2]

copysign(GLI
BC_2.2) [2]

feraiseexcept(
GLIBC_2.2)
[2]

log10(GLIBC_
2.2) [2]

scalbnf(GLIB
C_2.2) [2]

atan(GLIBC_2
.2) [2]

copysignf(GL
IBC_2.2) [2]

fesetenv(GLIB
C_2.2) [2]

log10f(GLIBC
_2.2) [2]

scalbnl(GLIB
C_2.2) [2]

atan2(GLIBC_
2.2) [2]

copysignl(GLI
BC_2.2) [2]

fesetexceptfla
g(GLIBC_2.2)
[2]

log10l(GLIBC
_2.2) [2]

significand(G
LIBC_2.2) [1]

atan2f(GLIBC
_2.2) [2]

cos(GLIBC_2.
2) [2]

fesetround(G
LIBC_2.2) [2]

log1p(GLIBC
_2.2) [2]

significandf(G
LIBC_2.2) [1]

atan2l(GLIBC cosf(GLIBC_2 fetestexcept(G log1pf(GLIBC significandl(G

60

 11 Libraries

_2.2) [2] .2) [2] LIBC_2.2) [2] _2.2) [2] LIBC_2.2) [1]

atanf(GLIBC_
2.2) [2]

cosh(GLIBC_
2.2) [2]

feupdateenv(
GLIBC_2.2)
[2]

log1pl(GLIBC
_2.2) [2]

sin(GLIBC_2.
2) [2]

atanh(GLIBC
_2.2) [2]

coshf(GLIBC_
2.2) [2]

finite(GLIBC_
2.2) [4]

log2(GLIBC_2
.2) [2]

sincos(GLIBC
_2.2) [1]

atanhf(GLIBC
_2.2) [2]

coshl(GLIBC_
2.2) [2]

finitef(GLIBC
_2.2) [1]

log2f(GLIBC_
2.2) [2]

sincosf(GLIB
C_2.2) [1]

atanhl(GLIBC
_2.2) [2]

cosl(GLIBC_2.
2) [2]

finitel(GLIBC
_2.2) [1]

log2l(GLIBC_
2.2) [2]

sincosl(GLIB
C_2.2) [1]

atanl(GLIBC_
2.2) [2]

cpow(GLIBC_
2.2) [2]

floor(GLIBC_
2.2) [2]

logb(GLIBC_2
.2) [2]

sinf(GLIBC_2.
2) [2]

cabs(GLIBC_2
.2) [2]

cpowf(GLIBC
_2.2) [2]

floorf(GLIBC_
2.2) [2]

logbf(GLIBC_
2.2) [2]

sinh(GLIBC_2
.2) [2]

cabsf(GLIBC_
2.2) [2]

cpowl(GLIBC
_2.2) [2]

floorl(GLIBC_
2.2) [2]

logbl(GLIBC_
2.2) [2]

sinhf(GLIBC_
2.2) [2]

cabsl(GLIBC_
2.2) [2]

cproj(GLIBC_
2.2) [2]

fma(GLIBC_2.
2) [2]

logf(GLIBC_2.
2) [2]

sinhl(GLIBC_
2.2) [2]

cacos(GLIBC_
2.2) [2]

cprojf(GLIBC
_2.2) [2]

fmaf(GLIBC_
2.2) [2]

logl(GLIBC_2.
2) [2]

sinl(GLIBC_2.
2) [2]

cacosf(GLIBC
_2.2) [2]

cprojl(GLIBC
_2.2) [2]

fmal(GLIBC_
2.2) [2]

lrint(GLIBC_2
.2) [2]

sqrt(GLIBC_2.
2) [2]

cacosh(GLIBC
_2.2) [2]

creal(GLIBC_
2.2) [2]

fmax(GLIBC_
2.2) [2]

lrintf(GLIBC_
2.2) [2]

sqrtf(GLIBC_
2.2) [2]

cacoshf(GLIB
C_2.2) [2]

crealf(GLIBC_
2.2) [2]

fmaxf(GLIBC
_2.2) [2]

lrintl(GLIBC_
2.2) [2]

sqrtl(GLIBC_
2.2) [2]

cacoshl(GLIB
C_2.2) [2]

creall(GLIBC_
2.2) [2]

fmaxl(GLIBC
_2.2) [2]

lround(GLIB
C_2.2) [2]

tan(GLIBC_2.
2) [2]

cacosl(GLIBC
_2.2) [2]

csin(GLIBC_2
.2) [2]

fmin(GLIBC_
2.2) [2]

lroundf(GLIB
C_2.2) [2]

tanf(GLIBC_2
.2) [2]

carg(GLIBC_2
.2) [2]

csinf(GLIBC_
2.2) [2]

fminf(GLIBC_
2.2) [2]

lroundl(GLIB
C_2.2) [2]

tanh(GLIBC_
2.2) [2]

cargf(GLIBC_
2.2) [2]

csinh(GLIBC_
2.2) [2]

fminl(GLIBC_
2.2) [2]

matherr(GLIB
C_2.2) [1]

tanhf(GLIBC_
2.2) [2]

cargl(GLIBC_
2.2) [2]

csinhf(GLIBC
_2.2) [2]

fmod(GLIBC_
2.2) [2]

modf(GLIBC_
2.2) [2]

tanhl(GLIBC_
2.2) [2]

casin(GLIBC_
2.2) [2]

csinhl(GLIBC
_2.2) [2]

fmodf(GLIBC
_2.2) [2]

modff(GLIBC
_2.2) [2]

tanl(GLIBC_2.
2) [2]

casinf(GLIBC
_2.2) [2]

csinl(GLIBC_
2.2) [2]

fmodl(GLIBC
_2.2) [2]

modfl(GLIBC
_2.2) [2]

tgamma(GLIB
C_2.2) [2]

casinh(GLIBC csqrt(GLIBC_ frexp(GLIBC_ nan(GLIBC_2. tgammaf(GLI

 61

11 Libraries

_2.2) [2] 2.2) [2] 2.2) [2] 2) [2] BC_2.2) [2]

casinhf(GLIB
C_2.2) [2]

csqrtf(GLIBC
_2.2) [2]

frexpf(GLIBC
_2.2) [2]

nanf(GLIBC_
2.2) [2]

tgammal(GLI
BC_2.2) [2]

casinhl(GLIB
C_2.2) [2]

csqrtl(GLIBC_
2.2) [2]

frexpl(GLIBC
_2.2) [2]

nanl(GLIBC_2
.2) [2]

trunc(GLIBC_
2.2) [2]

casinl(GLIBC
_2.2) [2]

ctan(GLIBC_2
.2) [2]

gamma(GLIB
C_2.2) [4]

nearbyint(GLI
BC_2.2) [2]

truncf(GLIBC
_2.2) [2]

catan(GLIBC_
2.2) [2]

ctanf(GLIBC_
2.2) [2]

gammaf(GLIB
C_2.2) [1]

nearbyintf(GL
IBC_2.2) [2]

truncl(GLIBC
_2.2) [2]

catanf(GLIBC
_2.2) [2]

ctanh(GLIBC_
2.2) [2]

gammal(GLIB
C_2.2) [1]

nearbyintl(GL
IBC_2.2) [2]

y0(GLIBC_2.2
) [2]

catanh(GLIBC
_2.2) [2]

ctanhf(GLIBC
_2.2) [2]

hypot(GLIBC
_2.2) [2]

nextafter(GLI
BC_2.2) [2]

y0f(GLIBC_2.
2) [1]

catanhf(GLIB
C_2.2) [2]

ctanhl(GLIBC
_2.2) [2]

hypotf(GLIBC
_2.2) [2]

nextafterf(GLI
BC_2.2) [2]

y0l(GLIBC_2.
2) [1]

catanhl(GLIB
C_2.2) [2]

ctanl(GLIBC_
2.2) [2]

hypotl(GLIBC
_2.2) [2]

nextafterl(GLI
BC_2.2) [2]

y1(GLIBC_2.2
) [2]

catanl(GLIBC
_2.2) [2]

dremf(GLIBC
_2.2) [1]

ilogb(GLIBC_
2.2) [2]

nexttoward(G
LIBC_2.2) [2]

y1f(GLIBC_2.
2) [1]

cbrt(GLIBC_2.
2) [2]

dreml(GLIBC
_2.2) [1]

ilogbf(GLIBC
_2.2) [2]

nexttowardf(
GLIBC_2.2)
[2]

y1l(GLIBC_2.
2) [1]

cbrtf(GLIBC_
2.2) [2]

erf(GLIBC_2.2
) [2]

ilogbl(GLIBC
_2.2) [2]

nexttowardl(
GLIBC_2.2)
[2]

yn(GLIBC_2.2
) [2]

cbrtl(GLIBC_
2.2) [2]

erfc(GLIBC_2.
2) [2]

j0(GLIBC_2.2)
[2]

pow(GLIBC_
2.2) [2]

ynf(GLIBC_2.
2) [1]

ccos(GLIBC_2
.2) [2]

erfcf(GLIBC_
2.2) [2]

j0f(GLIBC_2.2
) [1]

pow10(GLIB
C_2.2) [1]

ynl(GLIBC_2.
2) [1]

ccosf(GLIBC_
2.2) [2]

erfcl(GLIBC_2
.2) [2]

j0l(GLIBC_2.2
) [1]

pow10f(GLIB
C_2.2) [1]

ccosh(GLIBC_
2.2) [2]

erff(GLIBC_2.
2) [2]

j1(GLIBC_2.2)
[2]

pow10l(GLIB
C_2.2) [1]

ccoshf(GLIBC
_2.2) [2]

erfl(GLIBC_2.
2) [2]

j1f(GLIBC_2.2
) [1]

powf(GLIBC_
2.2) [2]

Referenced Specification(s)

[1]. ISO C (1999)

[2]. ISO POSIX (2003)

[3]. this specification

[4]. SUSv2

62

 11 Libraries

An LSB conforming implementation shall provide the architecture specific data
interfaces for Math specified in Table 11-26, with the full mandatory functionality as
described in the referenced underlying specification.

Table 11-26 libm - Math Data Interfaces

signgam(GLI
BC_2.2) [1]

Referenced Specification(s)

[1]. ISO POSIX (2003)

11.5 Data Definitions for libm
This section defines global identifiers and their values that are associated with
interfaces contained in libm. These definitions are organized into groups that
correspond to system headers. This convention is used as a convenience for the
reader, and does not imply the existence of these headers, or their content.

These definitions are intended to supplement those provided in the referenced
underlying specifications.

This specification uses ISO/IEC 9899 C Language as the reference programming
language, and data definitions are specified in ISO C format. The C language is
used here as a convenient notation. Using a C language description of these data
objects does not preclude their use by other programming languages.

11.5.1 fenv.h

#define FE_INVALID (1UL << 0)
#define FE_DIVBYZERO (1UL << 2)
#define FE_OVERFLOW (1UL << 3)
#define FE_UNDERFLOW (1UL << 4)
#define FE_INEXACT (1UL << 5)
#define FE_UNNORMAL 1UL << 1

#define FE_ALL_EXCEPT (FE_INEXACT | FE_UNDERFLOW | FE_OVERFLOW |
FE_DIVBYZERO | FE_UNNORMAL | FE_INVALID)

#define FE_TONEAREST 0
#define FE_DOWNWARD 1
#define FE_UPWARD 2
#define FE_TOWARDZERO 3

typedef unsigned long int fexcept_t;

typedef unsigned long int fenv_t;
#define FE_DFL_ENV ((__const fenv_t *) 0xc009804c0270033fUL)

11.5.2 math.h

#define fpclassify(x) (sizeof (x) == sizeof (float) ?
__fpclassifyf (x) :sizeof (x) == sizeof (double) ? __fpclassify (x)
: __fpclassifyl (x))
#define signbit(x) (sizeof (x) == sizeof (float)? __signbitf
(x): sizeof (x) == sizeof (double)? __signbit (x) : __signbitl (x))

#define FP_ILOGB0 -2147483648

 63

11 Libraries

#define FP_ILOGBNAN 2147483647

11.6 Interfaces for libpthread
Table 11-27 defines the library name and shared object name for the libpthread
library

Table 11-27 libpthread Definition

Library: libpthread

SONAME: libpthread.so.0
The behavior of the interfaces in this library is specified by the following specifica-
tions:

Large File Support
this specification
ISO POSIX (2003)

11.6.1 Realtime Threads

11.6.1.1 Interfaces for Realtime Threads
An LSB conforming implementation shall provide the architecture specific
functions for Realtime Threads specified in Table 11-28, with the full mandatory
functionality as described in the referenced underlying specification.

Table 11-28 libpthread - Realtime Threads Function Interfaces

pthread_attr_
getinheritsche
d(GLIBC_2.2)
[1]

pthread_attr_
getscope(GLI
BC_2.2) [1]

pthread_attr_
setschedpolic
y(GLIBC_2.2)
[1]

pthread_getsc
hedparam(GL
IBC_2.2) [1]

pthread_attr_
getschedpolic
y(GLIBC_2.2)
[1]

pthread_attr_
setinheritsche
d(GLIBC_2.2)
[1]

pthread_attr_
setscope(GLI
BC_2.2) [1]

pthread_setsc
hedparam(GL
IBC_2.2) [1]

Referenced Specification(s)

[1]. ISO POSIX (2003)

11.6.2 Advanced Realtime Threads

11.6.2.1 Interfaces for Advanced Realtime Threads
No external functions are defined for libpthread - Advanced Realtime Threads

11.6.3 Posix Threads

11.6.3.1 Interfaces for Posix Threads
An LSB conforming implementation shall provide the architecture specific
functions for Posix Threads specified in Table 11-29, with the full mandatory
functionality as described in the referenced underlying specification.

64

 11 Libraries

Table 11-29 libpthread - Posix Threads Function Interfaces

_pthread_clea
nup_pop(GLI
BC_2.2) [1]

pthread_cond
_broadcast(G
LIBC_2.3.2)
[2]

pthread_join(
GLIBC_2.2)
[2]

pthread_rwlo
ck_destroy(G
LIBC_2.2) [2]

pthread_setco
ncurrency(GL
IBC_2.2) [2]

_pthread_clea
nup_push(GL
IBC_2.2) [1]

pthread_cond
_destroy(GLI
BC_2.3.2) [2]

pthread_key_
create(GLIBC
_2.2) [2]

pthread_rwlo
ck_init(GLIB
C_2.2) [2]

pthread_setsp
ecific(GLIBC_
2.2) [2]

pthread_attr_
destroy(GLIB
C_2.2) [2]

pthread_cond
init(GLIBC
2.3.2) [2]

pthread_key_
delete(GLIBC
_2.2) [2]

pthread_rwlo
ck_rdlock(GL
IBC_2.2) [2]

pthread_sigm
ask(GLIBC_2.
2) [2]

pthread_attr_
getdetachstat
e(GLIBC_2.2)
[2]

pthread_cond
_signal(GLIB
C_2.3.2) [2]

pthread_kill(
GLIBC_2.2)
[2]

pthread_rwlo
ck_timedrdlo
ck(GLIBC_2.2
) [2]

pthread_testc
ancel(GLIBC_
2.2) [2]

pthread_attr_
getguardsize(
GLIBC_2.2)
[2]

pthread_cond
_timedwait(G
LIBC_2.3.2)
[2]

pthread_mute
x_destroy(GL
IBC_2.2) [2]

pthread_rwlo
ck_timedwrlo
ck(GLIBC_2.2
) [2]

sem_close(GL
IBC_2.2) [2]

pthread_attr_
getschedpara
m(GLIBC_2.2)
[2]

pthread_cond
wait(GLIBC
2.3.2) [2]

pthread_mute
x_init(GLIBC
_2.2) [2]

pthread_rwlo
ck_tryrdlock(
GLIBC_2.2)
[2]

sem_destroy(
GLIBC_2.2)
[2]

pthread_attr_
getstack(GLIB
C_2.2) [2]

pthread_cond
attr_destroy(
GLIBC_2.2)
[2]

pthread_mute
x_lock(GLIBC
_2.2) [2]

pthread_rwlo
ck_trywrlock(
GLIBC_2.2)
[2]

sem_getvalue
(GLIBC_2.2)
[2]

pthread_attr_
getstackaddr(
GLIBC_2.2)
[2]

pthread_cond
attr_getpshar
ed(GLIBC_2.2
) [2]

pthread_mute
x_trylock(GLI
BC_2.2) [2]

pthread_rwlo
ck_unlock(GL
IBC_2.2) [2]

sem_init(GLI
BC_2.2) [2]

pthread_attr_
getstacksize(
GLIBC_2.2)
[2]

pthread_cond
attr_init(GLIB
C_2.2) [2]

pthread_mute
x_unlock(GLI
BC_2.2) [2]

pthread_rwlo
ck_wrlock(GL
IBC_2.2) [2]

sem_open(GL
IBC_2.2) [2]

pthread_attr_i
nit(GLIBC_2.2
) [2]

pthread_cond
attr_setpshare
d(GLIBC_2.2)
[2]

pthread_mute
xattr_destroy(
GLIBC_2.2)
[2]

pthread_rwlo
ckattr_destro
y(GLIBC_2.2)
[2]

sem_post(GLI
BC_2.2) [2]

pthread_attr_
setdetachstate
(GLIBC_2.2)
[2]

pthread_creat
e(GLIBC_2.2)
[2]

pthread_mute
xattr_getpsha
red(GLIBC_2.
2) [2]

pthread_rwlo
ckattr_getpsh
ared(GLIBC_
2.2) [2]

sem_timedwa
it(GLIBC_2.2)
[2]

pthread_attr_
setguardsize(
GLIBC_2.2)

pthread_deta
ch(GLIBC_2.2

pthread_mute
xattr_gettype(
GLIBC_2.2)

pthread_rwlo
ckattr_init(GL

sem_trywait(
GLIBC_2.2)

 65

11 Libraries

[2]) [2] [2] IBC_2.2) [2] [2]

pthread_attr_
setschedpara
m(GLIBC_2.2)
[2]

pthread_equa
l(GLIBC_2.2)
[2]

pthread_mute
xattr_init(GLI
BC_2.2) [2]

pthread_rwlo
ckattr_setpsh
ared(GLIBC_
2.2) [2]

sem_unlink(G
LIBC_2.2) [2]

pthread_attr_
setstackaddr(
GLIBC_2.2)
[2]

pthread_exit(
GLIBC_2.2)
[2]

pthread_mute
xattr_setpshar
ed(GLIBC_2.2
) [2]

pthread_self(
GLIBC_2.2)
[2]

sem_wait(GLI
BC_2.2) [2]

pthread_attr_
setstacksize(G
LIBC_2.3.3)
[2]

pthread_getc
oncurrency(G
LIBC_2.2) [2]

pthread_mute
xattr_settype(
GLIBC_2.2)
[2]

pthread_setca
ncelstate(GLI
BC_2.2) [2]

pthread_canc
el(GLIBC_2.2)
[2]

pthread_gets
pecific(GLIBC
_2.2) [2]

pthread_once
(GLIBC_2.2)
[2]

pthread_setca
nceltype(GLI
BC_2.2) [2]

Referenced Specification(s)

[1]. this specification

[2]. ISO POSIX (2003)

11.6.4 Thread aware versions of libc interfaces

11.6.4.1 Interfaces for Thread aware versions of libc interfaces
An LSB conforming implementation shall provide the architecture specific
functions for Thread aware versions of libc interfaces specified in Table 11-30, with
the full mandatory functionality as described in the referenced underlying
specification.

Table 11-30 libpthread - Thread aware versions of libc interfaces Function
Interfaces

lseek64(GLIB
C_2.2) [1]

pread(GLIBC
_2.2) [2]

pwrite(GLIBC
_2.2) [2]

open64(GLIB
C_2.2) [1]

pread64(GLIB
C_2.2) [1]

pwrite64(GLI
BC_2.2) [1]

Referenced Specification(s)

[1]. Large File Support

[2]. ISO POSIX (2003)

11.7 Interfaces for libgcc_s
Table 11-31 defines the library name and shared object name for the libgcc_s library

Table 11-31 libgcc_s Definition

Library: libgcc_s

66

 11 Libraries

SONAME: libgcc_s.so.1
The behavior of the interfaces in this library is specified by the following specifica-
tions:

this specification

11.7.1 Unwind Library

11.7.1.1 Interfaces for Unwind Library
An LSB conforming implementation shall provide the architecture specific
functions for Unwind Library specified in Table 11-32, with the full mandatory
functionality as described in the referenced underlying specification.

Table 11-32 libgcc_s - Unwind Library Function Interfaces

_Unwind_Bac
ktrace(GCC_3
.3) [1]

_Unwind_For
cedUnwind(G
CC_3.0) [1]

_Unwind_Get
GR(GCC_3.0)
[1]

_Unwind_Get
RegionStart(G
CC_3.0) [1]

_Unwind_Res
ume_or_Reth
row(GCC_3.3
) [1]

_Unwind_Del
eteException(
GCC_3.0) [1]

_Unwind_Get
BSP(GCC_3.3.
2) [1]

_Unwind_Get
IP(GCC_3.0)
[1]

_Unwind_Rai
seException(
GCC_3.0) [1]

_Unwind_Set
GR(GCC_3.0)
[1]

_Unwind_Fin
dEnclosingFu
nction(GCC_3
.3) [1]

_Unwind_Get
CFA(GCC_3.3
) [1]

_Unwind_Get
LanguageSpe
cificData(GC
C_3.0) [1]

_Unwind_Res
ume(GCC_3.0
) [1]

_Unwind_Set
IP(GCC_3.0)
[1]

Referenced Specification(s)

[1]. this specification

11.8 Interface Definitions for libgcc_s
The following interfaces are included in libgcc_s and are defined by this
specification. Unless otherwise noted, these interfaces shall be included in the
source standard.

Other interfaces listed above for libgcc_s shall behave as described in the referenced
base document.

11.9 Interfaces for libdl
Table 11-33 defines the library name and shared object name for the libdl library

Table 11-33 libdl Definition

Library: libdl

SONAME: libdl.so.2
The behavior of the interfaces in this library is specified by the following specifica-
tions:

this specification

 67

11 Libraries

ISO POSIX (2003)

11.9.1 Dynamic Loader

11.9.1.1 Interfaces for Dynamic Loader
An LSB conforming implementation shall provide the architecture specific
functions for Dynamic Loader specified in Table 11-34, with the full mandatory
functionality as described in the referenced underlying specification.

Table 11-34 libdl - Dynamic Loader Function Interfaces

dladdr(GLIB
C_2.0) [1]

dlclose(GLIB
C_2.0) [2]

dlerror(GLIB
C_2.0) [2]

dlopen(GLIB
C_2.1) [1]

dlsym(GLIBC
_2.0) [1]

Referenced Specification(s)

[1]. this specification

[2]. ISO POSIX (2003)

11.10 Interfaces for libcrypt
Table 11-35 defines the library name and shared object name for the libcrypt library

Table 11-35 libcrypt Definition

Library: libcrypt

SONAME: libcrypt.so.1
The behavior of the interfaces in this library is specified by the following specifica-
tions:

ISO POSIX (2003)

11.10.1 Encryption

11.10.1.1 Interfaces for Encryption
An LSB conforming implementation shall provide the architecture specific
functions for Encryption specified in Table 11-36, with the full mandatory
functionality as described in the referenced underlying specification.

Table 11-36 libcrypt - Encryption Function Interfaces

crypt(GLIBC_
2.0) [1]

encrypt(GLIB
C_2.0) [1]

setkey(GLIBC
_2.0) [1]

Referenced Specification(s)

[1]. ISO POSIX (2003)

68

12 Libraries
An LSB-conforming implementation shall also support some utility libraries which
are built on top of the interfaces provided by the base libraries. These libraries
implement common functionality, and hide additional system dependent
information such as file formats and device names.

12.1 Interfaces for libz
Table 12-1 defines the library name and shared object name for the libz library

Table 12-1 libz Definition

Library: libz

SONAME: libz.so.1

12.1.1 Compression Library

12.1.1.1 Interfaces for Compression Library
No external functions are defined for libz - Compression Library

12.2 Interfaces for libncurses
Table 12-2 defines the library name and shared object name for the libncurses
library

Table 12-2 libncurses Definition

Library: libncurses

SONAME: libncurses.so.5

12.2.1 Curses

12.2.1.1 Interfaces for Curses
No external functions are defined for libncurses - Curses

12.3 Interfaces for libutil
Table 12-3 defines the library name and shared object name for the libutil library

Table 12-3 libutil Definition

Library: libutil

SONAME: libutil.so.1
The behavior of the interfaces in this library is specified by the following specifica-
tions:

this specification

 69

12 Libraries

12.3.1 Utility Functions

12.3.1.1 Interfaces for Utility Functions
An LSB conforming implementation shall provide the architecture specific
functions for Utility Functions specified in Table 12-4, with the full mandatory
functionality as described in the referenced underlying specification.

Table 12-4 libutil - Utility Functions Function Interfaces

forkpty(GLIB
C_2.0) [1]

login_tty(GLI
BC_2.0) [1]

logwtmp(GLI
BC_2.0) [1]

login(GLIBC_
2.0) [1]

logout(GLIBC
_2.0) [1]

openpty(GLI
BC_2.0) [1]

Referenced Specification(s)

[1]. this specification

70

13 Software Installation

13.1 Package Dependencies
The LSB runtime environment shall provde the following dependencies.

lsb-core-ia64

 This dependency is used to indicate that the application is dependent on
features contained in the LSB-Core specification.

These dependencies shall have a version of 3.0.

Other LSB modules may add additional dependencies; such dependencies shall
have the format lsb-module-ia64.

13.2 Package Architecture Considerations
All packages must specify an architecture of IA64. A LSB runtime environment
must accept an architecture of ia64 even if the native architecture is different.

The archnum value in the Lead Section shall be 0x0009.

 71

Annex A Alphabetical Listing of Interfaces

A.1 libgcc_s
The behavior of the interfaces in this library is specified by the following Standards.

this specification
Table A-1 libgcc_s Function Interfaces

_Unwind_Backtrace[1] _Unwind_GetCFA[1] _Unwind_RaiseExceptio
n[1]

_Unwind_DeleteExcepti
on[1]

_Unwind_GetGR[1] _Unwind_Resume[1]

_Unwind_FindEnclosing
Function[1]

_Unwind_GetIP[1] _Unwind_Resume_or_R
ethrow[1]

_Unwind_ForcedUnwin
d[1]

_Unwind_GetLanguageS
pecificData[1]

_Unwind_SetGR[1]

_Unwind_GetBSP[1] _Unwind_GetRegionStar
t[1]

_Unwind_SetIP[1]

A.2 libm
The behavior of the interfaces in this library is specified by the following Standards.

ISO C (1999)
ISO POSIX (2003)

Table A-2 libm Function Interfaces

__fpclassifyl[1] __signbitl[1] exp2l[1]

 72

Annex B GNU Free Documentation License
Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston,
MA 02111-1307 USA Everyone is permitted to copy and distribute verbatim copies of
this license document, but changing it is not allowed.

B.1 PREAMBLE
The purpose of this License is to make a manual, textbook, or other written
document "free" in the sense of freedom: to assure everyone the effective freedom to
copy and redistribute it, with or without modifying it, either commercially or
noncommercially. Secondarily, this License preserves for the author and publisher a
way to get credit for their work, while not being considered responsible for
modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the
document must themselves be free in the same sense. It complements the GNU
General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come with
manuals providing the same freedoms that the software does. But this License is
not limited to software manuals; it can be used for any textual work, regardless of
subject matter or whether it is published as a printed book. We recommend this
License principally for works whose purpose is instruction or reference.

B.2 APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License.
The "Document", below, refers to any such manual or work. Any member of the
public is a licensee, and is addressed as "you".

A "Modified Version" of the Document means any work containing the Document
or a portion of it, either copied verbatim, or with modifications and/or translated
into another language.

A "Secondary Section" is a named appendix or a front-matter section of the
Document that deals exclusively with the relationship of the publishers or authors
of the Document to the Document's overall subject (or to related matters) and
contains nothing that could fall directly within that overall subject. (For example, if
the Document is in part a textbook of mathematics, a Secondary Section may not
explain any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal, commercial,
philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated,
as being those of Invariant Sections, in the notice that says that the Document is
released under this License.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released
under this License.

A "Transparent" copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the general public, whose

 73

Annex B GNU Free Documentation License

contents can be viewed and edited directly and straightforwardly with generic text
editors or (for images composed of pixels) generic paint programs or (for drawings)
some widely available drawing editor, and that is suitable for input to text
formatters or for automatic translation to a variety of formats suitable for input to
text formatters. A copy made in an otherwise Transparent file format whose
markup has been designed to thwart or discourage subsequent modification by
readers is not Transparent. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML designed for human
modification. Opaque formats include PostScript, PDF, proprietary formats that can
be read and edited only by proprietary word processors, SGML or XML for which
the DTD and/or processing tools are not generally available, and the machine-
generated HTML produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in
the title page. For works in formats which do not have any title page as such, "Title
Page" means the text near the most prominent appearance of the work's title,
preceding the beginning of the body of the text.

B.3 VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not
use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange
for copies. If you distribute a large enough number of copies you must also follow
the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may
publicly display copies.

B.4 COPYING IN QUANTITY
If you publish printed copies of the Document numbering more than 100, and the
Document's license notice requires Cover Texts, you must enclose the copies in
covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on
the front cover, and Back-Cover Texts on the back cover. Both covers must also
clearly and legibly identify you as the publisher of these copies. The front cover
must present the full title with all words of the title equally prominent and visible.
You may add other material on the covers in addition. Copying with changes
limited to the covers, as long as they preserve the title of the Document and satisfy
these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should
put the first ones listed (as many as fit reasonably) on the actual cover, and continue
the rest onto adjacent pages.

74

If you publish or distribute Opaque copies of the Document numbering more than
100, you must either include a machine-readable Transparent copy along with each
Opaque copy, or state in or with each Opaque copy a publicly-accessible computer-
network location containing a complete Transparent copy of the Document, free of
added material, which the general network-using public has access to download

 Annex B GNU Free Documentation License

anonymously at no charge using public-standard network protocols. If you use the
latter option, you must take reasonably prudent steps, when you begin distribution
of Opaque copies in quantity, to ensure that this Transparent copy will remain thus
accessible at the stated location until at least one year after the last time you
distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide
you with an updated version of the Document.

B.5 MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the
conditions of sections 2 and 3 above, provided that you release the Modified
Version under precisely this License, with the Modified Version filling the role of
the Document, thus licensing distribution and modification of the Modified Version
to whoever possesses a copy of it. In addition, you must do these things in the
Modified Version:

 A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were
any, be listed in the History section of the Document). You may use the same
title as a previous version if the original publisher of that version gives
permission.

 B. List on the Title Page, as authors, one or more persons or entities responsible
for authorship of the modifications in the Modified Version, together with at
least five of the principal authors of the Document (all of its principal authors,
if it has less than five).

 C. State on the Title page the name of the publisher of the Modified Version, as
the publisher.

 D. Preserve all the copyright notices of the Document.

 E. Add an appropriate copyright notice for your modifications adjacent to the
other copyright notices.

 F. Include, immediately after the copyright notices, a license notice giving the
public permission to use the Modified Version under the terms of this
License, in the form shown in the Addendum below.

 G. Preserve in that license notice the full lists of Invariant Sections and required
Cover Texts given in the Document's license notice.

 H. Include an unaltered copy of this License.

 I. Preserve the section entitled "History", and its title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified
Version as given on the Title Page. If there is no section entitled "History" in
the Document, create one stating the title, year, authors, and publisher of the
Document as given on its Title Page, then add an item describing the
Modified Version as stated in the previous sentence.

 J. Preserve the network location, if any, given in the Document for public access
to a Transparent copy of the Document, and likewise the network locations
given in the Document for previous versions it was based on. These may be
placed in the "History" section. You may omit a network location for a work

 75

Annex B GNU Free Documentation License

that was published at least four years before the Document itself, or if the
original publisher of the version it refers to gives permission.

 K. In any section entitled "Acknowledgements" or "Dedications", preserve the
section's title, and preserve in the section all the substance and tone of each of
the contributor acknowledgements and/or dedications given therein.

 L. Preserve all the Invariant Sections of the Document, unaltered in their text
and in their titles. Section numbers or the equivalent are not considered part
of the section titles.

 M. Delete any section entitled "Endorsements". Such a section may not be
included in the Modified Version.

 N. Do not retitle any existing section as "Endorsements" or to conflict in title with
any Invariant Section.

If the Modified Version includes new front-matter sections or appendices that
qualify as Secondary Sections and contain no material copied from the Document,
you may at your option designate some or all of these sections as invariant. To do
this, add their titles to the list of Invariant Sections in the Modified Version's license
notice. These titles must be distinct from any other section titles.

You may add a section entitled "Endorsements", provided it contains nothing but
endorsements of your Modified Version by various parties--for example, statements
of peer review or that the text has been approved by an organization as the
authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of
up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the
Modified Version. Only one passage of Front-Cover Text and one of Back-Cover
Text may be added by (or through arrangements made by) any one entity. If the
Document already includes a cover text for the same cover, previously added by
you or by arrangement made by the same entity you are acting on behalf of, you
may not add another; but you may replace the old one, on explicit permission from
the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give
permission to use their names for publicity for or to assert or imply endorsement of
any Modified Version.

B.6 COMBINING DOCUMENTS
You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original
documents, unmodified, and list them all as Invariant Sections of your combined
work in its license notice.

The combined work need only contain one copy of this License, and multiple
identical Invariant Sections may be replaced with a single copy. If there are multiple
Invariant Sections with the same name but different contents, make the title of each
such section unique by adding at the end of it, in parentheses, the name of the
original author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of Invariant Sections in the
license notice of the combined work.

In the combination, you must combine any sections entitled "History" in the various
original documents, forming one section entitled "History"; likewise combine any

76

 Annex B GNU Free Documentation License

sections entitled "Acknowledgements", and any sections entitled "Dedications". You
must delete all sections entitled "Endorsements."

B.7 COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this License in the
various documents with a single copy that is included in the collection, provided
that you follow the rules of this License for verbatim copying of each of the
documents in all other respects.

You may extract a single document from such a collection, and distribute it
individually under this License, provided you insert a copy of this License into the
extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

B.8 AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and
independent documents or works, in or on a volume of a storage or distribution
medium, does not as a whole count as a Modified Version of the Document,
provided no compilation copyright is claimed for the compilation. Such a
compilation is called an "aggregate", and this License does not apply to the other
self-contained works thus compiled with the Document, on account of their being
thus compiled, if they are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the
Document, then if the Document is less than one quarter of the entire aggregate, the
Document's Cover Texts may be placed on covers that surround only the Document
within the aggregate. Otherwise they must appear on covers around the whole
aggregate.

B.9 TRANSLATION
Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original
versions of these Invariant Sections. You may include a translation of this License
provided that you also include the original English version of this License. In case
of a disagreement between the translation and the original English version of this
License, the original English version will prevail.

B.10 TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as
expressly provided for under this License. Any other attempt to copy, modify,
sublicense or distribute the Document is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long
as such parties remain in full compliance.

B.11 FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in

 77

Annex B GNU Free Documentation License

spirit to the present version, but may differ in detail to address new problems or
concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the
Document specifies that a particular numbered version of this License "or any later
version" applies to it, you have the option of following the terms and conditions
either of that specified version or of any later version that has been published (not
as a draft) by the Free Software Foundation. If the Document does not specify a
version number of this License, you may choose any version ever published (not as
a draft) by the Free Software Foundation.

B.12 How to use this License for your documents
To use this License in a document you have written, include a copy of the License in
the document and put the following copyright and license notices just after the title
page:

Copyright (c) YEAR YOUR NAME. Permission is granted to copy, distribute and/or
modify this document under the terms of the GNU Free Documentation License,
Version 1.1 or any later version published by the Free Software Foundation; with the
Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST,
and with the Back-Cover Texts being LIST. A copy of the license is included in the
section entitled "GNU Free Documentation License".

If you have no Invariant Sections, write "with no Invariant Sections" instead of
saying which ones are invariant. If you have no Front-Cover Texts, write "no Front-
Cover Texts" instead of "Front-Cover Texts being LIST"; likewise for Back-Cover
Texts.

If your document contains nontrivial examples of program code, we recommend
releasing these examples in parallel under your choice of free software license, such
as the GNU General Public License, to permit their use in free software.

78

	Linux Standard Base Core Specification for IA64 3.0
	Contents
	List of Figures
	Foreword
	Introduction
	1 Scope
	1.1 General
	1.2 Module Specific Scope
	2 Normative References
	3 Requirements
	3.1 Relevant Libraries
	3.2 LSB Implementation Conformance
	3.3 LSB Application Conformance

	4 Definitions
	5 Terminology
	6 Documentation Conventions
	7 Introduction
	8 Low Level System Information
	8.1 Machine Interface
	8.1.1 Processor Architecture
	8.1.2 Data Representation
	8.1.2.1 Byte Ordering
	8.1.2.2 Fundamental Types
	8.1.2.3 Aggregates and Unions
	8.1.2.4 Bit Fields

	8.2 Function Calling Sequence
	8.2.1 Registers
	8.2.2 Floating Point Registers
	8.2.3 Stack Frame
	8.2.4 Arguments
	8.2.4.1 Introduction
	8.2.4.2 Integral/Pointer
	8.2.4.3 Floating Point
	8.2.4.4 Struct and Union Point
	8.2.4.5 Variable Arguments

	8.2.5 Return Values
	8.2.5.1 Introduction
	8.2.5.2 Void
	8.2.5.3 Integral/Pointer
	8.2.5.4 Floating Point
	8.2.5.5 Struct and Union

	8.3 Operating System Interface
	8.3.1 Processor Execution Mode
	8.3.2 Exception Interface
	8.3.2.1 Introduction
	8.3.2.2 Hardware Exception Types
	8.3.2.3 Software Trap Types

	8.3.3 Signal Delivery
	8.3.3.1 Signal Handler Interface

	8.3.4 Debugging Support
	8.3.5 Process Startup

	8.4 Process Initialization
	8.4.1 Special Registers
	8.4.2 Process Stack (on entry)
	8.4.3 Auxiliary Vector
	8.4.4 Environment

	8.5 Coding Examples
	8.5.1 Introduction
	8.5.2 Code Model Overview/Architecture Constraints
	8.5.3 Position-Independent Function Prologue
	8.5.4 Data Objects
	8.5.4.1 Absolute Load & Store
	8.5.4.2 Position Relative Load & Store

	8.5.5 Function Calls
	8.5.5.1 Absolute Direct Function Call
	8.5.5.2 Absolute Indirect Function Call
	8.5.5.3 Position-Independent Direct Function Call
	8.5.5.4 Position-Independent Indirect Function Call

	8.5.6 Branching
	8.5.6.1 Branch Instruction
	8.5.6.2 Absolute switch() code
	8.5.6.3 Position-Independent switch() code

	8.6 C Stack Frame
	8.6.1 Variable Argument List
	8.6.2 Dynamic Allocation of Stack Space

	8.7 Debug Information

	9 Object Format
	9.1 Introduction
	9.2 ELF Header
	9.2.1 Machine Information
	9.2.1.1 File Class
	9.2.1.2 Data Encoding
	9.2.1.3 OS Identification
	9.2.1.4 Processor Identification
	9.2.1.5 Processor Specific Flags

	9.3 Sections
	9.3.1 Special Sections
	9.3.2 Linux Special Sections
	9.3.3 Section Types
	9.3.4 Section Attribute Flags
	9.3.5 Special Section Types

	9.4 Symbol Table
	9.5 Relocation
	9.5.1 Relocation Types

	10 Program Loading and Dynamic Linking
	10.1 Introduction
	10.2 Program Header
	10.2.1 Types
	10.2.2 Flags

	10.3 Program Loading
	10.4 Dynamic Linking
	10.4.1 Dynamic Entries
	10.4.1.1 ELF Dynamic Entries
	10.4.1.2 Additional Dynamic Entries

	10.4.2 Global Offset Table
	10.4.3 Shared Object Dependencies
	10.4.4 Function Addresses
	10.4.5 Procedure Linkage Table
	10.4.6 Initialization and Termination Functions

	11 Libraries
	11.1 Program Interpreter/Dynamic Linker
	11.2 Interfaces for libc
	11.2.1 RPC
	11.2.1.1 Interfaces for RPC

	11.2.2 System Calls
	11.2.2.1 Interfaces for System Calls

	11.2.3 Standard I/O
	11.2.3.1 Interfaces for Standard I/O

	11.2.4 Signal Handling
	11.2.4.1 Interfaces for Signal Handling

	11.2.5 Localization Functions
	11.2.5.1 Interfaces for Localization Functions

	11.2.6 Socket Interface
	11.2.6.1 Interfaces for Socket Interface

	11.2.7 Wide Characters
	11.2.7.1 Interfaces for Wide Characters

	11.2.8 String Functions
	11.2.8.1 Interfaces for String Functions

	11.2.9 IPC Functions
	11.2.9.1 Interfaces for IPC Functions

	11.2.10 Regular Expressions
	11.2.10.1 Interfaces for Regular Expressions

	11.2.11 Character Type Functions
	11.2.11.1 Interfaces for Character Type Functions

	11.2.12 Time Manipulation
	11.2.12.1 Interfaces for Time Manipulation

	11.2.13 Terminal Interface Functions
	11.2.13.1 Interfaces for Terminal Interface Functions

	11.2.14 System Database Interface
	11.2.14.1 Interfaces for System Database Interface

	11.2.15 Language Support
	11.2.15.1 Interfaces for Language Support

	11.2.16 Large File Support
	11.2.16.1 Interfaces for Large File Support

	11.2.17 Standard Library
	11.2.17.1 Interfaces for Standard Library

	11.3 Data Definitions for libc
	11.3.1 errno.h
	11.3.2 fcntl.h
	11.3.3 inttypes.h
	11.3.4 limits.h
	11.3.5 setjmp.h
	11.3.6 signal.h
	11.3.7 stddef.h
	11.3.8 stdio.h
	11.3.9 sys/ioctl.h
	11.3.10 sys/ipc.h
	11.3.11 sys/mman.h
	11.3.12 sys/msg.h
	11.3.13 sys/sem.h
	11.3.14 sys/shm.h
	11.3.15 sys/socket.h
	11.3.16 sys/stat.h
	11.3.17 sys/statvfs.h
	11.3.18 sys/types.h
	11.3.19 termios.h
	11.3.20 ucontext.h
	11.3.21 unistd.h
	11.3.22 utmp.h
	11.3.23 utmpx.h

	11.4 Interfaces for libm
	11.4.1 Math
	11.4.1.1 Interfaces for Math

	11.5 Data Definitions for libm
	11.5.1 fenv.h
	11.5.2 math.h

	11.6 Interfaces for libpthread
	11.6.1 Realtime Threads
	11.6.1.1 Interfaces for Realtime Threads

	11.6.2 Advanced Realtime Threads
	11.6.2.1 Interfaces for Advanced Realtime Threads

	11.6.3 Posix Threads
	11.6.3.1 Interfaces for Posix Threads

	11.6.4 Thread aware versions of libc interfaces
	11.6.4.1 Interfaces for Thread aware versions of libc interfaces

	11.7 Interfaces for libgcc_s
	11.7.1 Unwind Library
	11.7.1.1 Interfaces for Unwind Library

	11.8 Interface Definitions for libgcc_s
	11.9 Interfaces for libdl
	11.9.1 Dynamic Loader
	11.9.1.1 Interfaces for Dynamic Loader

	11.10 Interfaces for libcrypt
	11.10.1 Encryption
	11.10.1.1 Interfaces for Encryption

	12 Libraries
	12.1 Interfaces for libz
	12.1.1 Compression Library
	12.1.1.1 Interfaces for Compression Library

	12.2 Interfaces for libncurses
	12.2.1 Curses
	12.2.1.1 Interfaces for Curses

	12.3 Interfaces for libutil
	12.3.1 Utility Functions
	12.3.1.1 Interfaces for Utility Functions

	13 Software Installation
	13.1 Package Dependencies
	13.2 Package Architecture Considerations

	Annex A Alphabetical Listing of Interfaces
	A.1 libgcc_s
	A.2 libm

	Annex B GNU Free Documentation License
	B.1 PREAMBLE
	B.2 APPLICABILITY AND DEFINITIONS
	B.3 VERBATIM COPYING
	B.4 COPYING IN QUANTITY
	B.5 MODIFICATIONS
	B.6 COMBINING DOCUMENTS
	B.7 COLLECTIONS OF DOCUMENTS
	B.8 AGGREGATION WITH INDEPENDENT WORKS
	B.9 TRANSLATION
	B.10 TERMINATION
	B.11 FUTURE REVISIONS OF THIS LICENSE
	B.12 How to use this License for your documents

